Merge remote-tracking branch 'remotes/upstream/Development' into Development

2.0.x
domonoky 10 years ago
commit 4a7aca2736

@ -33,7 +33,7 @@ rambo.build.variant=rambo
######################################## ########################################
sanguino.name=Sanguino sanguino.name=Sanguino
sanguino.upload.tool=ardunio:avrdude sanguino.upload.tool=arduino:avrdude
sanguino.upload.protocol=stk500 sanguino.upload.protocol=stk500
sanguino.upload.maximum_size=131072 sanguino.upload.maximum_size=131072
sanguino.upload.speed=57600 sanguino.upload.speed=57600

@ -5,16 +5,9 @@
#include "Marlin.h" #include "Marlin.h"
#ifdef BLINKM #ifdef BLINKM
#if (ARDUINO >= 100)
# include "Arduino.h"
#else
# include "WProgram.h"
#endif
#include "BlinkM.h" #include "BlinkM.h"
void SendColors(byte red, byte grn, byte blu) void SendColors(byte red, byte grn, byte blu) {
{
Wire.begin(); Wire.begin();
Wire.beginTransmission(0x09); Wire.beginTransmission(0x09);
Wire.write('o'); //to disable ongoing script, only needs to be used once Wire.write('o'); //to disable ongoing script, only needs to be used once

@ -2,13 +2,12 @@
BlinkM.h BlinkM.h
Library header file for BlinkM library Library header file for BlinkM library
*/ */
#if (ARDUINO >= 100) #if ARDUINO >= 100
# include "Arduino.h" #include "Arduino.h"
#else #else
# include "WProgram.h" #include "WProgram.h"
#endif #endif
#include "Wire.h" #include "Wire.h"
void SendColors(byte red, byte grn, byte blu); void SendColors(byte red, byte grn, byte blu);

@ -118,7 +118,10 @@ Here are some standard links for getting your machine calibrated:
// 1010 is Pt1000 with 1k pullup (non standard) // 1010 is Pt1000 with 1k pullup (non standard)
// 147 is Pt100 with 4k7 pullup // 147 is Pt100 with 4k7 pullup
// 110 is Pt100 with 1k pullup (non standard) // 110 is Pt100 with 1k pullup (non standard)
// 999 is a Dummy Table. It will ALWAYS read 25C.. Use it for Testing or Development purposes. NEVER for production machine. // 998 and 999 are Dummy Tables. They will ALWAYS read 25°C or the temperature defined below.
// Use it for Testing or Development purposes. NEVER for production machine.
// #define DUMMY_THERMISTOR_998_VALUE 25
// #define DUMMY_THERMISTOR_999_VALUE 100
#define TEMP_SENSOR_0 -1 #define TEMP_SENSOR_0 -1
#define TEMP_SENSOR_1 -1 #define TEMP_SENSOR_1 -1
@ -582,6 +585,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -640,6 +647,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

@ -1,5 +1,5 @@
#ifndef CONFIG_STORE_H #ifndef CONFIGURATIONSTORE_H
#define CONFIG_STORE_H #define CONFIGURATIONSTORE_H
#include "Configuration.h" #include "Configuration.h"
@ -19,4 +19,4 @@ void Config_ResetDefault();
FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); } FORCE_INLINE void Config_RetrieveSettings() { Config_ResetDefault(); Config_PrintSettings(); }
#endif #endif
#endif // __CONFIG_STORE_H #endif //CONFIGURATIONSTORE_H

@ -181,7 +181,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
#endif #endif
enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5}; enum AxisEnum {X_AXIS=0, Y_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
//X_HEAD and Y_HEAD is used for systems that don't have a 1:1 relationship between X_AXIS and X Head movement, like CoreXY bots.
void FlushSerialRequestResend(); void FlushSerialRequestResend();
void ClearToSend(); void ClearToSend();

