Merge pull request #6181 from thinkyhead/rc_ubl_further_fixes

Further adjustments to UBL code
2.0.x
Scott Lahteine 8 years ago committed by GitHub
commit 541165e878

@ -120,7 +120,7 @@ script:
# Test a simple build of AUTO_BED_LEVELING_UBL
#
- restore_configs
- opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL
- opt_enable AUTO_BED_LEVELING_UBL UBL_G26_MESH_EDITING ENABLE_LEVELING_FADE_HEIGHT FIX_MOUNTED_PROBE EEPROM_SETTINGS G3D_PANEL
- build_marlin
#
# Test a Sled Z Probe

@ -47,7 +47,7 @@
#define OOZE_AMOUNT 0.3
#define SIZE_OF_INTERSECTION_CIRCLES 5
#define SIZE_OF_CROSS_HAIRS 3 // cross hairs inside the circle. This number should be
#define SIZE_OF_CROSSHAIRS 3 // crosshairs inside the circle. This number should be
// less than SIZE_OR_INTERSECTION_CIRCLES
/**
@ -132,12 +132,12 @@
void line_to_destination(float );
void gcode_G28();
void sync_plan_position_e();
void un_retract_filament();
void retract_filament();
void un_retract_filament(float where[XYZE]);
void retract_filament(float where[XYZE]);
void look_for_lines_to_connect();
bool parse_G26_parameters();
void move_to(const float&, const float&, const float&, const float&) ;
void print_line_from_here_to_there(float sx, float sy, float sz, float ex, float ey, float ez);
void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
bool turn_on_heaters();
bool prime_nozzle();
void chirp_at_user();
@ -154,8 +154,6 @@
float valid_trig_angle(float);
mesh_index_pair find_closest_circle_to_print(float, float);
void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
//uint16_t x_splits = 0xFFFF, uint16_t y_splits = 0xFFFF); /* needed for the old mesh_buffer_line() routine */
static float extrusion_multiplier = EXTRUSION_MULTIPLIER,
retraction_multiplier = RETRACTION_MULTIPLIER,
@ -269,7 +267,7 @@
#endif
// TODO: Change this to use `position_is_reachable`
if (circle_x < (X_MIN_POS) || circle_x > (X_MAX_POS) || circle_y < (Y_MIN_POS) || circle_y > (Y_MAX_POS)) {
if (!WITHIN(circle_x, X_MIN_POS, X_MAX_POS) || !WITHIN(circle_y, Y_MIN_POS, Y_MAX_POS)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to print off the bed.");
goto LEAVE;
@ -359,7 +357,7 @@
lcd_reset_alert_level();
lcd_setstatuspgm(PSTR("Leaving G26"));
retract_filament();
retract_filament(destination);
destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES;
//debug_current_and_destination((char*)"ready to do Z-Raise.");
@ -445,18 +443,12 @@
// We found two circles that need a horizontal line to connect them
// Print it!
//
sx = ubl.mesh_index_to_xpos[i];
sx = sx + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the right edge of the circle
sy = ubl.mesh_index_to_ypos[j];
sx = ubl.mesh_index_to_xpos[ i ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge
ex = ubl.mesh_index_to_xpos[i + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge
ex = ubl.mesh_index_to_xpos[i + 1];
ex = ex - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the left edge of the circle
ey = sy;
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1);
sy = ey = constrain(ubl.mesh_index_to_ypos[j], Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (ubl.g26_debug_flag) {
SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx);
@ -468,7 +460,7 @@
//debug_current_and_destination((char*)"Connecting horizontal line.");
}
print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again
}
}
@ -482,17 +474,11 @@
// We found two circles that need a vertical line to connect them
// Print it!
//
sx = ubl.mesh_index_to_xpos[i];
sy = ubl.mesh_index_to_ypos[j];
sy = sy + SIZE_OF_INTERSECTION_CIRCLES - SIZE_OF_CROSS_HAIRS; // get the top edge of the circle
ex = sx;
ey = ubl.mesh_index_to_ypos[j + 1];
ey = ey - SIZE_OF_INTERSECTION_CIRCLES + SIZE_OF_CROSS_HAIRS; // get the bottom edge of the circle
sy = ubl.mesh_index_to_ypos[ j ] + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge
ey = ubl.mesh_index_to_ypos[j + 1] - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge
sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops
sx = ex = constrain(ubl.mesh_index_to_xpos[i], X_MIN_POS + 1, X_MAX_POS - 1);
sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1);
ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1);
ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1);
if (ubl.g26_debug_flag) {
@ -504,7 +490,7 @@
SERIAL_EOL;
debug_current_and_destination((char*)"Connecting vertical line.");
}
print_line_from_here_to_there(sx, sy, layer_height, ex, ey, layer_height);
print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), layer_height);
bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again
}
}
@ -533,7 +519,7 @@
destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code.
destination[E_AXIS] = current_position[E_AXIS];
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
ubl_line_to_destination(feed_value, 0);
stepper.synchronize();
set_destination_to_current();
@ -553,7 +539,7 @@
//if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() doing last move");
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], feed_value, 0);
ubl_line_to_destination(feed_value, 0);
//if (ubl.g26_debug_flag) debug_current_and_destination((char*)" in move_to() after last move");
@ -562,18 +548,18 @@
}
void retract_filament() {
void retract_filament(float where[XYZE]) {
if (!g26_retracted) { // Only retract if we are not already retracted!
g26_retracted = true;
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Decided to do retract.");
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], -1.0 * retraction_multiplier);
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], -1.0 * retraction_multiplier);
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Retraction done.");
}
}
void un_retract_filament() {
void un_retract_filament(float where[XYZE]) {
if (g26_retracted) { // Only un-retract if we are retracted.
move_to(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], 1.2 * retraction_multiplier);
move_to(where[X_AXIS], where[Y_AXIS], where[Z_AXIS], 1.2 * retraction_multiplier);
g26_retracted = false;
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" unretract done.");
}
@ -594,7 +580,7 @@
* segment of a 'circle'. The time this requires is very short and is easily saved by the other
* cases where the optimization comes into play.
*/
void print_line_from_here_to_there( float sx, float sy, float sz, float ex, float ey, float ez) {
void print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) {
const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment
dy_s = current_position[Y_AXIS] - sy,
dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2
@ -603,31 +589,26 @@
dy_e = current_position[Y_AXIS] - ey,
dist_end = HYPOT2(dx_e, dy_e),
dx = ex - sx,
dy = ey - sy,
line_length = HYPOT(dx, dy);
line_length = HYPOT(ex - sx, ey - sy);
// If the end point of the line is closer to the nozzle, we are going to
// flip the direction of this line. We will print it from the end to the start.
// On very small lines we don't do the optimization because it just isn't worth it.
//
// If the end point of the line is closer to the nozzle, flip the direction,
// moving from the end to the start. On very small lines the optimization isn't worth it.
if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < abs(line_length)) {
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" Reversing start and end of print_line_from_here_to_there()");
print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
return;
return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz);
}
// Now decide if we should retract.
// Decide whether to retract.
if (dist_start > 2.0) {
retract_filament();
retract_filament(destination);
//if (ubl.g26_debug_flag) SERIAL_ECHOLNPGM(" filament retracted.");
}
move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion
const float e_pos_delta = line_length * g26_e_axis_feedrate * extrusion_multiplier;
un_retract_filament();
un_retract_filament(destination);
//if (ubl.g26_debug_flag) {
// SERIAL_ECHOLNPGM(" doing printing move.");
@ -657,7 +638,7 @@
if (code_seen('B')) {
bed_temp = code_value_float();
if (bed_temp < 15.0 || bed_temp > 140.0) {
if (!WITHIN(bed_temp, 15.0, 140.0)) {
SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible.");
return UBL_ERR;
}
@ -667,7 +648,7 @@
if (code_seen('L')) {
layer_height = code_value_float();
if (layer_height < 0.0 || layer_height > 2.0) {
if (!WITHIN(layer_height, 0.0, 2.0)) {
SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible.");
return UBL_ERR;
}
@ -676,7 +657,7 @@
if (code_seen('Q')) {
if (code_has_value()) {
retraction_multiplier = code_value_float();
if (retraction_multiplier < 0.05 || retraction_multiplier > 15.0) {
if (!WITHIN(retraction_multiplier, 0.05, 15.0)) {
SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible.");
return UBL_ERR;
}
@ -689,7 +670,7 @@
if (code_seen('N')) {
nozzle = code_value_float();
if (nozzle < 0.1 || nozzle > 1.0) {
if (!WITHIN(nozzle, 0.1, 1.0)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible.");
return UBL_ERR;
}
@ -706,7 +687,7 @@
else {
prime_flag++;
prime_length = code_value_float();
if (prime_length < 0.0 || prime_length > 25.0) {
if (!WITHIN(prime_length, 0.0, 25.0)) {
SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible.");
return UBL_ERR;
}
@ -715,7 +696,7 @@
if (code_seen('F')) {
filament_diameter = code_value_float();
if (filament_diameter < 1.0 || filament_diameter > 4.0) {
if (!WITHIN(filament_diameter, 1.0, 4.0)) {
SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible.");
return UBL_ERR;
}
@ -728,7 +709,7 @@
if (code_seen('H')) {
hotend_temp = code_value_float();
if (hotend_temp < 165.0 || hotend_temp > 280.0) {
if (!WITHIN(hotend_temp, 165.0, 280.0)) {
SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible.");
return UBL_ERR;
}
@ -744,7 +725,7 @@
if (code_seen('X')) {
x_pos = code_value_float();
if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) {
if (!WITHIN(x_pos, X_MIN_POS, X_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("?Specified X coordinate not plausible.");
return UBL_ERR;
}
@ -753,7 +734,7 @@
if (code_seen('Y')) {
y_pos = code_value_float();
if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) {
if (!WITHIN(y_pos, Y_MIN_POS, Y_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("?Specified Y coordinate not plausible.");
return UBL_ERR;
}
@ -814,6 +795,7 @@
lcd_setstatuspgm(PSTR(""));
lcd_quick_feedback();
#endif
return UBL_OK;
}
@ -832,9 +814,8 @@
set_destination_to_current();
un_retract_filament(); // Lets make sure the G26 command doesn't think the filament is
// retracted(). We are here because we want to prime the nozzle.
// So let's just unretract just to be sure.
un_retract_filament(destination); // Make sure G26 doesn't think the filament is retracted().
while (!ubl_lcd_clicked()) {
chirp_at_user();
destination[E_AXIS] += 0.25;
@ -842,10 +823,7 @@
Total_Prime += 0.25;
if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR;
#endif
ubl_line_to_destination(
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
);
ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
stepper.synchronize(); // Without this synchronize, the purge is more consistent,
// but because the planner has a buffer, we won't be able
@ -874,13 +852,10 @@
#endif
set_destination_to_current();
destination[E_AXIS] += prime_length;
ubl_line_to_destination(
destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0
);
ubl_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0, 0);
stepper.synchronize();
set_destination_to_current();
retract_filament();
retract_filament(destination);
}
return UBL_OK;

