Merge pull request #3676 from thinkyhead/rc_lin_advance_feature

Advance extrusion algorithm – LIN_ADVANCE
2.0.x
Scott Lahteine 9 years ago committed by GitHub
commit 587de1b6b6

@ -76,10 +76,12 @@ script:
- build_marlin - build_marlin
# #
# Test 3 extruders on RUMBA (can use any board with >=3 extruders defined) # Test 3 extruders on RUMBA (can use any board with >=3 extruders defined)
# Include a test for LIN_ADVANCE here also
# #
- opt_set MOTHERBOARD BOARD_RUMBA - opt_set MOTHERBOARD BOARD_RUMBA
- opt_set EXTRUDERS 3 - opt_set EXTRUDERS 3
- opt_set TEMP_SENSOR_2 1 - opt_set TEMP_SENSOR_2 1
- opt_enable_adv LIN_ADVANCE
- build_marlin - build_marlin
# #
# Test PIDTEMPBED # Test PIDTEMPBED

@ -445,6 +445,15 @@
#define D_FILAMENT 2.85 #define D_FILAMENT 2.85
#endif #endif
// Implementation of a linear pressure control
// Assumption: advance = k * (delta velocity)
// K=0 means advance disabled. A good value for a gregs wade extruder will be around K=75
//#define LIN_ADVANCE
#if ENABLED(LIN_ADVANCE)
#define LIN_ADVANCE_K 75
#endif
// @section leveling // @section leveling
// Default mesh area is an area with an inset margin on the print area. // Default mesh area is an area with an inset margin on the print area.

@ -6475,6 +6475,16 @@ inline void gcode_M503() {
#endif // DUAL_X_CARRIAGE #endif // DUAL_X_CARRIAGE
#if ENABLED(LIN_ADVANCE)
/**
* M905: Set advance factor
*/
inline void gcode_M905() {
stepper.synchronize();
stepper.advance_M905();
}
#endif
/** /**
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
*/ */
@ -7347,6 +7357,12 @@ void process_next_command() {
gcode_M605(); gcode_M605();
break; break;
#endif // DUAL_X_CARRIAGE #endif // DUAL_X_CARRIAGE
#if ENABLED(LIN_ADVANCE)
case 905: // M905 Set advance factor.
gcode_M905();
break;
#endif
case 907: // M907 Set digital trimpot motor current using axis codes. case 907: // M907 Set digital trimpot motor current using axis codes.
gcode_M907(); gcode_M907();

@ -351,6 +351,13 @@
#endif // AUTO_BED_LEVELING_FEATURE #endif // AUTO_BED_LEVELING_FEATURE
/**
* Advance Extrusion
*/
#if ENABLED(ADVANCE) && ENABLED(LIN_ADVANCE)
#error You can enable ADVANCE or LIN_ADVANCE, but not both.
#endif
/** /**
* Filament Width Sensor * Filament Width Sensor
*/ */
@ -358,7 +365,6 @@
#error "FILAMENT_WIDTH_SENSOR requires a FILWIDTH_PIN to be defined." #error "FILAMENT_WIDTH_SENSOR requires a FILWIDTH_PIN to be defined."
#endif #endif
/** /**
* ULTIPANEL encoder * ULTIPANEL encoder
*/ */

@ -1050,7 +1050,23 @@ void Planner::check_axes_activity() {
for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i]; for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i];
previous_nominal_speed = block->nominal_speed; previous_nominal_speed = block->nominal_speed;
#if ENABLED(ADVANCE) #if ENABLED(LIN_ADVANCE)
// bse == allsteps: A problem occurs when there's a very tiny move before a retract.
// In this case, the retract and the move will be executed together.
// This leads to an enormous number of advance steps due to a huge e_acceleration.
// The math is correct, but you don't want a retract move done with advance!
// So this situation is filtered out here.
if (!bse || (!bsx && !bsy && !bsz) || stepper.get_advance_k() == 0 || bse == allsteps) {
block->use_advance_lead = false;
}
else {
block->use_advance_lead = true;
block->e_speed_multiplier8 = (block->steps[E_AXIS] << 8) / block->step_event_count;
}
#elif ENABLED(ADVANCE)
// Calculate advance rate // Calculate advance rate
if (!bse || (!bsx && !bsy && !bsz)) { if (!bse || (!bsx && !bsy && !bsz)) {
block->advance_rate = 0; block->advance_rate = 0;
@ -1069,7 +1085,8 @@ void Planner::check_axes_activity() {
SERIAL_ECHOPGM("advance rate :"); SERIAL_ECHOPGM("advance rate :");
SERIAL_ECHOLN(block->advance_rate/256.0); SERIAL_ECHOLN(block->advance_rate/256.0);
*/ */
#endif // ADVANCE
#endif // ADVANCE or LIN_ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed); calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);