@ -1720,6 +1720,7 @@ void process_commands()
#ifdef ENABLE_AUTO_BED_LEVELING #ifdef ENABLE_AUTO_BED_LEVELING
case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points. case 29: // G29 Detailed Z-Probe, probes the bed at 3 or more points.
// Override probing area by providing [F]ront [B]ack [L]eft [R]ight Grid[P]oints values
{ {
#if Z_MIN_PIN == -1 #if Z_MIN_PIN == -1
#error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin." #error "You must have a Z_MIN endstop in order to enable Auto Bed Leveling feature!!! Z_MIN_PIN must point to a valid hardware pin."
@ -1753,9 +1754,19 @@ void process_commands()
feedrate = homing_feedrate[Z_AXIS]; feedrate = homing_feedrate[Z_AXIS];
#ifdef AUTO_BED_LEVELING_GRID #ifdef AUTO_BED_LEVELING_GRID
// probe at the points of a lattice grid // probe at the points of a lattice grid
int left_probe_bed_position=LEFT_PROBE_BED_POSITION;
int right_probe_bed_position=RIGHT_PROBE_BED_POSITION;
int back_probe_bed_position=BACK_PROBE_BED_POSITION;
int front_probe_bed_position=FRONT_PROBE_BED_POSITION;
int auto_bed_leveling_grid_points=AUTO_BED_LEVELING_GRID_POINTS;
if (code_seen('L')) left_probe_bed_position=(int)code_value();
if (code_seen('R')) right_probe_bed_position=(int)code_value();
if (code_seen('B')) back_probe_bed_position=(int)code_value();
if (code_seen('F')) front_probe_bed_position=(int)code_value();
if (code_seen('P')) auto_bed_leveling_grid_points=(int)code_value();
int xGridSpacing = (RIGHT_PROBE_BED_POSITION - LEFT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points-1);
int yGridSpacing = (BACK_PROBE_BED_POSITION - FRONT_PROBE_BED_POSITION) / (AUTO_BED_LEVELING_GRID_POINTS-1); int yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points-1);
// solve the plane equation ax + by + d = z // solve the plane equation ax + by + d = z
@ -1765,32 +1776,35 @@ void process_commands()
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z // so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
// "A" matrix of the linear system of equations // "A" matrix of the linear system of equations
double eqnAMatrix[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS*3]; double eqnAMatrix[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points*3];
// "B" vector of Z points // "B" vector of Z points
double eqnBVector[AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS]; double eqnBVector[auto_bed_leveling_grid_points*auto_bed_leveling_grid_points];
int probePointCounter = 0; int probePointCounter = 0;
bool zig = true; bool zig = true;
for (int yProbe=FRONT_PROBE_BED_POSITION; yProbe <= BACK_PROBE_BED_POSITION; yProbe += yGridSpacing) for (int yProbe=front_probe_bed_position; yProbe <= back_probe_bed_position; yProbe += yGridSpacing)
{ {
int xProbe, xInc; int xProbe, xInc;
if (zig) if (zig)
{ {
xProbe = LEFT_PROBE_BED_POSITION; xProbe = left_probe_bed_position;
//xEnd = RIGHT_PROBE_BED_POSITION; //xEnd = right_probe_bed_position;
xInc = xGridSpacing; xInc = xGridSpacing;
zig = false; zig = false;
} else // zag } else // zag
{ {
xProbe = RIGHT_PROBE_BED_POSITION; xProbe = right_probe_bed_position;
//xEnd = LEFT_PROBE_BED_POSITION; //xEnd = left_probe_bed_position;
xInc = -xGridSpacing; xInc = -xGridSpacing;
zig = true; zig = true;
} }
for (int xCount=0; xCount < AUTO_BED_LEVELING_GRID_POINTS; xCount++) for (int xCount=0; xCount < auto_bed_leveling_grid_points; xCount++)
{ {
float z_before; float z_before;
if (probePointCounter == 0) if (probePointCounter == 0)
@ -1822,9 +1836,9 @@ void process_commands()
eqnBVector[probePointCounter] = measured_z; eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = xProbe; eqnAMatrix[probePointCounter + 0*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = xProbe;
eqnAMatrix[probePointCounter + 1*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = yProbe; eqnAMatrix[probePointCounter + 1*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = yProbe;
eqnAMatrix[probePointCounter + 2*AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS] = 1; eqnAMatrix[probePointCounter + 2*auto_bed_leveling_grid_points*auto_bed_leveling_grid_points] = 1;
probePointCounter++; probePointCounter++;
xProbe += xInc; xProbe += xInc;
} }
@ -1832,7 +1846,7 @@ void process_commands()
clean_up_after_endstop_move(); clean_up_after_endstop_move();
// solve lsq problem // solve lsq problem
double *plane_equation_coefficients = qr_solve(AUTO_BED_LEVELING_GRID_POINTS*AUTO_BED_LEVELING_GRID_POINTS, 3, eqnAMatrix, eqnBVector); double *plane_equation_coefficients = qr_solve(auto_bed_leveling_grid_points*auto_bed_leveling_grid_points, 3, eqnAMatrix, eqnBVector);
SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL(plane_equation_coefficients[0]); SERIAL_PROTOCOL(plane_equation_coefficients[0]);
@ -4695,18 +4709,9 @@ bool setTargetedHotend(int code){
float calculate_volumetric_multiplier(float diameter) { float calculate_volumetric_multiplier(float diameter) {
float area = .0; if (!volumetric_enabled || diameter == 0) return 1.0;
float radius = .0; float d2 = diameter * 0.5;
return 1.0 / (M_PI * d2 * d2);
radius = diameter * .5;
if (! volumetric_enabled || radius == 0) {
area = 1;
}
else {
area = M_PI * pow(radius, 2);
}
return 1.0 / area;
} }
void calculate_volumetric_multipliers() { void calculate_volumetric_multipliers() {