@ -244,7 +244,6 @@ inline bool IsRunning() { return Running; }
inline bool IsStopped() { return !Running; }
bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); //put a single ASCII command at the end of the current buffer or return false when it is full
void enqueue_and_echo_command_now(const char* cmd); // enqueue now, only return when the command has been enqueued
void enqueue_and_echo_commands_P(const char* cmd); //put one or many ASCII commands at the end of the current buffer, read from flash
void clear_command_queue();

@ -896,10 +896,6 @@ bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
return false;
}
void enqueue_and_echo_command_now(const char* cmd) {
while (!enqueue_and_echo_command(cmd)) idle();
}
void setup_killpin() {
#if HAS_KILL
SET_INPUT_PULLUP(KILL_PIN);
@ -2237,7 +2233,7 @@ static void clean_up_after_endstop_or_probe_move() {
SERIAL_ECHOLNPAIR(" Discrepancy:", first_probe_z - current_position[Z_AXIS]);
}
#endif
return current_position[Z_AXIS];
return current_position[Z_AXIS] + zprobe_zoffset;
}
//
@ -2291,7 +2287,7 @@ static void clean_up_after_endstop_or_probe_move() {
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(y, 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(measured_z - -zprobe_zoffset + 0.0001, 3);
SERIAL_PROTOCOL_F(FIXFLOAT(measured_z), 3);
SERIAL_EOL;
}
@ -2569,7 +2565,7 @@ static void clean_up_after_endstop_or_probe_move() {
ep = ABL_GRID_MAX_POINTS_X - 1;
ip = ABL_GRID_MAX_POINTS_X - 2;
}
if (y > 0 && y < ABL_TEMP_POINTS_Y - 1)
if (WITHIN(y, 1, ABL_TEMP_POINTS_Y - 2))
return LINEAR_EXTRAPOLATION(
bed_level_grid[ep][y - 1],
bed_level_grid[ip][y - 1]
@ -2585,7 +2581,7 @@ static void clean_up_after_endstop_or_probe_move() {
ep = ABL_GRID_MAX_POINTS_Y - 1;
ip = ABL_GRID_MAX_POINTS_Y - 2;
}
if (x > 0 && x < ABL_TEMP_POINTS_X - 1)
if (WITHIN(x, 1, ABL_TEMP_POINTS_X - 2))
return LINEAR_EXTRAPOLATION(
bed_level_grid[x - 1][ep],
bed_level_grid[x - 1][ip]
@ -3028,9 +3024,9 @@ bool position_is_reachable(float target[XYZ]
return HYPOT2(dx, dy) <= sq((float)(DELTA_PRINTABLE_RADIUS));
#else
const float dz = RAW_Z_POSITION(target[Z_AXIS]);
return dx >= X_MIN_POS - 0.0001 && dx <= X_MAX_POS + 0.0001
&& dy >= Y_MIN_POS - 0.0001 && dy <= Y_MAX_POS + 0.0001
&& dz >= Z_MIN_POS - 0.0001 && dz <= Z_MAX_POS + 0.0001;
return WITHIN(dx, X_MIN_POS - 0.0001, X_MAX_POS + 0.0001)
&& WITHIN(dy, Y_MIN_POS - 0.0001, Y_MAX_POS + 0.0001)
&& WITHIN(dz, Z_MIN_POS - 0.0001, Z_MAX_POS + 0.0001);
#endif
}
@ -3788,13 +3784,13 @@ inline void gcode_G28() {
*/
inline void gcode_G29() {
static int probe_index = -1;
static int mbl_probe_index = -1;
#if HAS_SOFTWARE_ENDSTOPS
static bool enable_soft_endstops;
#endif
const MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_byte() : MeshReport;
if (state < 0 || state > 5) {
if (!WITHIN(state, 0, 5)) {
SERIAL_PROTOCOLLNPGM("S out of range (0-5).");
return;
}
@ -3813,17 +3809,17 @@ inline void gcode_G28() {
case MeshStart:
mbl.reset();
probe_index = 0;
mbl_probe_index = 0;
enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
break;
case MeshNext:
if (probe_index < 0) {
if (mbl_probe_index < 0) {
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
return;
}
// For each G29 S2...
if (probe_index == 0) {
if (mbl_probe_index == 0) {
#if HAS_SOFTWARE_ENDSTOPS
// For the initial G29 S2 save software endstop state
enable_soft_endstops = soft_endstops_enabled;
@ -3831,14 +3827,14 @@ inline void gcode_G28() {
}
else {
// For G29 S2 after adjusting Z.
mbl.set_zigzag_z(probe_index - 1, current_position[Z_AXIS]);
mbl.set_zigzag_z(mbl_probe_index - 1, current_position[Z_AXIS]);
#if HAS_SOFTWARE_ENDSTOPS
soft_endstops_enabled = enable_soft_endstops;
#endif
}
// If there's another point to sample, move there with optional lift.
if (probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
mbl.zigzag(probe_index, px, py);
if (mbl_probe_index < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
mbl.zigzag(mbl_probe_index, px, py);
_mbl_goto_xy(mbl.index_to_xpos[px], mbl.index_to_ypos[py]);
#if HAS_SOFTWARE_ENDSTOPS
@ -3847,7 +3843,7 @@ inline void gcode_G28() {
soft_endstops_enabled = false;
#endif
probe_index++;
mbl_probe_index++;
}
else {
// One last "return to the bed" (as originally coded) at completion
@ -3857,7 +3853,7 @@ inline void gcode_G28() {
// After recording the last point, activate the mbl and home
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
probe_index = -1;
mbl_probe_index = -1;
mbl.set_has_mesh(true);
mbl.set_reactivate(true);
enqueue_and_echo_commands_P(PSTR("G28"));
@ -3869,7 +3865,7 @@ inline void gcode_G28() {
case MeshSet:
if (code_seen('X')) {
px = code_value_int() - 1;
if (px < 0 || px >= MESH_NUM_X_POINTS) {
if (!WITHIN(px, 0, MESH_NUM_X_POINTS - 1)) {
SERIAL_PROTOCOLLNPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").");
return;
}
@ -3881,7 +3877,7 @@ inline void gcode_G28() {
if (code_seen('Y')) {
py = code_value_int() - 1;
if (py < 0 || py >= MESH_NUM_Y_POINTS) {
if (!WITHIN(py, 0, MESH_NUM_Y_POINTS - 1)) {
SERIAL_PROTOCOLLNPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").");
return;
}
@ -4412,7 +4408,7 @@ inline void gcode_G28() {
if ( NEAR(current_position[X_AXIS], xProbe - (X_PROBE_OFFSET_FROM_EXTRUDER))
&& NEAR(current_position[Y_AXIS], yProbe - (Y_PROBE_OFFSET_FROM_EXTRUDER))
) {
float simple_z = current_position[Z_AXIS] - (measured_z - (-zprobe_zoffset));
float simple_z = current_position[Z_AXIS] - measured_z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Z from Probe:", simple_z);
@ -4503,11 +4499,11 @@ inline void gcode_G28() {
float measured_z = probe_pt(X_probe_location, Y_probe_location, stow, 1);
SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOL(X_probe_location + 0.0001);
SERIAL_PROTOCOL(FIXFLOAT(X_probe_location));
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(Y_probe_location + 0.0001);
SERIAL_PROTOCOL(FIXFLOAT(Y_probe_location));
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOLLN(measured_z - -zprobe_zoffset + 0.0001);
SERIAL_PROTOCOLLN(FIXFLOAT(measured_z));
clean_up_after_endstop_or_probe_move();
@ -4971,7 +4967,7 @@ inline void gcode_M42() {
if (!code_seen('S')) return;
int pin_status = code_value_int();
if (pin_status < 0 || pin_status > 255) return;
if (!WITHIN(pin_status, 0, 255)) return;
int pin_number = code_seen('P') ? code_value_int() : LED_PIN;
if (pin_number < 0) return;
@ -5115,7 +5111,7 @@ inline void gcode_M42() {
if (axis_unhomed_error(true, true, true)) return;
int8_t verbose_level = code_seen('V') ? code_value_byte() : 1;
if (verbose_level < 0 || verbose_level > 4) {
if (!WITHIN(verbose_level, 0, 4)) {
SERIAL_PROTOCOLLNPGM("?Verbose Level not plausible (0-4).");
return;
}
@ -5124,7 +5120,7 @@ inline void gcode_M42() {
SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
int8_t n_samples = code_seen('P') ? code_value_byte() : 10;
if (n_samples < 4 || n_samples > 50) {
if (!WITHIN(n_samples, 4, 50)) {
SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
return;
}
@ -5136,7 +5132,7 @@ inline void gcode_M42() {
float X_probe_location = code_seen('X') ? code_value_axis_units(X_AXIS) : X_current + X_PROBE_OFFSET_FROM_EXTRUDER;
#if DISABLED(DELTA)
if (X_probe_location < LOGICAL_X_POSITION(MIN_PROBE_X) || X_probe_location > LOGICAL_X_POSITION(MAX_PROBE_X)) {
if (!WITHIN(X_probe_location, LOGICAL_X_POSITION(MIN_PROBE_X), LOGICAL_X_POSITION(MAX_PROBE_X))) {
out_of_range_error(PSTR("X"));
return;
}
@ -5144,7 +5140,7 @@ inline void gcode_M42() {
float Y_probe_location = code_seen('Y') ? code_value_axis_units(Y_AXIS) : Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER;
#if DISABLED(DELTA)
if (Y_probe_location < LOGICAL_Y_POSITION(MIN_PROBE_Y) || Y_probe_location > LOGICAL_Y_POSITION(MAX_PROBE_Y)) {
if (!WITHIN(Y_probe_location, LOGICAL_Y_POSITION(MIN_PROBE_Y), LOGICAL_Y_POSITION(MAX_PROBE_Y))) {
out_of_range_error(PSTR("Y"));
return;
}
@ -6795,7 +6791,7 @@ inline void gcode_M226() {
inline void gcode_M280() {
if (!code_seen('P')) return;
int servo_index = code_value_int();
if (servo_index >= 0 && servo_index < NUM_SERVOS) {
if (WITHIN(servo_index, 0, NUM_SERVOS - 1)) {
if (code_seen('S'))
MOVE_SERVO(servo_index, code_value_int());
else {
@ -7002,7 +6998,7 @@ inline void gcode_M303() {
float temp = code_seen('S') ? code_value_temp_abs() : (e < 0 ? 70.0 : 150.0);
if (e >= 0 && e < HOTENDS)
if (WITHIN(e, 0, HOTENDS - 1))
target_extruder = e;
KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
@ -7223,7 +7219,7 @@ void quickstop_stepper() {
if (code_seen('L')) {
const int8_t storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot;
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) {
if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return;
}
@ -7316,7 +7312,7 @@ void quickstop_stepper() {
}
}
else if (hasI && hasJ && hasZ) {
if (px >= 0 && px < MESH_NUM_X_POINTS && py >= 0 && py < MESH_NUM_Y_POINTS)
if (WITHIN(px, 0, MESH_NUM_X_POINTS - 1) && WITHIN(py, 0, MESH_NUM_Y_POINTS - 1))
mbl.set_z(px, py, z);
else {
SERIAL_ERROR_START;
@ -7345,7 +7341,7 @@ void quickstop_stepper() {
if ((hasZ = code_seen('Z'))) z = code_value_axis_units(Z_AXIS);
if (hasI && hasJ && hasZ) {
if (px >= 0 && px < ABL_GRID_MAX_POINTS_X && py >= 0 && py < ABL_GRID_MAX_POINTS_X) {
if (WITHIN(px, 0, ABL_GRID_MAX_POINTS_X - 1) && WITHIN(py, 0, ABL_GRID_MAX_POINTS_X - 1)) {
bed_level_grid[px][py] = z;
#if ENABLED(ABL_BILINEAR_SUBDIVISION)
bed_level_virt_interpolate();
@ -7383,7 +7379,7 @@ void quickstop_stepper() {
if (axis_homed[i]) {
float base = (current_position[i] > (soft_endstop_min[i] + soft_endstop_max[i]) * 0.5) ? base_home_pos((AxisEnum)i) : 0,
diff = current_position[i] - LOGICAL_POSITION(base, i);
if (diff > -20 && diff < 20) {
if (WITHIN(diff, -20, 20)) {
set_home_offset((AxisEnum)i, home_offset[i] - diff);
}
else {
@ -7457,7 +7453,7 @@ inline void gcode_M503() {
if (code_seen('Z')) {
float value = code_value_axis_units(Z_AXIS);
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
if (WITHIN(value, Z_PROBE_OFFSET_RANGE_MIN, Z_PROBE_OFFSET_RANGE_MAX)) {
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
// Correct bilinear grid for new probe offset
@ -9905,11 +9901,7 @@ void set_current_from_steppers_for_axis(const AxisEnum axis) {
#elif ENABLED(AUTO_BED_LEVELING_UBL)
if (ubl.state.active) {
// ubl_line_to_destination(MMS_SCALED(feedrate_mm_s));
ubl_line_to_destination(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS],
// (feedrate*(1.0/60.0))*(feedrate_percentage*(1.0/100.0) ), active_extruder);
MMS_SCALED(feedrate_mm_s), active_extruder);
ubl_line_to_destination(MMS_SCALED(feedrate_mm_s), active_extruder);
return false;
}