@ -64,7 +64,11 @@ typedef struct {
unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h) unsigned char direction_bits; // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
#if ENABLED(ADVANCE) // Advance extrusion
#if ENABLED(LIN_ADVANCE)
bool use_advance_lead;
int e_speed_multiplier8; // Factorised by 2^8 to avoid float
#elif ENABLED(ADVANCE)
long advance_rate; long advance_rate;
volatile long initial_advance; volatile long initial_advance;
volatile long final_advance; volatile long final_advance;

@ -89,13 +89,24 @@ long Stepper::counter_X = 0,
volatile unsigned long Stepper::step_events_completed = 0; // The number of step events executed in the current block volatile unsigned long Stepper::step_events_completed = 0; // The number of step events executed in the current block
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
unsigned char Stepper::old_OCR0A; unsigned char Stepper::old_OCR0A;
long Stepper::final_advance = 0, volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
Stepper::old_advance = 0,
Stepper::e_steps[EXTRUDERS], #if ENABLED(LIN_ADVANCE)
Stepper::advance_rate, volatile int Stepper::e_steps[EXTRUDERS];
Stepper::advance; int Stepper::extruder_advance_k = LIN_ADVANCE_K,
Stepper::final_estep_rate,
Stepper::current_estep_rate[EXTRUDERS],
Stepper::current_adv_steps[EXTRUDERS];
#else
long Stepper::e_steps[EXTRUDERS],
Stepper::final_advance = 0,
Stepper::old_advance = 0,
Stepper::advance_rate,
Stepper::advance;
#endif
#endif #endif
long Stepper::acceleration_time, Stepper::deceleration_time; long Stepper::acceleration_time, Stepper::deceleration_time;
@ -344,14 +355,32 @@ void Stepper::isr() {
customizedSerial.checkRx(); // Check for serial chars. customizedSerial.checkRx(); // Check for serial chars.
#endif #endif
#if ENABLED(ADVANCE) #if ENABLED(LIN_ADVANCE)
counter_E += current_block->steps[E_AXIS];
if (counter_E > 0) {
counter_E -= current_block->step_event_count;
count_position[E_AXIS] += count_direction[E_AXIS];
e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
}
if (current_block->use_advance_lead) {
int delta_adv_steps; //Maybe a char would be enough?
delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[current_block->active_extruder]) >> 9) - current_adv_steps[current_block->active_extruder];
e_steps[current_block->active_extruder] += delta_adv_steps;
current_adv_steps[current_block->active_extruder] += delta_adv_steps;
}
#elif ENABLED(ADVANCE)
counter_E += current_block->steps[E_AXIS]; counter_E += current_block->steps[E_AXIS];
if (counter_E > 0) { if (counter_E > 0) {
counter_E -= current_block->step_event_count; counter_E -= current_block->step_event_count;
e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1; e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
} }
#endif //ADVANCE
#endif // ADVANCE or LIN_ADVANCE
#define _COUNTER(AXIS) counter_## AXIS #define _COUNTER(AXIS) counter_## AXIS
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
#define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN
@ -363,7 +392,7 @@ void Stepper::isr() {
STEP_ADD(X); STEP_ADD(X);
STEP_ADD(Y); STEP_ADD(Y);
STEP_ADD(Z); STEP_ADD(Z);
#if DISABLED(ADVANCE) #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
STEP_ADD(E); STEP_ADD(E);
#endif #endif
@ -377,13 +406,19 @@ void Stepper::isr() {
STEP_IF_COUNTER(X); STEP_IF_COUNTER(X);
STEP_IF_COUNTER(Y); STEP_IF_COUNTER(Y);
STEP_IF_COUNTER(Z); STEP_IF_COUNTER(Z);
#if DISABLED(ADVANCE) #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
STEP_IF_COUNTER(E); STEP_IF_COUNTER(E);
#endif #endif
step_events_completed++; step_events_completed++;
if (step_events_completed >= current_block->step_event_count) break; if (step_events_completed >= current_block->step_event_count) break;
} }
#if ENABLED(LIN_ADVANCE)
// If we have esteps to execute, fire the next ISR "now"
if (e_steps[current_block->active_extruder]) OCR0A = TCNT0 + 2;
#endif
// Calculate new timer value // Calculate new timer value
unsigned short timer, step_rate; unsigned short timer, step_rate;
if (step_events_completed <= (unsigned long)current_block->accelerate_until) { if (step_events_completed <= (unsigned long)current_block->accelerate_until) {
@ -399,7 +434,12 @@ void Stepper::isr() {
OCR1A = timer; OCR1A = timer;
acceleration_time += timer; acceleration_time += timer;
#if ENABLED(ADVANCE) #if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead)
current_estep_rate[current_block->active_extruder] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
#elif ENABLED(ADVANCE)
advance += advance_rate * step_loops; advance += advance_rate * step_loops;
//NOLESS(advance, current_block->advance); //NOLESS(advance, current_block->advance);
@ -408,7 +448,11 @@ void Stepper::isr() {