@ -7,256 +7,194 @@
#ifdef SDSUPPORT #ifdef SDSUPPORT
CardReader::CardReader() {
CardReader::CardReader()
{
filesize = 0; filesize = 0;
sdpos = 0; sdpos = 0;
sdprinting = false; sdprinting = false;
cardOK = false; cardOK = false;
saving = false; saving = false;
logging = false; logging = false;
autostart_atmillis=0;
workDirDepth = 0; workDirDepth = 0;
file_subcall_ctr=0; file_subcall_ctr = 0;
memset(workDirParents, 0, sizeof(workDirParents)); memset(workDirParents, 0, sizeof(workDirParents));
autostart_stilltocheck=true; //the SD start is delayed, because otherwise the serial cannot answer fast enough to make contact with the host software. autostart_stilltocheck = true; //the SD start is delayed, because otherwise the serial cannot answer fast enough to make contact with the host software.
autostart_index=0; autostart_index = 0;
//power to SD reader //power to SD reader
#if SDPOWER > -1 #if SDPOWER > -1
SET_OUTPUT(SDPOWER); SET_OUTPUT(SDPOWER);
WRITE(SDPOWER,HIGH); WRITE(SDPOWER, HIGH);
#endif //SDPOWER #endif //SDPOWER
autostart_atmillis=millis()+5000; autostart_atmillis = millis() + 5000;
} }
char *createFilename(char *buffer,const dir_t &p) //buffer>12characters char *createFilename(char *buffer, const dir_t &p) { //buffer > 12characters
{ char *pos = buffer;
char *pos=buffer; for (uint8_t i = 0; i < 11; i++) {
for (uint8_t i = 0; i < 11; i++) if (p.name[i] == ' ') continue;
{ if (i == 8) *pos++ = '.';
if (p.name[i] == ' ')continue; *pos++ = p.name[i];
if (i == 8)
{
*pos++='.';
} }
*pos++=p.name[i]; *pos++ = 0;
}
*pos++=0;
return buffer; return buffer;
} }
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/) {
void CardReader::lsDive(const char *prepend, SdFile parent, const char * const match/*=NULL*/)
{
dir_t p; dir_t p;
uint8_t cnt=0; uint8_t cnt = 0;
while (parent.readDir(p, longFilename) > 0)
{
if( DIR_IS_SUBDIR(&p) && lsAction!=LS_Count && lsAction!=LS_GetFilename) // hence LS_SerialPrint
{
while (parent.readDir(p, longFilename) > 0) {
if (DIR_IS_SUBDIR(&p) && lsAction != LS_Count && lsAction != LS_GetFilename) { // hence LS_SerialPrint
char path[FILENAME_LENGTH*2]; char path[FILENAME_LENGTH*2];
char lfilename[FILENAME_LENGTH]; char lfilename[FILENAME_LENGTH];
createFilename(lfilename,p); createFilename(lfilename, p);
path[0]=0; path[0] = 0;
if(prepend[0]==0) //avoid leading / if already in prepend if (prepend[0] == 0) strcat(path, "/"); //avoid leading / if already in prepend
{ strcat(path, prepend);
strcat(path,"/"); strcat(path, lfilename);
} strcat(path, "/");
strcat(path,prepend);
strcat(path,lfilename);
strcat(path,"/");
//Serial.print(path); //Serial.print(path);
SdFile dir; SdFile dir;
if(!dir.open(parent,lfilename, O_READ)) if (!dir.open(parent, lfilename, O_READ)) {
{ if (lsAction == LS_SerialPrint) {
if(lsAction==LS_SerialPrint)
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLN(MSG_SD_CANT_OPEN_SUBDIR); SERIAL_ECHOLN(MSG_SD_CANT_OPEN_SUBDIR);
SERIAL_ECHOLN(lfilename); SERIAL_ECHOLN(lfilename);
} }
} }
lsDive(path,dir); lsDive(path, dir);
//close done automatically by destructor of SdFile //close done automatically by destructor of SdFile
} }
else else {
{
char pn0 = p.name[0]; char pn0 = p.name[0];
if (pn0 == DIR_NAME_FREE) break; if (pn0 == DIR_NAME_FREE) break;
if (pn0 == DIR_NAME_DELETED || pn0 == '.' || pn0 == '_') continue; if (pn0 == DIR_NAME_DELETED || pn0 == '.') continue;
char lf0 = longFilename[0]; char lf0 = longFilename[0];
if (lf0 == '.' || lf0 == '_') continue; if (lf0 == '.') continue;
if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue; if (!DIR_IS_FILE_OR_SUBDIR(&p)) continue;
filenameIsDir=DIR_IS_SUBDIR(&p);
filenameIsDir = DIR_IS_SUBDIR(&p);
if(!filenameIsDir) if (!filenameIsDir && (p.name[8] != 'G' || p.name[9] == '~')) continue;
{
if(p.name[8]!='G') continue; //if (cnt++ != nr) continue;
if(p.name[9]=='~') continue; createFilename(filename, p);
} if (lsAction == LS_SerialPrint) {
//if(cnt++!=nr) continue;
createFilename(filename,p);
if(lsAction==LS_SerialPrint)
{
SERIAL_PROTOCOL(prepend); SERIAL_PROTOCOL(prepend);
SERIAL_PROTOCOLLN(filename); SERIAL_PROTOCOLLN(filename);
} }
else if(lsAction==LS_Count) else if (lsAction == LS_Count) {
{
nrFiles++; nrFiles++;
} }
else if(lsAction==LS_GetFilename) else if (lsAction == LS_GetFilename) {
{
if (match != NULL) { if (match != NULL) {
if (strcasecmp(match, filename) == 0) return; if (strcasecmp(match, filename) == 0) return;
} }
else if (cnt == nrFiles) return; else if (cnt == nrFiles) return;
cnt++; cnt++;
} }
} }
} }
} }
void CardReader::ls() void CardReader::ls() {
{ lsAction = LS_SerialPrint;
lsAction=LS_SerialPrint;
if(lsAction==LS_Count)
nrFiles=0;
root.rewind(); root.rewind();
lsDive("",root); lsDive("", root);
} }
void CardReader::initsd() {
void CardReader::initsd()
{
cardOK = false; cardOK = false;
if(root.isOpen()) if (root.isOpen()) root.close();
root.close();
#ifdef SDSLOW #ifdef SDSLOW
if (!card.init(SPI_HALF_SPEED,SDSS) #define SPI_SPEED SPI_HALF_SPEED
#if defined(LCD_SDSS) && (LCD_SDSS != SDSS) #else
&& !card.init(SPI_HALF_SPEED,LCD_SDSS) #define SPI_SPEED SPI_FULL_SPEED
#endif #endif
)
#else if (!card.init(SPI_SPEED,SDSS)
if (!card.init(SPI_FULL_SPEED,SDSS)
#if defined(LCD_SDSS) && (LCD_SDSS != SDSS) #if defined(LCD_SDSS) && (LCD_SDSS != SDSS)
&& !card.init(SPI_FULL_SPEED,LCD_SDSS) && !card.init(SPI_SPEED, LCD_SDSS)
#endif #endif
) ) {
#endif
{
//if (!card.init(SPI_HALF_SPEED,SDSS)) //if (!card.init(SPI_HALF_SPEED,SDSS))
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_SD_INIT_FAIL); SERIAL_ECHOLNPGM(MSG_SD_INIT_FAIL);
} }
else if (!volume.init(&card)) else if (!volume.init(&card)) {
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_VOL_INIT_FAIL); SERIAL_ERRORLNPGM(MSG_SD_VOL_INIT_FAIL);
} }
else if (!root.openRoot(&volume)) else if (!root.openRoot(&volume)) {
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_OPENROOT_FAIL); SERIAL_ERRORLNPGM(MSG_SD_OPENROOT_FAIL);
} }
else else {
{
cardOK = true; cardOK = true;
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_SD_CARD_OK); SERIAL_ECHOLNPGM(MSG_SD_CARD_OK);
} }
workDir=root; workDir = root;
curDir=&root; curDir = &root;
/* /*
if(!workDir.openRoot(&volume)) if (!workDir.openRoot(&volume)) {
{
SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL); SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL);
} }
*/ */
} }
void CardReader::setroot() void CardReader::setroot() {
{ /*if (!workDir.openRoot(&volume)) {
/*if(!workDir.openRoot(&volume))
{
SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL); SERIAL_ECHOLNPGM(MSG_SD_WORKDIR_FAIL);
}*/ }*/
workDir=root; workDir = root;
curDir = &workDir;
curDir=&workDir;
} }
void CardReader::release()
{ void CardReader::release() {
sdprinting = false; sdprinting = false;
cardOK = false; cardOK = false;
} }
void CardReader::startFileprint() void CardReader::startFileprint() {
{ if (cardOK) {
if(cardOK)
{
sdprinting = true; sdprinting = true;
} }
} }
void CardReader::pauseSDPrint() void CardReader::pauseSDPrint() {
{ if (sdprinting) sdprinting = false;
if(sdprinting)
{
sdprinting = false;
}
} }
void CardReader::openLogFile(char* name) {
void CardReader::openLogFile(char* name)
{
logging = true; logging = true;
openFile(name, false); openFile(name, false);
} }
void CardReader::getAbsFilename(char *t) void CardReader::getAbsFilename(char *t) {
{ uint8_t cnt = 0;