@ -540,13 +540,13 @@ static_assert(1 >= 0
* Make sure Z_SAFE_HOMING point is reachable
*/
#if ENABLED(Z_SAFE_HOMING)
#if Z_SAFE_HOMING_X_POINT < MIN_PROBE_X || Z_SAFE_HOMING_X_POINT > MAX_PROBE_X
#if !WITHIN(Z_SAFE_HOMING_X_POINT, MIN_PROBE_X, MAX_PROBE_X)
#if HAS_BED_PROBE
#error "Z_SAFE_HOMING_X_POINT can't be reached by the Z probe."
#else
#error "Z_SAFE_HOMING_X_POINT can't be reached by the nozzle."
#endif
#elif Z_SAFE_HOMING_Y_POINT < MIN_PROBE_Y || Z_SAFE_HOMING_Y_POINT > MAX_PROBE_Y
#elif !WITHIN(Z_SAFE_HOMING_Y_POINT, MIN_PROBE_Y, MAX_PROBE_Y)
#if HAS_BED_PROBE
#error "Z_SAFE_HOMING_Y_POINT can't be reached by the Z probe."
#else
@ -598,33 +598,33 @@ static_assert(1 >= 0
#elif ENABLED(AUTO_BED_LEVELING_UBL)
#if DISABLED(EEPROM_SETTINGS)
#error "AUTO_BED_LEVELING_UBL requires EEPROM_SETTINGS. Please update your configuration."
#elif UBL_MESH_NUM_X_POINTS < 3 || UBL_MESH_NUM_X_POINTS > 15 || UBL_MESH_NUM_Y_POINTS < 3 || UBL_MESH_NUM_Y_POINTS > 15
#elif !WITHIN(UBL_MESH_NUM_X_POINTS, 3, 15) || !WITHIN(UBL_MESH_NUM_Y_POINTS, 3, 15)
#error "UBL_MESH_NUM_[XY]_POINTS must be a whole number between 3 and 15."
#elif UBL_PROBE_PT_1_X < MIN_PROBE_X || UBL_PROBE_PT_1_X > MAX_PROBE_X
#elif !WITHIN(UBL_PROBE_PT_1_X, MIN_PROBE_X, MAX_PROBE_X)
#error "The given UBL_PROBE_PT_1_X can't be reached by the Z probe."
#elif UBL_PROBE_PT_2_X < MIN_PROBE_X || UBL_PROBE_PT_2_X > MAX_PROBE_X
#elif !WITHIN(UBL_PROBE_PT_2_X, MIN_PROBE_X, MAX_PROBE_X)
#error "The given UBL_PROBE_PT_2_X can't be reached by the Z probe."
#elif UBL_PROBE_PT_3_X < MIN_PROBE_X || UBL_PROBE_PT_3_X > MAX_PROBE_X
#elif !WITHIN(UBL_PROBE_PT_3_X, MIN_PROBE_X, MAX_PROBE_X)
#error "The given UBL_PROBE_PT_3_X can't be reached by the Z probe."
#elif UBL_PROBE_PT_1_Y < MIN_PROBE_Y || UBL_PROBE_PT_1_Y > MAX_PROBE_Y
#elif !WITHIN(UBL_PROBE_PT_1_Y, MIN_PROBE_Y, MAX_PROBE_Y)
#error "The given UBL_PROBE_PT_1_Y can't be reached by the Z probe."
#elif UBL_PROBE_PT_2_Y < MIN_PROBE_Y || UBL_PROBE_PT_2_Y > MAX_PROBE_Y
#elif !WITHIN(UBL_PROBE_PT_2_Y, MIN_PROBE_Y, MAX_PROBE_Y)
#error "The given UBL_PROBE_PT_2_Y can't be reached by the Z probe."
#elif UBL_PROBE_PT_3_Y < MIN_PROBE_Y || UBL_PROBE_PT_3_Y > MAX_PROBE_Y
#elif !WITHIN(UBL_PROBE_PT_3_Y, MIN_PROBE_Y, MAX_PROBE_Y)
#error "The given UBL_PROBE_PT_3_Y can't be reached by the Z probe."
#endif
#else // AUTO_BED_LEVELING_3POINT
#if ABL_PROBE_PT_1_X < MIN_PROBE_X || ABL_PROBE_PT_1_X > MAX_PROBE_X
#if !WITHIN(ABL_PROBE_PT_1_X, MIN_PROBE_X, MAX_PROBE_X)
#error "The given ABL_PROBE_PT_1_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_2_X < MIN_PROBE_X || ABL_PROBE_PT_2_X > MAX_PROBE_X
#elif !WITHIN(ABL_PROBE_PT_2_X, MIN_PROBE_X, MAX_PROBE_X)
#error "The given ABL_PROBE_PT_2_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_3_X < MIN_PROBE_X || ABL_PROBE_PT_3_X > MAX_PROBE_X
#elif !WITHIN(ABL_PROBE_PT_3_X, MIN_PROBE_X, MAX_PROBE_X)
#error "The given ABL_PROBE_PT_3_X can't be reached by the Z probe."
#elif ABL_PROBE_PT_1_Y < MIN_PROBE_Y || ABL_PROBE_PT_1_Y > MAX_PROBE_Y
#elif !WITHIN(ABL_PROBE_PT_1_Y, MIN_PROBE_Y, MAX_PROBE_Y)
#error "The given ABL_PROBE_PT_1_Y can't be reached by the Z probe."
#elif ABL_PROBE_PT_2_Y < MIN_PROBE_Y || ABL_PROBE_PT_2_Y > MAX_PROBE_Y
#elif !WITHIN(ABL_PROBE_PT_2_Y, MIN_PROBE_Y, MAX_PROBE_Y)
#error "The given ABL_PROBE_PT_2_Y can't be reached by the Z probe."
#elif ABL_PROBE_PT_3_Y < MIN_PROBE_Y || ABL_PROBE_PT_3_Y > MAX_PROBE_Y
#elif !WITHIN(ABL_PROBE_PT_3_Y, MIN_PROBE_Y, MAX_PROBE_Y)
#error "The given ABL_PROBE_PT_3_Y can't be reached by the Z probe."
#endif
#endif // AUTO_BED_LEVELING_3POINT
@ -862,11 +862,11 @@ static_assert(1 >= 0
/**
* Endstops
*/
#if DISABLED(USE_XMIN_PLUG) && DISABLED(USE_XMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && Z2_USE_ENDSTOP >= _XMAX_ && Z2_USE_ENDSTOP <= _XMIN_)
#if DISABLED(USE_XMIN_PLUG) && DISABLED(USE_XMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && WITHIN(Z2_USE_ENDSTOP, _XMAX_, _XMIN_))
#error "You must enable USE_XMIN_PLUG or USE_XMAX_PLUG."
#elif DISABLED(USE_YMIN_PLUG) && DISABLED(USE_YMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && Z2_USE_ENDSTOP >= _YMAX_ && Z2_USE_ENDSTOP <= _YMIN_)
#elif DISABLED(USE_YMIN_PLUG) && DISABLED(USE_YMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && WITHIN(Z2_USE_ENDSTOP, _YMAX_, _YMIN_))
#error "You must enable USE_YMIN_PLUG or USE_YMAX_PLUG."
#elif DISABLED(USE_ZMIN_PLUG) && DISABLED(USE_ZMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && Z2_USE_ENDSTOP >= _ZMAX_ && Z2_USE_ENDSTOP <= _ZMIN_)
#elif DISABLED(USE_ZMIN_PLUG) && DISABLED(USE_ZMAX_PLUG) && !(ENABLED(Z_DUAL_ENDSTOPS) && WITHIN(Z2_USE_ENDSTOP, _ZMAX_, _ZMIN_))
#error "You must enable USE_ZMIN_PLUG or USE_ZMAX_PLUG."
#elif ENABLED(Z_DUAL_ENDSTOPS)
#if !Z2_USE_ENDSTOP