e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance); e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
old_advance = advance >> 8; old_advance = advance >> 8;
#endif //ADVANCE #endif // ADVANCE or LIN_ADVANCE
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
eISR_Rate = (timer >> 2) / abs(e_steps[current_block->active_extruder]);
#endif
} }
else if (step_events_completed > (unsigned long)current_block->decelerate_after) { else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate); MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate);
@ -424,8 +468,14 @@ void Stepper::isr() {
timer = calc_timer(step_rate); timer = calc_timer(step_rate);
OCR1A = timer; OCR1A = timer;
deceleration_time += timer; deceleration_time += timer;
#if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead)
current_estep_rate[current_block->active_extruder] = ((unsigned long)step_rate * current_block->e_speed_multiplier8) >> 8;
#elif ENABLED(ADVANCE)
#if ENABLED(ADVANCE)
advance -= advance_rate * step_loops; advance -= advance_rate * step_loops;
NOLESS(advance, final_advance); NOLESS(advance, final_advance);
@ -433,9 +483,24 @@ void Stepper::isr() {
uint32_t advance_whole = advance >> 8; uint32_t advance_whole = advance >> 8;
e_steps[current_block->active_extruder] += advance_whole - old_advance; e_steps[current_block->active_extruder] += advance_whole - old_advance;
old_advance = advance_whole; old_advance = advance_whole;
#endif //ADVANCE
#endif // ADVANCE or LIN_ADVANCE
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
eISR_Rate = (timer >> 2) / abs(e_steps[current_block->active_extruder]);
#endif
} }
else { else {
#if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead)
current_estep_rate[current_block->active_extruder] = final_estep_rate;
eISR_Rate = (OCR1A_nominal >> 2) / abs(e_steps[current_block->active_extruder]);
#endif
OCR1A = OCR1A_nominal; OCR1A = OCR1A_nominal;
// ensure we're running at the correct step rate, even if we just came off an acceleration // ensure we're running at the correct step rate, even if we just came off an acceleration
step_loops = step_loops_nominal; step_loops = step_loops_nominal;
@ -451,13 +516,15 @@ void Stepper::isr() {
} }
} }
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
// Timer interrupt for E. e_steps is set in the main routine; // Timer interrupt for E. e_steps is set in the main routine;
// Timer 0 is shared with millies // Timer 0 is shared with millies
ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); } ISR(TIMER0_COMPA_vect) { Stepper::advance_isr(); }
void Stepper::advance_isr() { void Stepper::advance_isr() {
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
old_OCR0A += eISR_Rate;
OCR0A = old_OCR0A; OCR0A = old_OCR0A;
#define STEP_E_ONCE(INDEX) \ #define STEP_E_ONCE(INDEX) \
@ -474,22 +541,21 @@ void Stepper::isr() {
E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \ E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN); \
} }
// Step all E steppers that have steps, up to 4 steps per interrupt // Step all E steppers that have steps
for (unsigned char i = 0; i < 4; i++) { STEP_E_ONCE(0);
STEP_E_ONCE(0); #if EXTRUDERS > 1
#if EXTRUDERS > 1 STEP_E_ONCE(1);
STEP_E_ONCE(1); #if EXTRUDERS > 2
#if EXTRUDERS > 2 STEP_E_ONCE(2);
STEP_E_ONCE(2); #if EXTRUDERS > 3
#if EXTRUDERS > 3 STEP_E_ONCE(3);
STEP_E_ONCE(3);
#endif
#endif #endif
#endif #endif
} #endif
} }
#endif // ADVANCE #endif // ADVANCE or LIN_ADVANCE
void Stepper::init() { void Stepper::init() {
@ -656,14 +722,28 @@ void Stepper::init() {
TCNT1 = 0; TCNT1 = 0;
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
#if ENABLED(LIN_ADVANCE)
for (int i = 0; i < EXTRUDERS; i++) {
e_steps[i] = 0;
current_adv_steps[i] = 0;
}
#elif ENABLED(ADVANCE)
for (uint8_t i = 0; i < EXTRUDERS; i++) e_steps[i] = 0;
#endif
#if defined(TCCR0A) && defined(WGM01) #if defined(TCCR0A) && defined(WGM01)
CBI(TCCR0A, WGM01); CBI(TCCR0A, WGM01);
CBI(TCCR0A, WGM00); CBI(TCCR0A, WGM00);
#endif #endif
for (uint8_t i = 0; i < EXTRUDERS; i++) e_steps[i] = 0;
SBI(TIMSK0, OCIE0A); SBI(TIMSK0, OCIE0A);
#endif //ADVANCE
#endif // ADVANCE or LIN_ADVANCE
endstops.enable(true); // Start with endstops active. After homing they can be disabled endstops.enable(true); // Start with endstops active. After homing they can be disabled
sei(); sei();
@ -1040,3 +1120,14 @@ void Stepper::microstep_readings() {
SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN)); SERIAL_PROTOCOLLN(digitalRead(E1_MS2_PIN));
#endif #endif
} }
#if ENABLED(LIN_ADVANCE)
void Stepper::advance_M905() {
if (code_seen('K')) extruder_advance_k = code_value();
SERIAL_ECHO_START;
SERIAL_ECHOPAIR("Advance factor: ", extruder_advance_k);
SERIAL_EOL;
}
#endif // LIN_ADVANCE