uint8_t cnt=0; *t = '/'; t++; cnt++;
*t='/';t++;cnt++; for (uint8_t i = 0; i < workDirDepth; i++) {
for(uint8_t i=0;i<workDirDepth;i++)
{
workDirParents[i].getFilename(t); //SDBaseFile.getfilename! workDirParents[i].getFilename(t); //SDBaseFile.getfilename!
while(*t!=0 && cnt< MAXPATHNAMELENGTH) while(*t && cnt < MAXPATHNAMELENGTH) { t++; cnt++; } //crawl counter forward.
{t++;cnt++;} //crawl counter forward.
} }
if(cnt<MAXPATHNAMELENGTH-FILENAME_LENGTH) if (cnt < MAXPATHNAMELENGTH - FILENAME_LENGTH)
file.getFilename(t); file.getFilename(t);
else else
t[0]=0; t[0] = 0;
} }
void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/) void CardReader::openFile(char* name, bool read, bool replace_current/*=true*/) {
{ if (!cardOK) return;
if(!cardOK) if (file.isOpen()) { //replacing current file by new file, or subfile call
return; if (!replace_current) {
if(file.isOpen()) //replacing current file by new file, or subfile call if (file_subcall_ctr > SD_PROCEDURE_DEPTH - 1) {
{
if(!replace_current)
{
if((int)file_subcall_ctr>(int)SD_PROCEDURE_DEPTH-1)
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORPGM("trying to call sub-gcode files with too many levels. MAX level is:"); SERIAL_ERRORPGM("trying to call sub-gcode files with too many levels. MAX level is:");
SERIAL_ERRORLN(SD_PROCEDURE_DEPTH); SERIAL_ERRORLN(SD_PROCEDURE_DEPTH);
@ -275,79 +213,67 @@ void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
SERIAL_ECHO(filenames[file_subcall_ctr]); SERIAL_ECHO(filenames[file_subcall_ctr]);
SERIAL_ECHOPGM("\" pos"); SERIAL_ECHOPGM("\" pos");
SERIAL_ECHOLN(sdpos); SERIAL_ECHOLN(sdpos);
filespos[file_subcall_ctr]=sdpos; filespos[file_subcall_ctr] = sdpos;
file_subcall_ctr++; file_subcall_ctr++;
} }
else else {
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM("Now doing file: "); SERIAL_ECHOPGM("Now doing file: ");
SERIAL_ECHOLN(name); SERIAL_ECHOLN(name);
} }
file.close(); file.close();
} }
else //opening fresh file else { //opening fresh file
{ file_subcall_ctr = 0; //resetting procedure depth in case user cancels print while in procedure
file_subcall_ctr=0; //resetting procedure depth in case user cancels print while in procedure
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM("Now fresh file: "); SERIAL_ECHOPGM("Now fresh file: ");
SERIAL_ECHOLN(name); SERIAL_ECHOLN(name);
} }
sdprinting = false; sdprinting = false;
SdFile myDir; SdFile myDir;
curDir=&root; curDir = &root;
char *fname=name; char *fname = name;
char *dirname_start,*dirname_end; char *dirname_start, *dirname_end;
if(name[0]=='/') if (name[0] == '/') {
{ dirname_start = &name[1];
dirname_start=strchr(name,'/')+1; while(dirname_start > 0) {
while(dirname_start>0) dirname_end = strchr(dirname_start, '/');
{ //SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
dirname_end=strchr(dirname_start,'/'); //SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name));
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start-name)); if (dirname_end > 0 && dirname_end > dirname_start) {
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end-name));
if(dirname_end>0 && dirname_end>dirname_start)
{
char subdirname[FILENAME_LENGTH]; char subdirname[FILENAME_LENGTH];
strncpy(subdirname, dirname_start, dirname_end-dirname_start); strncpy(subdirname, dirname_start, dirname_end - dirname_start);
subdirname[dirname_end-dirname_start]=0; subdirname[dirname_end - dirname_start] = 0;
SERIAL_ECHOLN(subdirname); SERIAL_ECHOLN(subdirname);
if(!myDir.open(curDir,subdirname,O_READ)) if (!myDir.open(curDir, subdirname, O_READ)) {
{
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(subdirname); SERIAL_PROTOCOL(subdirname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
return; return;
} }
else else {
{
//SERIAL_ECHOLN("dive ok"); //SERIAL_ECHOLN("dive ok");
} }
curDir=&myDir; curDir = &myDir;
dirname_start=dirname_end+1; dirname_start = dirname_end + 1;
} }
else // the reminder after all /fsa/fdsa/ is the filename else { // the remainder after all /fsa/fdsa/ is the filename
{ fname = dirname_start;
fname=dirname_start; //SERIAL_ECHOLN("remainder");
//SERIAL_ECHOLN("remaider");
//SERIAL_ECHOLN(fname); //SERIAL_ECHOLN(fname);
break; break;
} }
} }
} }
else //relative path else { //relative path
{ curDir = &workDir;
curDir=&workDir;
} }
if(read)
{ if (read) {
if (file.open(curDir, fname, O_READ)) if (file.open(curDir, fname, O_READ)) {
{
filesize = file.fileSize(); filesize = file.fileSize();
SERIAL_PROTOCOLPGM(MSG_SD_FILE_OPENED); SERIAL_PROTOCOLPGM(MSG_SD_FILE_OPENED);
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
@ -359,124 +285,105 @@ void CardReader::openFile(char* name,bool read, bool replace_current/*=true*/)
getfilename(0, fname); getfilename(0, fname);
lcd_setstatus(longFilename[0] ? longFilename : fname); lcd_setstatus(longFilename[0] ? longFilename : fname);
} }
else else {
{
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
} }
} }
else else { //write
{ //write if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC)) {
if (!file.open(curDir, fname, O_CREAT | O_APPEND | O_WRITE | O_TRUNC))
{
SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL); SERIAL_PROTOCOLPGM(MSG_SD_OPEN_FILE_FAIL);
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
} }
else else {
{
saving = true; saving = true;
SERIAL_PROTOCOLPGM(MSG_SD_WRITE_TO_FILE); SERIAL_PROTOCOLPGM(MSG_SD_WRITE_TO_FILE);
SERIAL_PROTOCOLLN(name); SERIAL_PROTOCOLLN(name);
lcd_setstatus(fname); lcd_setstatus(fname);
} }
} }
} }
void CardReader::removeFile(char* name) void CardReader::removeFile(char* name) {
{ if (!cardOK) return;
if(!cardOK)
return;
file.close(); file.close();
sdprinting = false; sdprinting = false;
SdFile myDir; SdFile myDir;
curDir=&root; curDir = &root;
char *fname=name; char *fname = name;
char *dirname_start,*dirname_end; char *dirname_start, *dirname_end;
if(name[0]=='/') if (name[0] == '/') {
{ dirname_start = strchr(name, '/') + 1;
dirname_start=strchr(name,'/')+1; while (dirname_start > 0) {
while(dirname_start>0) dirname_end = strchr(dirname_start, '/');
{ //SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start - name));
dirname_end=strchr(dirname_start,'/'); //SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end - name));
//SERIAL_ECHO("start:");SERIAL_ECHOLN((int)(dirname_start-name)); if (dirname_end > 0 && dirname_end > dirname_start) {
//SERIAL_ECHO("end :");SERIAL_ECHOLN((int)(dirname_end-name));
if(dirname_end>0 && dirname_end>dirname_start)
{
char subdirname[FILENAME_LENGTH]; char subdirname[FILENAME_LENGTH];
strncpy(subdirname, dirname_start, dirname_end-dirname_start); strncpy(subdirname, dirname_start, dirname_end - dirname_start);
subdirname[dirname_end-dirname_start]=0; subdirname[dirname_end - dirname_start] = 0;
SERIAL_ECHOLN(subdirname); SERIAL_ECHOLN(subdirname);
if(!myDir.open(curDir,subdirname,O_READ)) if (!myDir.open(curDir, subdirname, O_READ)) {
{
SERIAL_PROTOCOLPGM("open failed, File: "); SERIAL_PROTOCOLPGM("open failed, File: ");
SERIAL_PROTOCOL(subdirname); SERIAL_PROTOCOL(subdirname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
return; return;
} }
else else {
{
//SERIAL_ECHOLN("dive ok"); //SERIAL_ECHOLN("dive ok");
} }
curDir=&myDir; curDir = &myDir;
dirname_start=dirname_end+1; dirname_start = dirname_end + 1;
} }
else // the reminder after all /fsa/fdsa/ is the filename else { // the remainder after all /fsa/fdsa/ is the filename