@ -43,7 +43,7 @@
bool ubl_lcd_clicked();
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
void debug_current_and_destination(char *title);
void ubl_line_to_destination(const float&, const float&, const float&, const float&, const float&, uint8_t);
void ubl_line_to_destination(const float&, uint8_t);
void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&);
float measure_business_card_thickness(const float&);
@ -169,12 +169,12 @@
static int8_t find_closest_x_index(const float &x) {
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
return (px >= 0 && px < (UBL_MESH_NUM_X_POINTS)) ? px : -1;
return WITHIN(px, 0, UBL_MESH_NUM_X_POINTS - 1) ? px : -1;
}
static int8_t find_closest_y_index(const float &y) {
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
return (py >= 0 && py < (UBL_MESH_NUM_Y_POINTS)) ? py : -1;
return WITHIN(py, 0, UBL_MESH_NUM_Y_POINTS - 1) ? py : -1;
}
/**
@ -193,22 +193,16 @@
* multiplications.
*/
static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
const float delta_z = (z2 - z1),
delta_a = (a0 - a1) / (a2 - a1);
return z1 + delta_a * delta_z;
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
}
/**
* get_z_correction_at_Y_intercept(float x0, int x1_i, int yi) only takes
* three parameters. It assumes the x0 point is on a Mesh line denoted by yi. In theory
* we could use get_cell_index_x(float x) to obtain the 2nd parameter x1_i but any code calling
* the get_z_correction_along_vertical_mesh_line_at_specific_X routine will already have
* the X index of the x0 intersection available and we don't want to perform any extra floating
* point operations.
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
* the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
*/
static inline float get_z_correction_along_horizontal_mesh_line_at_specific_X(const float &x0, const int x1_i, const int yi) {
if (x1_i < 0 || yi < 0 || x1_i >= UBL_MESH_NUM_X_POINTS || yi >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_horizontal_mesh_line_at_specific_X(x0=", x0);
static inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
if (!WITHIN(x1_i, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
SERIAL_ECHOPAIR(",x1_i=", x1_i);
SERIAL_ECHOPAIR(",yi=", yi);
SERIAL_CHAR(')');
@ -216,20 +210,18 @@
return NAN;
}
const float xratio = (RAW_X_POSITION(x0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
z1 = z_values[x1_i][yi],
z2 = z_values[x1_i + 1][yi],
dz = (z2 - z1);
const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
z1 = z_values[x1_i][yi];
return z1 + xratio * dz;
return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
}
//
// See comments above for get_z_correction_along_horizontal_mesh_line_at_specific_X
// See comments above for z_correction_for_x_on_horizontal_mesh_line
//
static inline float get_z_correction_along_vertical_mesh_line_at_specific_Y(const float &y0, const int xi, const int y1_i) {
if (xi < 0 || y1_i < 0 || xi >= UBL_MESH_NUM_X_POINTS || y1_i >= UBL_MESH_NUM_Y_POINTS) {
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_X(y0=", y0);
static inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
if (!WITHIN(xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(y1_i, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0);
SERIAL_ECHOPAIR(", x1_i=", xi);
SERIAL_ECHOPAIR(", yi=", y1_i);
SERIAL_CHAR(')');
@ -237,12 +229,10 @@
return NAN;
}
const float yratio = (RAW_Y_POSITION(y0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i],
z2 = z_values[xi][y1_i + 1],
dz = (z2 - z1);
const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i];
return z1 + yratio * dz;
return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
}
/**
@ -251,14 +241,14 @@
* Z-Height at both ends. Then it does a linear interpolation of these heights based
* on the Y position within the cell.
*/
static float get_z_correction(const float &x0, const float &y0) {
const int8_t cx = get_cell_index_x(RAW_X_POSITION(x0)),
cy = get_cell_index_y(RAW_Y_POSITION(y0));
static float get_z_correction(const float &lx0, const float &ly0) {
const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
cy = get_cell_index_y(RAW_Y_POSITION(ly0));
if (cx < 0 || cy < 0 || cx >= UBL_MESH_NUM_X_POINTS || cy >= UBL_MESH_NUM_Y_POINTS) {
if (!WITHIN(cx, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cy, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
SERIAL_ECHOPAIR("? in get_z_correction(x0=", x0);
SERIAL_ECHOPAIR(", y0=", y0);
SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
SERIAL_ECHOPAIR(", ly0=", ly0);
SERIAL_CHAR(')');
SERIAL_EOL;
@ -269,21 +259,21 @@
return 0.0; // this used to return state.z_offset
}
const float z1 = calc_z0(RAW_X_POSITION(x0),
const float z1 = calc_z0(RAW_X_POSITION(lx0),
mesh_index_to_xpos[cx], z_values[cx][cy],
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]),
z2 = calc_z0(RAW_X_POSITION(x0),
z2 = calc_z0(RAW_X_POSITION(lx0),
mesh_index_to_xpos[cx], z_values[cx][cy + 1],
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]);
float z0 = calc_z0(RAW_Y_POSITION(y0),
float z0 = calc_z0(RAW_Y_POSITION(ly0),
mesh_index_to_ypos[cy], z1,
mesh_index_to_ypos[cy + 1], z2);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPAIR(" raw get_z_correction(", x0);
SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
SERIAL_CHAR(',')
SERIAL_ECHO(y0);
SERIAL_ECHO(ly0);
SERIAL_ECHOPGM(") = ");
SERIAL_ECHO_F(z0, 6);
}
@ -305,9 +295,9 @@
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", x0);
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0);
SERIAL_CHAR(',');
SERIAL_ECHO(y0);
SERIAL_ECHO(ly0);
SERIAL_CHAR(')');
SERIAL_EOL;
}
@ -327,7 +317,7 @@
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
static FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
const float rz = RAW_Z_POSITION(lz);
if (last_specified_z != rz) {
last_specified_z = rz;

