Minor EEPROM cleanup

2.0.x
Scott Lahteine 5 years ago
parent 3a07b4412d
commit 5e28b0f471

@ -525,7 +525,7 @@ void MarlinSettings::postprocess() {
* M500 - Store Configuration
*/
bool MarlinSettings::save() {
float dummy = 0;
float dummyf = 0;
char ver[4] = "ERR";
uint16_t working_crc = 0;
@ -556,8 +556,8 @@ void MarlinSettings::postprocess() {
#if HAS_CLASSIC_JERK
EEPROM_WRITE(planner.max_jerk);
#if HAS_LINEAR_E_JERK
dummy = float(DEFAULT_EJERK);
EEPROM_WRITE(dummy);
dummyf = float(DEFAULT_EJERK);
EEPROM_WRITE(dummyf);
#endif
#else
const xyze_pos_t planner_max_jerk = { 10, 10, 0.4, float(DEFAULT_EJERK) };
@ -567,8 +567,8 @@ void MarlinSettings::postprocess() {
#if DISABLED(CLASSIC_JERK)
EEPROM_WRITE(planner.junction_deviation_mm);
#else
dummy = 0.02f;
EEPROM_WRITE(dummy);
dummyf = 0.02f;
EEPROM_WRITE(dummyf);
#endif
}
@ -643,12 +643,12 @@ void MarlinSettings::postprocess() {
EEPROM_WRITE(mesh_num_y);
EEPROM_WRITE(mbl.z_values);
#else // For disabled MBL write a default mesh
dummy = 0;
dummyf = 0;
const uint8_t mesh_num_x = 3, mesh_num_y = 3;
EEPROM_WRITE(dummy); // z_offset
EEPROM_WRITE(dummyf); // z_offset
EEPROM_WRITE(mesh_num_x);
EEPROM_WRITE(mesh_num_y);
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummyf);
#endif
}
@ -672,8 +672,8 @@ void MarlinSettings::postprocess() {
#if ABL_PLANAR
EEPROM_WRITE(planner.bed_level_matrix);
#else
dummy = 0;
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
dummyf = 0;
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummyf);
#endif
}
@ -697,12 +697,12 @@ void MarlinSettings::postprocess() {
// For disabled Bilinear Grid write an empty 3x3 grid
const uint8_t grid_max_x = 3, grid_max_y = 3;
const xy_pos_t bilinear_start{0}, bilinear_grid_spacing{0};
dummy = 0;
dummyf = 0;
EEPROM_WRITE(grid_max_x);
EEPROM_WRITE(grid_max_y);
EEPROM_WRITE(bilinear_grid_spacing);
EEPROM_WRITE(bilinear_start);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummyf);
#endif
}
@ -781,35 +781,35 @@ void MarlinSettings::postprocess() {
_FIELD_TEST(x2_endstop_adj);
// Write dual endstops in X, Y, Z order. Unused = 0.0
dummy = 0;
dummyf = 0;
#if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_WRITE(endstops.x2_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
EEPROM_WRITE(dummyf);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_WRITE(endstops.y2_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
EEPROM_WRITE(dummyf);
#endif
#if ENABLED(Z_MULTI_ENDSTOPS)
EEPROM_WRITE(endstops.z2_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
EEPROM_WRITE(dummyf);
#endif
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
EEPROM_WRITE(endstops.z3_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
EEPROM_WRITE(dummyf);
#endif
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
EEPROM_WRITE(endstops.z4_endstop_adj); // 1 float
#else
EEPROM_WRITE(dummy);
EEPROM_WRITE(dummyf);
#endif
#endif
@ -970,9 +970,9 @@ void MarlinSettings::postprocess() {
#else
const bool volumetric_enabled = false;
dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
dummyf = DEFAULT_NOMINAL_FILAMENT_DIA;
EEPROM_WRITE(volumetric_enabled);
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummy);
for (uint8_t q = EXTRUDERS; q--;) EEPROM_WRITE(dummyf);
#endif
}
@ -1245,8 +1245,8 @@ void MarlinSettings::postprocess() {
#if ENABLED(LIN_ADVANCE)
EEPROM_WRITE(planner.extruder_advance_K);
#else
dummy = 0;
for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummy);
dummyf = 0;
for (uint8_t q = _MAX(EXTRUDERS, 1); q--;) EEPROM_WRITE(dummyf);
#endif
}
@ -1403,7 +1403,7 @@ void MarlinSettings::postprocess() {
eeprom_error = true;
}
else {
float dummy = 0;
float dummyf = 0;
working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
_FIELD_TEST(esteppers);
@ -1442,16 +1442,16 @@ void MarlinSettings::postprocess() {
#if HAS_CLASSIC_JERK
EEPROM_READ(planner.max_jerk);
#if HAS_LINEAR_E_JERK
EEPROM_READ(dummy);
EEPROM_READ(dummyf);
#endif
#else