{ fname = dirname_start;
fname=dirname_start; //SERIAL_ECHOLN("remainder");
//SERIAL_ECHOLN("remaider");
//SERIAL_ECHOLN(fname); //SERIAL_ECHOLN(fname);
break; break;
} }
} }
} }
else //relative path else { // relative path
{ curDir = &workDir;
curDir=&workDir;
} }
if (file.remove(curDir, fname))
{ if (file.remove(curDir, fname)) {
SERIAL_PROTOCOLPGM("File deleted:"); SERIAL_PROTOCOLPGM("File deleted:");
SERIAL_PROTOCOLLN(fname); SERIAL_PROTOCOLLN(fname);
sdpos = 0; sdpos = 0;
} }
else else {
{
SERIAL_PROTOCOLPGM("Deletion failed, File: "); SERIAL_PROTOCOLPGM("Deletion failed, File: ");
SERIAL_PROTOCOL(fname); SERIAL_PROTOCOL(fname);
SERIAL_PROTOCOLLNPGM("."); SERIAL_PROTOCOLLNPGM(".");
} }
} }
void CardReader::getStatus() void CardReader::getStatus() {
{ if (cardOK) {
if(cardOK){
SERIAL_PROTOCOLPGM(MSG_SD_PRINTING_BYTE); SERIAL_PROTOCOLPGM(MSG_SD_PRINTING_BYTE);
SERIAL_PROTOCOL(sdpos); SERIAL_PROTOCOL(sdpos);
SERIAL_PROTOCOLPGM("/"); SERIAL_PROTOCOLPGM("/");
SERIAL_PROTOCOLLN(filesize); SERIAL_PROTOCOLLN(filesize);
} }
else{ else {
SERIAL_PROTOCOLLNPGM(MSG_SD_NOT_PRINTING); SERIAL_PROTOCOLLNPGM(MSG_SD_NOT_PRINTING);
} }
} }
void CardReader::write_command(char *buf)
{ void CardReader::write_command(char *buf) {
char* begin = buf; char* begin = buf;
char* npos = 0; char* npos = 0;
char* end = buf + strlen(buf) - 1; char* end = buf + strlen(buf) - 1;
file.writeError = false; file.writeError = false;
if((npos = strchr(buf, 'N')) != NULL) if ((npos = strchr(buf, 'N')) != NULL) {
{
begin = strchr(npos, ' ') + 1; begin = strchr(npos, ' ') + 1;
end = strchr(npos, '*') - 1; end = strchr(npos, '*') - 1;
} }
@ -484,162 +391,129 @@ void CardReader::write_command(char *buf)
end[2] = '\n'; end[2] = '\n';
end[3] = '\0'; end[3] = '\0';
file.write(begin); file.write(begin);
if (file.writeError) if (file.writeError) {
{
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_SD_ERR_WRITE_TO_FILE); SERIAL_ERRORLNPGM(MSG_SD_ERR_WRITE_TO_FILE);
} }
} }
void CardReader::checkautostart(bool force) {
void CardReader::checkautostart(bool force) if (!force && (!autostart_stilltocheck || autostart_atmillis < millis()))
{
if(!force)
{
if(!autostart_stilltocheck)
return;
if(autostart_atmillis<millis())
return; return;
}
autostart_stilltocheck=false; autostart_stilltocheck = false;
if(!cardOK)
{ if (!cardOK) {
initsd(); initsd();
if(!cardOK) //fail if (!cardOK) return; // fail
return;
} }
char autoname[30]; char autoname[30];
sprintf_P(autoname, PSTR("auto%i.g"), autostart_index); sprintf_P(autoname, PSTR("auto%i.g"), autostart_index);
for(int8_t i=0;i<(int8_t)strlen(autoname);i++) for (int8_t i = 0; i < (int8_t)strlen(autoname); i++) autoname[i] = tolower(autoname[i]);
autoname[i]=tolower(autoname[i]);
dir_t p; dir_t p;
root.rewind(); root.rewind();
bool found=false; bool found = false;
while (root.readDir(p, NULL) > 0) while (root.readDir(p, NULL) > 0) {
{ for (int8_t i = 0; i < (int8_t)strlen((char*)p.name); i++) p.name[i] = tolower(p.name[i]);
for(int8_t i=0;i<(int8_t)strlen((char*)p.name);i++) if (p.name[9] != '~' && strncmp((char*)p.name, autoname, 5) == 0) {
p.name[i]=tolower(p.name[i]);
//Serial.print((char*)p.name);
//Serial.print(" ");
//Serial.println(autoname);
if(p.name[9]!='~') //skip safety copies
if(strncmp((char*)p.name,autoname,5)==0)
{
char cmd[30]; char cmd[30];
sprintf_P(cmd, PSTR("M23 %s"), autoname); sprintf_P(cmd, PSTR("M23 %s"), autoname);
enquecommand(cmd); enquecommand(cmd);
enquecommands_P(PSTR("M24")); enquecommands_P(PSTR("M24"));
found=true; found = true;
} }
} }
if(!found) if (!found)
autostart_index=-1; autostart_index = -1;
else else
autostart_index++; autostart_index++;
} }
void CardReader::closefile(bool store_location) void CardReader::closefile(bool store_location) {
{
file.sync(); file.sync();
file.close(); file.close();
saving = false; saving = logging = false;
logging = false;
if(store_location) if (store_location) {
{
//future: store printer state, filename and position for continuing a stopped print //future: store printer state, filename and position for continuing a stopped print
// so one can unplug the printer and continue printing the next day. // so one can unplug the printer and continue printing the next day.
} }
} }
void CardReader::getfilename(uint16_t nr, const char * const match/*=NULL*/) /**
{ * Get the name of a file in the current directory by index
curDir=&workDir; */
lsAction=LS_GetFilename; void CardReader::getfilename(uint16_t nr, const char * const match/*=NULL*/) {
nrFiles=nr; curDir = &workDir;
lsAction = LS_GetFilename;
nrFiles = nr;
curDir->rewind(); curDir->rewind();
lsDive("",*curDir,match); lsDive("", *curDir, match);
} }
uint16_t CardReader::getnrfilenames() uint16_t CardReader::getnrfilenames() {
{ curDir = &workDir;
curDir=&workDir; lsAction = LS_Count;
lsAction=LS_Count; nrFiles = 0;
nrFiles=0;
curDir->rewind(); curDir->rewind();
lsDive("",*curDir); lsDive("", *curDir);
//SERIAL_ECHOLN(nrFiles); //SERIAL_ECHOLN(nrFiles);
return nrFiles; return nrFiles;
} }
void CardReader::chdir(const char * relpath) void CardReader::chdir(const char * relpath) {
{
SdFile newfile; SdFile newfile;
SdFile *parent=&root; SdFile *parent = &root;
if(workDir.isOpen()) if (workDir.isOpen()) parent = &workDir;
parent=&workDir;
if(!newfile.open(*parent,relpath, O_READ)) if (!newfile.open(*parent, relpath, O_READ)) {
{
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_SD_CANT_ENTER_SUBDIR); SERIAL_ECHOPGM(MSG_SD_CANT_ENTER_SUBDIR);
SERIAL_ECHOLN(relpath); SERIAL_ECHOLN(relpath);
} }
else else {
{
if (workDirDepth < MAX_DIR_DEPTH) { if (workDirDepth < MAX_DIR_DEPTH) {
for (int d = ++workDirDepth; d--;) ++workDirDepth;
workDirParents[d+1] = workDirParents[d]; for (int d = workDirDepth; d--;) workDirParents[d + 1] = workDirParents[d];
workDirParents[0]=*parent; workDirParents[0] = *parent;
} }
workDir=newfile; workDir = newfile;
} }
} }
void CardReader::updir() void CardReader::updir() {
{ if (workDirDepth > 0) {
if(workDirDepth > 0)
{
--workDirDepth; --workDirDepth;
workDir = workDirParents[0]; workDir = workDirParents[0];
int d;
for (int d = 0; d < workDirDepth; d++) for (int d = 0; d < workDirDepth; d++)
workDirParents[d] = workDirParents[d+1]; workDirParents[d] = workDirParents[d+1];
} }
} }
void CardReader::printingHasFinished() {
void CardReader::printingHasFinished()
{
st_synchronize(); st_synchronize();
if(file_subcall_ctr>0) //heading up to a parent file that called current as a procedure. if (file_subcall_ctr > 0) { // Heading up to a parent file that called current as a procedure.
{
file.close(); file.close();
file_subcall_ctr--; file_subcall_ctr--;
openFile(filenames[file_subcall_ctr],true,true); openFile(filenames[file_subcall_ctr], true, true);
setIndex(filespos[file_subcall_ctr]); setIndex(filespos[file_subcall_ctr]);
startFileprint(); startFileprint();
} }
else else {
{
quickStop(); quickStop();
file.close(); file.close();
sdprinting = false; sdprinting = false;
if(SD_FINISHED_STEPPERRELEASE) if (SD_FINISHED_STEPPERRELEASE) {
{
//finishAndDisableSteppers(); //finishAndDisableSteppers();
enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); enquecommands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
} }
autotempShutdown(); autotempShutdown();
} }
} }
#endif //SDSUPPORT #endif //SDSUPPORT