@ -118,7 +118,7 @@
return;
}
if (m < 0 || m >= j || eeprom_start <= 0) {
if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
return;
}
@ -133,7 +133,7 @@
void unified_bed_leveling::store_mesh(const int16_t m) {
int16_t j = (UBL_LAST_EEPROM_INDEX - eeprom_start) / sizeof(z_values);
if (m < 0 || m >= j || eeprom_start <= 0) {
if (!WITHIN(m, 0, j - 1) || eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available to load mesh.\n");
SERIAL_PROTOCOL(m);
SERIAL_PROTOCOLLNPGM(" mesh slots available.\n");

@ -49,7 +49,6 @@
extern bool code_value_bool();
extern bool code_has_value();
extern float probe_pt(float x, float y, bool, int);
extern float zprobe_zoffset;
extern bool set_probe_deployed(bool);
#define DEPLOY_PROBE() set_probe_deployed(true)
#define STOW_PROBE() set_probe_deployed(false)
@ -342,7 +341,7 @@
if (code_seen('Q')) {
const int test_pattern = code_has_value() ? code_value_int() : -1;
if (test_pattern < 0 || test_pattern > 2) {
if (!WITHIN(test_pattern, 0, 2)) {
SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-2)\n");
return;
}
@ -375,7 +374,7 @@
/*
if (code_seen('U')) {
unlevel_value = code_value_int();
//if (unlevel_value < 0 || unlevel_value > 7) {
//if (!WITHIN(unlevel_value, 0, 7)) {
// SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n");
// return;
//}
@ -384,7 +383,7 @@
if (code_seen('P')) {
phase_value = code_value_int();
if (phase_value < 0 || phase_value > 7) {
if (!WITHIN(phase_value, 0, 7)) {
SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
return;
}
@ -516,16 +515,23 @@
}
if (code_seen('T')) {
float z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset,
z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset,
z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset;
const float lx1 = LOGICAL_X_POSITION(ubl_3_point_1_X),
lx2 = LOGICAL_X_POSITION(ubl_3_point_2_X),
lx3 = LOGICAL_X_POSITION(ubl_3_point_3_X),
ly1 = LOGICAL_Y_POSITION(ubl_3_point_1_Y),
ly2 = LOGICAL_Y_POSITION(ubl_3_point_2_Y),
ly3 = LOGICAL_Y_POSITION(ubl_3_point_3_Y);
float z1 = probe_pt(lx1, ly1, false /*Stow Flag*/, g29_verbose_level),
z2 = probe_pt(lx2, ly2, false /*Stow Flag*/, g29_verbose_level),
z3 = probe_pt(lx3, ly3, true /*Stow Flag*/, g29_verbose_level);
// We need to adjust z1, z2, z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
// the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
z1 -= ubl.get_z_correction(lx1, ly1);
z2 -= ubl.get_z_correction(lx2, ly2);
z3 -= ubl.get_z_correction(lx3, ly3);
do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
tilt_mesh_based_on_3pts(z1, z2, z3);
@ -560,7 +566,7 @@
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) {
if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return;
}
@ -594,7 +600,7 @@
const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(ubl.z_values);
if (storage_slot < 0 || storage_slot >= j || ubl.eeprom_start <= 0) {
if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
goto LEAVE;
@ -754,14 +760,14 @@
rawy = ubl.mesh_index_to_ypos[location.y_index];
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y)) {
if (!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
ubl.has_control_of_lcd_panel = false;
goto LEAVE;
}
const float measured_z = probe_pt(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy), stow_probe, g29_verbose_level);
ubl.z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset;
ubl.z_values[location.x_index][location.y_index] = measured_z;
}
if (do_ubl_mesh_map) ubl.display_map(map_type);
@ -779,17 +785,17 @@
);
}
vector_3 tilt_mesh_based_on_3pts(const float &pt1, const float &pt2, const float &pt3) {
vector_3 tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3) {
float c, d, t;
int i, j;
vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X),
(ubl_3_point_1_Y - ubl_3_point_2_Y),
(pt1 - pt2) ),
(z1 - z2) ),
v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X),
(ubl_3_point_3_Y - ubl_3_point_2_Y),
(pt3 - pt2) ),
(z3 - z2) ),
normal = vector_3::cross(v1, v2);
@ -811,7 +817,7 @@
// All of 3 of these points should give us the same d constant
//
t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y;
d = t + normal.z * pt1;
d = t + normal.z * z1;
c = d - t;
SERIAL_ECHOPGM("d from 1st point: ");
SERIAL_ECHO_F(d, 6);
@ -819,7 +825,7 @@
SERIAL_ECHO_F(c, 6);
SERIAL_EOL;
t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y;
d = t + normal.z * pt2;
d = t + normal.z * z2;
c = d - t;
SERIAL_ECHOPGM("d from 2nd point: ");
SERIAL_ECHO_F(d, 6);
@ -827,7 +833,7 @@
SERIAL_ECHO_F(c, 6);
SERIAL_EOL;
t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y;
d = t + normal.z * pt3;
d = t + normal.z * z3;
c = d - t;
SERIAL_ECHOPGM("d from 3rd point: ");
SERIAL_ECHO_F(d, 6);
@ -904,7 +910,7 @@
rawy = ubl.mesh_index_to_ypos[location.y_index];
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) {
if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to probe off the bed.");
ubl.has_control_of_lcd_panel = false;
@ -976,21 +982,21 @@
#endif
g29_verbose_level = code_seen('V') ? code_value_int() : 0;
if (g29_verbose_level < 0 || g29_verbose_level > 4) {
if (!WITHIN(g29_verbose_level, 0, 4)) {
SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
return UBL_ERR;
}
x_flag = code_seen('X') && code_has_value();
x_pos = x_flag ? code_value_float() : current_position[X_AXIS];
if (x_pos < LOGICAL_X_POSITION(X_MIN_POS) || x_pos > LOGICAL_X_POSITION(X_MAX_POS)) {
if (!WITHIN(RAW_X_POSITION(x_pos), X_MIN_POS, X_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
return UBL_ERR;
}
y_flag = code_seen('Y') && code_has_value();
y_pos = y_flag ? code_value_float() : current_position[Y_AXIS];
if (y_pos < LOGICAL_Y_POSITION(Y_MIN_POS) || y_pos > LOGICAL_Y_POSITION(Y_MAX_POS)) {
if (!WITHIN(RAW_Y_POSITION(y_pos), Y_MIN_POS, Y_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
return UBL_ERR;
}
@ -1018,7 +1024,7 @@
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
if (code_seen('F') && code_has_value()) {
const float fh = code_value_float();
if (fh < 0.0 || fh > 100.0) {
if (!WITHIN(fh, 0.0, 100.0)) {
SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n");
return UBL_ERR;
}
@ -1035,7 +1041,7 @@
}
map_type = code_seen('O') && code_has_value() ? code_value_int() : 0;
if (map_type < 0 || map_type > 1) {
if (!WITHIN(map_type, 0, 1)) {
SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
return UBL_ERR;
}
@ -1043,7 +1049,7 @@
/*
if (code_seen('M')) { // Check if a map type was specified
map_type = code_has_value() ? code_value_int() : 0;
if (map_type < 0 || map_type > 1) {
if (!WITHIN(map_type, 0, 1)) {
SERIAL_PROTOCOLLNPGM("Invalid map type.\n");
return UBL_ERR;
}
@ -1243,7 +1249,7 @@
int16_t j = (UBL_LAST_EEPROM_INDEX - ubl.eeprom_start) / sizeof(tmp_z_values);
if (storage_slot < 0 || storage_slot > j || ubl.eeprom_start <= 0) {
if (!WITHIN(storage_slot, 0, j - 1) || ubl.eeprom_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return;
}
@ -1290,7 +1296,7 @@
// Prune them from the list and ignore them till the next Phase (manual nozzle probing).
if (probe_as_reference &&
(rawx < (MIN_PROBE_X) || rawx > (MAX_PROBE_X) || rawy < (MIN_PROBE_Y) || rawy > (MAX_PROBE_Y))
(!WITHIN(rawx, MIN_PROBE_X, MAX_PROBE_X) || !WITHIN(rawy, MIN_PROBE_Y, MAX_PROBE_Y))
) continue;
// Unreachable. Check if it's the closest location to the nozzle.
@ -1354,7 +1360,7 @@
rawy = ubl.mesh_index_to_ypos[location.y_index];
// TODO: Change to use `position_is_reachable` (for SCARA-compatibility)
if (rawx < (X_MIN_POS) || rawx > (X_MAX_POS) || rawy < (Y_MIN_POS) || rawy > (Y_MAX_POS)) { // In theory, we don't need this check.
if (!WITHIN(rawx, X_MIN_POS, X_MAX_POS) || !WITHIN(rawy, Y_MIN_POS, Y_MAX_POS)) { // In theory, we don't need this check.
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Attempt to edit off the bed."); // This really can't happen, but do the check for now
ubl.has_control_of_lcd_panel = false;
@ -1363,6 +1369,7 @@
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
do_blocking_move_to_xy(LOGICAL_X_POSITION(rawx), LOGICAL_Y_POSITION(rawy));
float new_z = ubl.z_values[location.x_index][location.y_index];
round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the