for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
for (uint8_t q = 4; q--;) EEPROM_READ(dummyf);
#endif
#if DISABLED(CLASSIC_JERK)
EEPROM_READ(planner.junction_deviation_mm);
#else
EEPROM_READ(dummy);
EEPROM_READ(dummyf);
#endif
}
@ -1508,7 +1508,7 @@ void MarlinSettings::postprocess() {
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
EEPROM_READ(new_z_fade_height);
#else
EEPROM_READ(dummy);
EEPROM_READ(dummyf);
#endif
}
@ -1517,12 +1517,12 @@ void MarlinSettings::postprocess() {
//
{
uint8_t mesh_num_x, mesh_num_y;
EEPROM_READ(dummy);
EEPROM_READ(dummyf);
EEPROM_READ_ALWAYS(mesh_num_x);
EEPROM_READ_ALWAYS(mesh_num_y);
#if ENABLED(MESH_BED_LEVELING)
if (!validating) mbl.z_offset = dummy;
if (!validating) mbl.z_offset = dummyf;
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
// EEPROM data fits the current mesh
EEPROM_READ(mbl.z_values);
@ -1530,11 +1530,11 @@ void MarlinSettings::postprocess() {
else {
// EEPROM data is stale
if (!validating) mbl.reset();
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
}
#else
// MBL is disabled - skip the stored data
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummyf);
#endif // MESH_BED_LEVELING
}
@ -1558,7 +1558,7 @@ void MarlinSettings::postprocess() {
#if ABL_PLANAR
EEPROM_READ(planner.bed_level_matrix);
#else
for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
for (uint8_t q = 9; q--;) EEPROM_READ(dummyf);
#endif
}
@ -1583,7 +1583,7 @@ void MarlinSettings::postprocess() {
xy_pos_t bgs, bs;
EEPROM_READ(bgs);
EEPROM_READ(bs);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummyf);
}
}
@ -1592,16 +1592,15 @@ void MarlinSettings::postprocess() {
//
{
_FIELD_TEST(planner_leveling_active);
#if ENABLED(AUTO_BED_LEVELING_UBL)
EEPROM_READ(planner.leveling_active);
EEPROM_READ(ubl.storage_slot);
bool &planner_leveling_active = planner.leveling_active;
uint8_t &ubl_storage_slot = ubl.storage_slot;
#else
bool planner_leveling_active;
uint8_t ubl_storage_slot;
#endif
EEPROM_READ(planner_leveling_active);
EEPROM_READ(ubl_storage_slot);
#endif
}
//
@ -1609,7 +1608,6 @@ void MarlinSettings::postprocess() {
//
{
_FIELD_TEST(servo_angles);
#if ENABLED(EDITABLE_SERVO_ANGLES)
uint16_t (&servo_angles_arr)[EEPROM_NUM_SERVOS][2] = servo_angles;
#else
@ -1638,7 +1636,7 @@ void MarlinSettings::postprocess() {
{
_FIELD_TEST(bltouch_last_written_mode);
#if ENABLED(BLTOUCH)
const bool &bltouch_last_written_mode = bltouch.last_written_mode;
bool &bltouch_last_written_mode = bltouch.last_written_mode;
#else
bool bltouch_last_written_mode;
#endif
@ -1667,27 +1665,27 @@ void MarlinSettings::postprocess() {
#if ENABLED(X_DUAL_ENDSTOPS)
EEPROM_READ(endstops.x2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
EEPROM_READ(dummyf);
#endif
#if ENABLED(Y_DUAL_ENDSTOPS)
EEPROM_READ(endstops.y2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
EEPROM_READ(dummyf);
#endif
#if ENABLED(Z_MULTI_ENDSTOPS)
EEPROM_READ(endstops.z2_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
EEPROM_READ(dummyf);
#endif
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 3
EEPROM_READ(endstops.z3_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
EEPROM_READ(dummyf);
#endif
#if ENABLED(Z_MULTI_ENDSTOPS) && NUM_Z_STEPPER_DRIVERS >= 4
EEPROM_READ(endstops.z4_endstop_adj); // 1 float
#else
EEPROM_READ(dummy);
EEPROM_READ(dummyf);
#endif
#endif
@ -1749,11 +1747,11 @@ void MarlinSettings::postprocess() {
{
_FIELD_TEST(lpq_len);
#if ENABLED(PID_EXTRUSION_SCALING)
EEPROM_READ(thermalManager.lpq_len);
int16_t &lpq_len = thermalManager.lpq_len;
#else
int16_t lpq_len;
EEPROM_READ(lpq_len);
#endif
EEPROM_READ(lpq_len);
}
//
@ -1800,13 +1798,12 @@ void MarlinSettings::postprocess() {
//
{
_FIELD_TEST(recovery_enabled);
#if ENABLED(POWER_LOSS_RECOVERY)
EEPROM_READ(recovery.enabled);
bool &recovery_enabled = recovery.enabled;
#else
bool recovery_enabled;
EEPROM_READ(recovery_enabled);
#endif
EEPROM_READ(recovery_enabled);
}
//

Loading…
Cancel
Save