@ -3,12 +3,12 @@
#ifdef SDSUPPORT #ifdef SDSUPPORT
#define MAX_DIR_DEPTH 10 #define MAX_DIR_DEPTH 10 // Maximum folder depth
#include "SdFile.h" #include "SdFile.h"
enum LsAction {LS_SerialPrint,LS_Count,LS_GetFilename}; enum LsAction { LS_SerialPrint, LS_Count, LS_GetFilename };
class CardReader
{ class CardReader {
public: public:
CardReader(); CardReader();
@ -33,7 +33,6 @@ public:
void getAbsFilename(char *t); void getAbsFilename(char *t);
void ls(); void ls();
void chdir(const char * relpath); void chdir(const char * relpath);
void updir(); void updir();
@ -41,56 +40,52 @@ public:
FORCE_INLINE bool isFileOpen() { return file.isOpen(); } FORCE_INLINE bool isFileOpen() { return file.isOpen(); }
FORCE_INLINE bool eof() { return sdpos>=filesize ;}; FORCE_INLINE bool eof() { return sdpos >= filesize; }
FORCE_INLINE int16_t get() { sdpos = file.curPosition();return (int16_t)file.read();}; FORCE_INLINE int16_t get() { sdpos = file.curPosition(); return (int16_t)file.read(); }
FORCE_INLINE void setIndex(long index) {sdpos = index;file.seekSet(index);}; FORCE_INLINE void setIndex(long index) { sdpos = index; file.seekSet(index); }
FORCE_INLINE uint8_t percentDone(){if(!isFileOpen()) return 0; if(filesize) return sdpos/((filesize+99)/100); else return 0;}; FORCE_INLINE uint8_t percentDone() { return (isFileOpen() && filesize) ? sdpos / ((filesize + 99) / 100) : 0; }
FORCE_INLINE char* getWorkDirName(){workDir.getFilename(filename);return filename;}; FORCE_INLINE char* getWorkDirName() { workDir.getFilename(filename); return filename; }
public: public:
bool saving; bool saving, logging, sdprinting, cardOK, filenameIsDir;
bool logging; char filename[FILENAME_LENGTH], longFilename[LONG_FILENAME_LENGTH];
bool sdprinting;
bool cardOK;
char filename[FILENAME_LENGTH];
char longFilename[LONG_FILENAME_LENGTH];
bool filenameIsDir;
int autostart_index; int autostart_index;
private: private:
SdFile root,*curDir,workDir,workDirParents[MAX_DIR_DEPTH]; SdFile root, *curDir, workDir, workDirParents[MAX_DIR_DEPTH];
uint16_t workDirDepth; uint16_t workDirDepth;
Sd2Card card; Sd2Card card;
SdVolume volume; SdVolume volume;
SdFile file; SdFile file;
#define SD_PROCEDURE_DEPTH 1 #define SD_PROCEDURE_DEPTH 1
#define MAXPATHNAMELENGTH (FILENAME_LENGTH*MAX_DIR_DEPTH+MAX_DIR_DEPTH+1) #define MAXPATHNAMELENGTH (FILENAME_LENGTH*MAX_DIR_DEPTH + MAX_DIR_DEPTH + 1)
uint8_t file_subcall_ctr; uint8_t file_subcall_ctr;
uint32_t filespos[SD_PROCEDURE_DEPTH]; uint32_t filespos[SD_PROCEDURE_DEPTH];
char filenames[SD_PROCEDURE_DEPTH][MAXPATHNAMELENGTH]; char filenames[SD_PROCEDURE_DEPTH][MAXPATHNAMELENGTH];
uint32_t filesize; uint32_t filesize;
//int16_t n;
unsigned long autostart_atmillis; unsigned long autostart_atmillis;
uint32_t sdpos ; uint32_t sdpos;
bool autostart_stilltocheck; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware. bool autostart_stilltocheck; //the sd start is delayed, because otherwise the serial cannot answer fast enought to make contact with the hostsoftware.
LsAction lsAction; //stored for recursion. LsAction lsAction; //stored for recursion.
int16_t nrFiles; //counter for the files in the current directory and recycled as position counter for getting the nrFiles'th name in the directory. uint16_t nrFiles; //counter for the files in the current directory and recycled as position counter for getting the nrFiles'th name in the directory.
char* diveDirName; char* diveDirName;
void lsDive(const char *prepend, SdFile parent, const char * const match=NULL); void lsDive(const char *prepend, SdFile parent, const char * const match=NULL);
}; };
extern CardReader card; extern CardReader card;
#define IS_SD_PRINTING (card.sdprinting) #define IS_SD_PRINTING (card.sdprinting)
#if (SDCARDDETECT > -1) #if (SDCARDDETECT > -1)
# ifdef SDCARDDETECTINVERTED #ifdef SDCARDDETECTINVERTED
# define IS_SD_INSERTED (READ(SDCARDDETECT)!=0) #define IS_SD_INSERTED (READ(SDCARDDETECT) != 0)
# else #else
# define IS_SD_INSERTED (READ(SDCARDDETECT)==0) #define IS_SD_INSERTED (READ(SDCARDDETECT) == 0)
# endif //SDCARDTETECTINVERTED #endif
#else #else
//If we don't have a card detect line, aways asume the card is inserted //No card detect line? Assume the card is inserted.
# define IS_SD_INSERTED true #define IS_SD_INSERTED true
#endif #endif
#else #else
@ -98,4 +93,5 @@ extern CardReader card;
#define IS_SD_PRINTING (false) #define IS_SD_PRINTING (false)
#endif //SDSUPPORT #endif //SDSUPPORT
#endif
#endif //__CARDREADER_H