@ -31,7 +31,14 @@
extern float destination[XYZE];
extern void set_current_to_destination();
extern float destination[];
static void debug_echo_axis(const AxisEnum axis) {
if (current_position[axis] == destination[axis])
SERIAL_ECHOPGM("-------------");
else
SERIAL_ECHO_F(destination[X_AXIS], 6);
}
void debug_current_and_destination(char *title) {
// if the title message starts with a '!' it is so important, we are going to
@ -67,32 +74,13 @@
SERIAL_ECHOPGM(", ");
SERIAL_ECHO_F(current_position[E_AXIS], 6);
SERIAL_ECHOPGM(" ) destination=( ");
if (current_position[X_AXIS] == destination[X_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_ECHO_F(destination[X_AXIS], 6);
debug_echo_axis(X_AXIS);
SERIAL_ECHOPGM(", ");
if (current_position[Y_AXIS] == destination[Y_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_ECHO_F(destination[Y_AXIS], 6);
debug_echo_axis(Y_AXIS);
SERIAL_ECHOPGM(", ");
if (current_position[Z_AXIS] == destination[Z_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_ECHO_F(destination[Z_AXIS], 6);
debug_echo_axis(Z_AXIS);
SERIAL_ECHOPGM(", ");
if (current_position[E_AXIS] == destination[E_AXIS])
SERIAL_ECHOPGM("-------------");
else
SERIAL_ECHO_F(destination[E_AXIS], 6);
debug_echo_axis(E_AXIS);
SERIAL_ECHOPGM(" ) ");
SERIAL_ECHO(title);
SERIAL_EOL;
@ -105,32 +93,37 @@
//}
}
void ubl_line_to_destination(const float &x_end, const float &y_end, const float &z_end, const float &e_end, const float &feed_rate, uint8_t extruder) {
void ubl_line_to_destination(const float &feed_rate, uint8_t extruder) {
/**
* Much of the nozzle movement will be within the same cell. So we will do as little computation
* as possible to determine if this is the case. If this move is within the same cell, we will
* just do the required Z-Height correction, call the Planner's buffer_line() routine, and leave
*/
const float x_start = current_position[X_AXIS],
y_start = current_position[Y_AXIS],
z_start = current_position[Z_AXIS],
e_start = current_position[E_AXIS];
const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_start)),
cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_start)),
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(x_end)),
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(y_end));
const float start[XYZE] = {
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS],
current_position[E_AXIS]
},
end[XYZE] = {
destination[X_AXIS],
destination[Y_AXIS],
destination[Z_AXIS],
destination[E_AXIS]
};
const int cell_start_xi = ubl.get_cell_index_x(RAW_X_POSITION(start[X_AXIS])),
cell_start_yi = ubl.get_cell_index_y(RAW_Y_POSITION(start[Y_AXIS])),
cell_dest_xi = ubl.get_cell_index_x(RAW_X_POSITION(end[X_AXIS])),
cell_dest_yi = ubl.get_cell_index_y(RAW_Y_POSITION(end[Y_AXIS]));
if (ubl.g26_debug_flag) {
SERIAL_ECHOPGM(" ubl_line_to_destination(xe=");
SERIAL_ECHO(x_end);
SERIAL_ECHOPGM(", ye=");
SERIAL_ECHO(y_end);
SERIAL_ECHOPGM(", ze=");
SERIAL_ECHO(z_end);
SERIAL_ECHOPGM(", ee=");
SERIAL_ECHO(e_end);
SERIAL_ECHOLNPGM(")");
SERIAL_ECHOPAIR(" ubl_line_to_destination(xe=", end[X_AXIS]);
SERIAL_ECHOPAIR(", ye=", end[Y_AXIS]);
SERIAL_ECHOPAIR(", ze=", end[Z_AXIS]);
SERIAL_ECHOPAIR(", ee=", end[E_AXIS]);
SERIAL_CHAR(')');
SERIAL_EOL;
debug_current_and_destination((char*)"Start of ubl_line_to_destination()");
}
@ -142,12 +135,12 @@
* But we detect it and isolate it. For now, we just pass along the request.
*/
if (cell_dest_xi < 0 || cell_dest_yi < 0 || cell_dest_xi >= UBL_MESH_NUM_X_POINTS || cell_dest_yi >= UBL_MESH_NUM_Y_POINTS) {
if (!WITHIN(cell_dest_xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cell_dest_yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
// Note: There is no Z Correction in this case. We are off the grid and don't know what
// a reasonable correction would be.
planner.buffer_line(x_end, y_end, z_end + ubl.state.z_offset, e_end, feed_rate, extruder);
planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
set_current_to_destination();
if (ubl.g26_debug_flag)
@ -167,7 +160,7 @@
* to create a 1-over number for us. That will allow us to do a floating point multiply instead of a floating point divide.
*/
const float xratio = (RAW_X_POSITION(x_end) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
const float xratio = (RAW_X_POSITION(end[X_AXIS]) - ubl.mesh_index_to_xpos[cell_dest_xi]) * (1.0 / (MESH_X_DIST)),
z1 = ubl.z_values[cell_dest_xi ][cell_dest_yi ] + xratio *
(ubl.z_values[cell_dest_xi + 1][cell_dest_yi ] - ubl.z_values[cell_dest_xi][cell_dest_yi ]),
z2 = ubl.z_values[cell_dest_xi ][cell_dest_yi + 1] + xratio *
@ -176,7 +169,7 @@
// we are done with the fractional X distance into the cell. Now with the two Z-Heights we have calculated, we
// are going to apply the Y-Distance into the cell to interpolate the final Z correction.
const float yratio = (RAW_Y_POSITION(y_end) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
const float yratio = (RAW_Y_POSITION(end[Y_AXIS]) - ubl.mesh_index_to_ypos[cell_dest_yi]) * (1.0 / (MESH_Y_DIST));
float z0 = z1 + (z2 - z1) * yratio;
@ -186,20 +179,20 @@
*/
/*
z_optimized = z0;
z0 = ubl.get_z_correction(x_end, y_end);
z0 = ubl.get_z_correction(end[X_AXIS], end[Y_AXIS]);
if (fabs(z_optimized - z0) > .01 || isnan(z0) || isnan(z_optimized)) {
debug_current_and_destination((char*)"FINAL_MOVE: z_correction()");
if (isnan(z0)) SERIAL_ECHO(" z0==NAN ");
if (isnan(z_optimized)) SERIAL_ECHO(" z_optimized==NAN ");
SERIAL_ECHOPAIR(" x_end=", x_end);
SERIAL_ECHOPAIR(" y_end=", y_end);
SERIAL_ECHOPAIR(" end[X_AXIS]=", end[X_AXIS]);
SERIAL_ECHOPAIR(" end[Y_AXIS]=", end[Y_AXIS]);
SERIAL_ECHOPAIR(" z0=", z0);
SERIAL_ECHOPAIR(" z_optimized=", z_optimized);
SERIAL_ECHOPAIR(" err=",fabs(z_optimized - z0));
SERIAL_EOL;
}
//*/
z0 *= ubl.fade_scaling_factor_for_z(z_end);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
@ -210,7 +203,7 @@
*/
if (isnan(z0)) z0 = 0.0;
planner.buffer_line(x_end, y_end, z_end + z0 + ubl.state.z_offset, e_end, feed_rate, extruder);
planner.buffer_line(end[X_AXIS], end[Y_AXIS], end[Z_AXIS] + z0 + ubl.state.z_offset, end[E_AXIS], feed_rate, extruder);
if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"FINAL_MOVE in ubl_line_to_destination()");
@ -227,8 +220,8 @@
* blocks of code:
*/
const float dx = x_end - x_start,
dy = y_end - y_start;
const float dx = end[X_AXIS] - start[X_AXIS],
dy = end[Y_AXIS] - start[Y_AXIS];
const int left_flag = dx < 0.0 ? 1 : 0,
down_flag = dy < 0.0 ? 1 : 0;
@ -251,8 +244,8 @@
const bool use_x_dist = adx > ady;
float on_axis_distance = use_x_dist ? dx : dy,
e_position = e_end - e_start,
z_position = z_end - z_start;
e_position = end[E_AXIS] - start[E_AXIS],
z_position = end[Z_AXIS] - start[Z_AXIS];
const float e_normalized_dist = e_position / on_axis_distance,
z_normalized_dist = z_position / on_axis_distance;
@ -260,7 +253,7 @@
int current_xi = cell_start_xi, current_yi = cell_start_yi;
const float m = dy / dx,
c = y_start - m * x_start;
c = start[Y_AXIS] - m * start[X_AXIS];
const bool inf_normalized_flag = NEAR_ZERO(on_axis_distance),
inf_m_flag = NEAR_ZERO(dx);
@ -281,9 +274,9 @@
* else, we know the next X is the same so we can recover and continue!
* Calculate X at the next Y mesh line
*/
const float x = inf_m_flag ? x_start : (next_mesh_line_y - c) / m;
const float x = inf_m_flag ? start[X_AXIS] : (next_mesh_line_y - c) / m;
float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi, current_yi);
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi, current_yi);
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
@ -305,7 +298,7 @@
}
//*/
z0 *= ubl.fade_scaling_factor_for_z(z_end);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
@ -324,15 +317,15 @@
* happens, it might be best to remove the check and always 'schedule' the move because
* the planner.buffer_line() routine will filter it if that happens.
*/
if (y != y_start) {
if (y != start[Y_AXIS]) {
if (!inf_normalized_flag) {
on_axis_distance = y - y_start; // we don't need to check if the extruder position
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
z_position = z_start + on_axis_distance * z_normalized_dist;
on_axis_distance = y - start[Y_AXIS]; // we don't need to check if the extruder position
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a vertical move
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
e_position = start[E_AXIS];
z_position = start[Z_AXIS];
}
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
@ -345,7 +338,7 @@
//
// Check if we are at the final destination. Usually, we won't be, but if it is on a Y Mesh Line, we are done.
//
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE;
set_current_to_destination();
@ -368,7 +361,7 @@
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi]),
y = m * next_mesh_line_x + c; // Calculate X at the next Y mesh line
float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi, current_yi);
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi, current_yi);
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
@ -390,7 +383,7 @@
}
//*/
z0 = z0 * ubl.fade_scaling_factor_for_z(z_end);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
@ -409,15 +402,15 @@
* that happens, it might be best to remove the check and always 'schedule' the move because
* the planner.buffer_line() routine will filter it if that happens.
*/
if (x != x_start) {
if (x != start[X_AXIS]) {
if (!inf_normalized_flag) {
on_axis_distance = x - x_start; // we don't need to check if the extruder position
e_position = e_start + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
z_position = z_start + on_axis_distance * z_normalized_dist;
on_axis_distance = x - start[X_AXIS]; // we don't need to check if the extruder position
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist; // is based on X or Y because this is a horizontal move
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
e_position = start[E_AXIS];
z_position = start[Z_AXIS];
}
planner.buffer_line(x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
@ -427,7 +420,7 @@
if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"horizontal move done in ubl_line_to_destination()");
if (current_position[X_AXIS] != x_end || current_position[Y_AXIS] != y_end)
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE;
set_current_to_destination();
@ -454,16 +447,16 @@
const float next_mesh_line_x = LOGICAL_X_POSITION(ubl.mesh_index_to_xpos[current_xi + dxi]),
next_mesh_line_y = LOGICAL_Y_POSITION(ubl.mesh_index_to_ypos[current_yi + dyi]),
y = m * next_mesh_line_x + c, // Calculate Y at the next X mesh line
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line (we don't have to worry
// about m being equal to 0.0 If this was the case, we would have
// detected this as a vertical line move up above and we wouldn't
// be down here doing a generic type of move.
x = (next_mesh_line_y - c) / m; // Calculate X at the next Y mesh line
// (No need to worry about m being zero.
// If that was the case, it was already detected
// as a vertical line move above.)
if (left_flag == (x > next_mesh_line_x)) { // Check if we hit the Y line first
//
// Yes! Crossing a Y Mesh Line next
//
float z0 = ubl.get_z_correction_along_horizontal_mesh_line_at_specific_X(x, current_xi - left_flag, current_yi + dyi);
float z0 = ubl.z_correction_for_x_on_horizontal_mesh_line(x, current_xi - left_flag, current_yi + dyi);
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
@ -486,7 +479,7 @@
}
//*/
z0 *= ubl.fade_scaling_factor_for_z(z_end);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
@ -498,13 +491,13 @@
if (isnan(z0)) z0 = 0.0;
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? x - x_start : next_mesh_line_y - y_start;
e_position = e_start + on_axis_distance * e_normalized_dist;
z_position = z_start + on_axis_distance * z_normalized_dist;
on_axis_distance = use_x_dist ? x - start[X_AXIS] : next_mesh_line_y - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
e_position = start[E_AXIS];
z_position = start[Z_AXIS];
}
planner.buffer_line(x, next_mesh_line_y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
current_yi += dyi;
@ -514,7 +507,7 @@
//
// Yes! Crossing a X Mesh Line next
//
float z0 = ubl.get_z_correction_along_vertical_mesh_line_at_specific_Y(y, current_xi + dxi, current_yi - down_flag);
float z0 = ubl.z_correction_for_y_on_vertical_mesh_line(y, current_xi + dxi, current_yi - down_flag);
/**
* Debug code to use non-optimized get_z_correction() and to do a sanity check
@ -536,7 +529,7 @@
}
//*/
z0 *= ubl.fade_scaling_factor_for_z(z_end);
z0 *= ubl.fade_scaling_factor_for_z(end[Z_AXIS]);
/**
* If part of the Mesh is undefined, it will show up as NAN
@ -548,13 +541,13 @@
if (isnan(z0)) z0 = 0.0;
if (!inf_normalized_flag) {
on_axis_distance = use_x_dist ? next_mesh_line_x - x_start : y - y_start;
e_position = e_start + on_axis_distance * e_normalized_dist;
z_position = z_start + on_axis_distance * z_normalized_dist;
on_axis_distance = use_x_dist ? next_mesh_line_x - start[X_AXIS] : y - start[Y_AXIS];
e_position = start[E_AXIS] + on_axis_distance * e_normalized_dist;
z_position = start[Z_AXIS] + on_axis_distance * z_normalized_dist;
}
else {
e_position = e_start;
z_position = z_start;
e_position = start[E_AXIS];
z_position = start[Z_AXIS];
}
planner.buffer_line(next_mesh_line_x, y, z_position + z0 + ubl.state.z_offset, e_position, feed_rate, extruder);
@ -566,7 +559,7 @@
if (ubl.g26_debug_flag)
debug_current_and_destination((char*)"generic move done in ubl_line_to_destination()");
if (current_position[0] != x_end || current_position[1] != y_end)
if (current_position[X_AXIS] != end[X_AXIS] || current_position[Y_AXIS] != end[Y_AXIS])
goto FINAL_MOVE;
set_current_to_destination();