@ -22,7 +22,7 @@
/** /**
* stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors * stepper.h - stepper motor driver: executes motion plans of planner.c using the stepper motors
* Part of Grbl * Derived from Grbl
* *
* Copyright (c) 2009-2011 Simen Svale Skogsrud * Copyright (c) 2009-2011 Simen Svale Skogsrud
* *
@ -90,10 +90,6 @@ class Stepper {
static bool performing_homing; static bool performing_homing;
#endif #endif
#if ENABLED(ADVANCE)
static long e_steps[EXTRUDERS];
#endif
private: private:
static unsigned char last_direction_bits; // The next stepping-bits to be output static unsigned char last_direction_bits; // The next stepping-bits to be output
@ -107,10 +103,23 @@ class Stepper {
static long counter_X, counter_Y, counter_Z, counter_E; static long counter_X, counter_Y, counter_Z, counter_E;
static volatile unsigned long step_events_completed; // The number of step events executed in the current block static volatile unsigned long step_events_completed; // The number of step events executed in the current block
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
static unsigned char old_OCR0A; static unsigned char old_OCR0A;
static long advance_rate, advance, old_advance, final_advance; static volatile unsigned char eISR_Rate;
#endif #if ENABLED(LIN_ADVANCE)
static volatile int e_steps[EXTRUDERS];
static int extruder_advance_k;
static int final_estep_rate;
static int current_estep_rate[EXTRUDERS]; // Actual extruder speed [steps/s]
static int current_adv_steps[EXTRUDERS]; // The amount of current added esteps due to advance.
// i.e., the current amount of pressure applied
// to the spring (=filament).
#else
static long e_steps[EXTRUDERS];
static long advance_rate, advance, final_advance;
static long old_advance;
#endif
#endif // ADVANCE or LIN_ADVANCE
static long acceleration_time, deceleration_time; static long acceleration_time, deceleration_time;
//unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; //unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
@ -156,7 +165,7 @@ class Stepper {
static void isr(); static void isr();
#if ENABLED(ADVANCE) #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
static void advance_isr(); static void advance_isr();
#endif #endif
@ -246,6 +255,11 @@ class Stepper {
return endstops_trigsteps[axis] / planner.axis_steps_per_mm[axis]; return endstops_trigsteps[axis] / planner.axis_steps_per_mm[axis];
} }
#if ENABLED(LIN_ADVANCE)
void advance_M905();
FORCE_INLINE int get_advance_k() { return extruder_advance_k; }
#endif
private: private:
static FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) { static FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
@ -315,6 +329,13 @@ class Stepper {
acc_step_rate = current_block->initial_rate; acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate); acceleration_time = calc_timer(acc_step_rate);
OCR1A = acceleration_time; OCR1A = acceleration_time;
#if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead) {
current_estep_rate[current_block->active_extruder] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
final_estep_rate = (current_block->nominal_rate * current_block->e_speed_multiplier8) >> 8;
}
#endif
// SERIAL_ECHO_START; // SERIAL_ECHO_START;
// SERIAL_ECHOPGM("advance :"); // SERIAL_ECHOPGM("advance :");

Loading…
Cancel
Save