@ -1,25 +1,25 @@
#include "Configuration.h" #include "Configuration.h"
#ifdef DIGIPOT_I2C #ifdef DIGIPOT_I2C
#include "Stream.h" #include "Stream.h"
#include "utility/twi.h" #include "utility/twi.h"
#include "Wire.h" #include "Wire.h"
// Settings for the I2C based DIGIPOT (MCP4451) on Azteeg X3 Pro // Settings for the I2C based DIGIPOT (MCP4451) on Azteeg X3 Pro
#if MB(5DPRINT) #if MB(5DPRINT)
#define DIGIPOT_I2C_FACTOR 117.96 #define DIGIPOT_I2C_FACTOR 117.96
#define DIGIPOT_I2C_MAX_CURRENT 1.736 #define DIGIPOT_I2C_MAX_CURRENT 1.736
#else #else
#define DIGIPOT_I2C_FACTOR 106.7 #define DIGIPOT_I2C_FACTOR 106.7
#define DIGIPOT_I2C_MAX_CURRENT 2.5 #define DIGIPOT_I2C_MAX_CURRENT 2.5
#endif #endif
static byte current_to_wiper( float current ){ static byte current_to_wiper(float current) {
return byte(ceil(float((DIGIPOT_I2C_FACTOR*current)))); return byte(ceil(float((DIGIPOT_I2C_FACTOR*current))));
} }
static void i2c_send(byte addr, byte a, byte b) static void i2c_send(byte addr, byte a, byte b) {
{
Wire.beginTransmission(addr); Wire.beginTransmission(addr);
Wire.write(a); Wire.write(a);
Wire.write(b); Wire.write(b);
@ -27,33 +27,32 @@ static void i2c_send(byte addr, byte a, byte b)
} }
// This is for the MCP4451 I2C based digipot // This is for the MCP4451 I2C based digipot
void digipot_i2c_set_current( int channel, float current ) void digipot_i2c_set_current(int channel, float current) {
{
current = min( (float) max( current, 0.0f ), DIGIPOT_I2C_MAX_CURRENT); current = min( (float) max( current, 0.0f ), DIGIPOT_I2C_MAX_CURRENT);
// these addresses are specific to Azteeg X3 Pro, can be set to others, // these addresses are specific to Azteeg X3 Pro, can be set to others,
// In this case first digipot is at address A0=0, A1= 0, second one is at A0=0, A1= 1 // In this case first digipot is at address A0=0, A1= 0, second one is at A0=0, A1= 1
byte addr= 0x2C; // channel 0-3 byte addr = 0x2C; // channel 0-3
if(channel >= 4) { if (channel >= 4) {
addr= 0x2E; // channel 4-7 addr = 0x2E; // channel 4-7
channel-= 4; channel -= 4;
} }
// Initial setup // Initial setup
i2c_send( addr, 0x40, 0xff ); i2c_send(addr, 0x40, 0xff);
i2c_send( addr, 0xA0, 0xff ); i2c_send(addr, 0xA0, 0xff);
// Set actual wiper value // Set actual wiper value
byte addresses[4] = { 0x00, 0x10, 0x60, 0x70 }; byte addresses[4] = { 0x00, 0x10, 0x60, 0x70 };
i2c_send( addr, addresses[channel], current_to_wiper(current) ); i2c_send(addr, addresses[channel], current_to_wiper(current));
} }
void digipot_i2c_init() void digipot_i2c_init() {
{
const float digipot_motor_current[] = DIGIPOT_I2C_MOTOR_CURRENTS; const float digipot_motor_current[] = DIGIPOT_I2C_MOTOR_CURRENTS;
Wire.begin(); Wire.begin();
// setup initial currents as defined in Configuration_adv.h // setup initial currents as defined in Configuration_adv.h
for(int i=0;i<=sizeof(digipot_motor_current)/sizeof(float);i++) { for(int i = 0; i <= sizeof(digipot_motor_current) / sizeof(float); i++) {
digipot_i2c_set_current(i, digipot_motor_current[i]); digipot_i2c_set_current(i, digipot_motor_current[i]);
} }
} }
#endif
#endif //DIGIPOT_I2C