@ -38,6 +38,8 @@
#ifndef _ENDSTOP_INTERRUPTS_H_
#define _ENDSTOP_INTERRUPTS_H_
#include "macros.h"
/**
* Patch for pins_arduino.h (...\Arduino\hardware\arduino\avr\variants\mega\pins_arduino.h)
*
@ -47,39 +49,37 @@
*/
#if defined(ARDUINO_AVR_MEGA2560) || defined(ARDUINO_AVR_MEGA)
#undef digitalPinToPCICR
#define digitalPinToPCICR(p) ( (((p) >= 10) && ((p) <= 15)) || \
(((p) >= 50) && ((p) <= 53)) || \
(((p) >= 62) && ((p) <= 69)) ? (&PCICR) : ((uint8_t *)0) )
#define digitalPinToPCICR(p) ( WITHIN(p, 10, 15) || \
WITHIN(p, 50, 53) || \
WITHIN(p, 62, 69) ? &PCICR : (uint8_t*)0 )
#undef digitalPinToPCICRbit
#define digitalPinToPCICRbit(p) ( (((p) >= 10) && ((p) <= 13)) || (((p) >= 50) && ((p) <= 53)) ? 0 : \
( (((p) >= 14) && ((p) <= 15)) ? 1 : \
( (((p) >= 62) && ((p) <= 69)) ? 2 : \
0 ) ) )
#define digitalPinToPCICRbit(p) ( WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? 0 : \
WITHIN(p, 14, 15) ? 1 : \
WITHIN(p, 62, 69) ? 2 : \
0 )
#undef digitalPinToPCMSK
#define digitalPinToPCMSK(p) ( (((p) >= 10) && ((p) <= 13)) || (((p) >= 50) && ((p) <= 53)) ? (&PCMSK0) : \
( (((p) >= 14) && ((p) <= 15)) ? (&PCMSK1) : \
( (((p) >= 62) && ((p) <= 69)) ? (&PCMSK2) : \
((uint8_t *)0) ) ) )
#define digitalPinToPCMSK(p) ( WITHIN(p, 10, 13) || WITHIN(p, 50, 53) ? &PCMSK0 : \
WITHIN(p, 14, 15) ? &PCMSK1 : \
WITHIN(p, 62, 69) ? &PCMSK2 : \
(uint8_t *)0 )
#undef digitalPinToPCMSKbit
#define digitalPinToPCMSKbit(p) ( (((p) >= 10) && ((p) <= 13)) ? ((p) - 6) : \
( ((p) == 14) ? 2 : \
( ((p) == 15) ? 1 : \
( ((p) == 50) ? 3 : \
( ((p) == 51) ? 2 : \
( ((p) == 52) ? 1 : \
( ((p) == 53) ? 0 : \
( (((p) >= 62) && ((p) <= 69)) ? ((p) - 62) : \
0 ) ) ) ) ) ) ) )
#define digitalPinToPCMSKbit(p) ( WITHIN(p, 10, 13) ? ((p) - 6) : \
(p) == 14 || (p) == 51 ? 2 : \
(p) == 15 || (p) == 52 ? 1 : \
(p) == 50 ? 3 : \
(p) == 53 ? 0 : \
WITHIN(p, 62, 69) ? ((p) - 62) : \
0 )
#endif
volatile uint8_t e_hit = 0; // Different from 0 when the endstops shall be tested in detail.
// Must be reset to 0 by the test function when the tests are finished.
volatile uint8_t e_hit = 0; // Different from 0 when the endstops should be tested in detail.
// Must be reset to 0 by the test function when finished.
// Install Pin change interrupt for a pin. Can be called multiple times.
void pciSetup(byte pin) {
*digitalPinToPCMSK(pin) |= bit (digitalPinToPCMSKbit(pin)); // enable pin
PCIFR |= bit (digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
PCICR |= bit (digitalPinToPCICRbit(pin)); // enable interrupt for the group
SBI(*digitalPinToPCMSK(pin), digitalPinToPCMSKbit(pin)); // enable pin
SBI(PCIFR, digitalPinToPCICRbit(pin)); // clear any outstanding interrupt
SBI(PCICR, digitalPinToPCICRbit(pin)); // enable interrupt for the group
}
// This is what is really done inside the interrupts.

@ -75,7 +75,8 @@
#define ENABLED(b) _CAT(SWITCH_ENABLED_, b)
#define DISABLED(b) (!_CAT(SWITCH_ENABLED_, b))
#define NUMERIC(a) ((a) >= '0' && '9' >= (a))
#define WITHIN(V,L,H) ((V) >= (L) && (V) <= (H))
#define NUMERIC(a) WITHIN(a, '0', '9')
#define NUMERIC_SIGNED(a) (NUMERIC(a) || (a) == '-')
#define COUNT(a) (sizeof(a)/sizeof(*a))
#define ZERO(a) memset(a,0,sizeof(a))
@ -133,9 +134,10 @@
#define MAX4(a, b, c, d) max(max(a, b), max(c, d))
#define UNEAR_ZERO(x) ((x) < 0.000001)
#define NEAR_ZERO(x) ((x) > -0.000001 && (x) < 0.000001)
#define NEAR_ZERO(x) WITHIN(x, -0.000001, 0.000001)
#define NEAR(x,y) NEAR_ZERO((x)-(y))
#define RECIPROCAL(x) (NEAR_ZERO(x) ? 0.0 : 1.0 / (x))
#define FIXFLOAT(f) (f + 0.00001)
#endif //__MACROS_H

@ -88,12 +88,12 @@
static int8_t probe_index_x(const float &x) {
int8_t px = (x - (MESH_MIN_X) + 0.5 * (MESH_X_DIST)) * (1.0 / (MESH_X_DIST));
return (px >= 0 && px < (MESH_NUM_X_POINTS)) ? px : -1;
return WITHIN(px, 0, MESH_NUM_X_POINTS - 1) ? px : -1;
}
static int8_t probe_index_y(const float &y) {
int8_t py = (y - (MESH_MIN_Y) + 0.5 * (MESH_Y_DIST)) * (1.0 / (MESH_Y_DIST));
return (py >= 0 && py < (MESH_NUM_Y_POINTS)) ? py : -1;
return WITHIN(py, 0, MESH_NUM_Y_POINTS - 1) ? py : -1;
}
static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {

@ -20,6 +20,8 @@
*
*/
#include "macros.h"
bool endstop_monitor_flag = false;
#if !defined(TIMER1B) // working with Teensyduino extension so need to re-define some things
@ -35,7 +37,7 @@ bool endstop_monitor_flag = false;
#define _ANALOG_PIN_SAY(NAME) { sprintf(buffer, NAME_FORMAT, NAME); SERIAL_ECHO(buffer); pin_is_analog = true; return true; }
#define ANALOG_PIN_SAY(NAME) if (pin == analogInputToDigitalPin(NAME)) _ANALOG_PIN_SAY(#NAME);
#define IS_ANALOG(P) ((P) >= analogInputToDigitalPin(0) && ((P) <= analogInputToDigitalPin(15) || (P) <= analogInputToDigitalPin(5)))
#define IS_ANALOG(P) ( WITHIN(P, analogInputToDigitalPin(0), analogInputToDigitalPin(15)) || (P) <= analogInputToDigitalPin(5) )
int digitalRead_mod(int8_t pin) { // same as digitalRead except the PWM stop section has been removed
uint8_t port = digitalPinToPort(pin);

@ -999,7 +999,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
unsigned long segment_time = lround(1000000.0 / inverse_mm_s);
#endif
#if ENABLED(SLOWDOWN)
if (moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2) {
if (WITHIN(moves_queued, 2, (BLOCK_BUFFER_SIZE) / 2 - 1)) {
if (segment_time < min_segment_time) {
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));

@ -786,11 +786,11 @@ void Temperature::manage_heater() {
#if ENABLED(PIDTEMPBED)
float pid_output = get_pid_output_bed();
soft_pwm_bed = current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP ? (int)pid_output >> 1 : 0;
soft_pwm_bed = WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP) ? (int)pid_output >> 1 : 0;
#elif ENABLED(BED_LIMIT_SWITCHING)
// Check if temperature is within the correct band
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
if (current_temperature_bed >= target_temperature_bed + BED_HYSTERESIS)
soft_pwm_bed = 0;
else if (current_temperature_bed <= target_temperature_bed - (BED_HYSTERESIS))
@ -802,7 +802,7 @@ void Temperature::manage_heater() {
}
#else // !PIDTEMPBED && !BED_LIMIT_SWITCHING
// Check if temperature is within the correct range
if (current_temperature_bed > BED_MINTEMP && current_temperature_bed < BED_MAXTEMP) {
if (WITHIN(current_temperature_bed, BED_MINTEMP, BED_MAXTEMP)) {
soft_pwm_bed = current_temperature_bed < target_temperature_bed ? MAX_BED_POWER >> 1 : 0;
}
else {

@ -42,7 +42,7 @@ void TWIBus::reset() {
}
void TWIBus::address(const uint8_t adr) {
if (adr < 8 || adr > 127) {
if (!WITHIN(adr, 8, 127)) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Bad I2C address (8-127)");
}

@ -30,8 +30,6 @@
#include "configuration_store.h"
#include "utility.h"
extern float zprobe_zoffset;
#if HAS_BUZZER && DISABLED(LCD_USE_I2C_BUZZER)
#include "buzzer.h"
#endif

@ -213,7 +213,7 @@ static void lcd_setFont(const char font_nr) {
}
void lcd_print(const char c) {
if ((c > 0) && (c <= LCD_STR_SPECIAL_MAX)) {
if (WITHIN(c, 1, LCD_STR_SPECIAL_MAX)) {
u8g.setFont(FONT_SPECIAL_NAME);
u8g.print(c);
lcd_setFont(currentfont);
@ -222,7 +222,7 @@ void lcd_print(const char c) {
}
char lcd_print_and_count(const char c) {
if ((c > 0) && (c <= LCD_STR_SPECIAL_MAX)) {
if (WITHIN(c, 1, LCD_STR_SPECIAL_MAX)) {
u8g.setFont(FONT_SPECIAL_NAME);
u8g.print(c);
lcd_setFont(currentfont);
@ -543,7 +543,7 @@ static void lcd_implementation_status_screen() {
if (page.page == 0) {
strcpy(xstring, ftostr4sign(current_position[X_AXIS]));
strcpy(ystring, ftostr4sign(current_position[Y_AXIS]));
strcpy(zstring, ftostr52sp(current_position[Z_AXIS] + 0.00001));
strcpy(zstring, ftostr52sp(FIXFLOAT(current_position[Z_AXIS])));
#if ENABLED(FILAMENT_LCD_DISPLAY) && DISABLED(SDSUPPORT)
strcpy(wstring, ftostr12ns(filament_width_meas));
strcpy(mstring, itostr3(100.0 * volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM]));

@ -729,7 +729,7 @@ static void lcd_implementation_status_screen() {
lcd.setCursor(LCD_WIDTH - 8, 1);
_draw_axis_label(Z_AXIS, PSTR(MSG_Z), blink);
lcd.print(ftostr52sp(current_position[Z_AXIS] + 0.00001));
lcd.print(ftostr52sp(FIXFLOAT(current_position[Z_AXIS])));
#endif // LCD_HEIGHT > 2

@ -134,7 +134,7 @@ void safe_delay(millis_t ms) {
// Convert float to rj string with 1234, _123, -123, _-12, 12.3, _1.2, or -1.2 format
char *ftostr4sign(const float& fx) {
int x = fx * 10;
if (x <= -100 || x >= 1000) return itostr4sign((int)fx);
if (WITHIN(x, -99, 999)) return itostr4sign((int)fx);
int xx = abs(x);
conv[0] = x < 0 ? '-' : (xx >= 100 ? DIGIMOD(xx, 100) : ' ');
conv[1] = DIGIMOD(xx, 10);

Loading…
Cancel
Save