@ -587,6 +587,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -645,6 +649,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

@ -597,6 +597,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -655,6 +659,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

@ -590,6 +590,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -648,6 +652,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

@ -591,6 +591,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -649,6 +653,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

@ -495,6 +495,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -560,6 +564,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

@ -565,6 +565,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -623,6 +627,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

@ -578,6 +578,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
//#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_HZ 1000 // this is the tone frequency the buzzer plays when on UI feedback. ie Screen Click
//#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click //#define LCD_FEEDBACK_FREQUENCY_DURATION_MS 100 // the duration the buzzer plays the UI feedback sound. ie Screen Click
// PanelOne from T3P3 (via RAMPS 1.4 AUX2/AUX3)
// http://reprap.org/wiki/PanelOne
//#define PANEL_ONE
// The MaKr3d Makr-Panel with graphic controller and SD support // The MaKr3d Makr-Panel with graphic controller and SD support
// http://reprap.org/wiki/MaKr3d_MaKrPanel // http://reprap.org/wiki/MaKr3d_MaKrPanel
//#define MAKRPANEL //#define MAKRPANEL
@ -636,6 +640,10 @@ const bool Z_MAX_ENDSTOP_INVERTING = true; // set to true to invert the logic of
#define ENCODER_STEPS_PER_MENU_ITEM 1 #define ENCODER_STEPS_PER_MENU_ITEM 1
#endif #endif
#if defined (PANEL_ONE)
#define SDSUPPORT
#define ULTIMAKERCONTROLLER
#endif
#if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER) #if defined (REPRAP_DISCOUNT_FULL_GRAPHIC_SMART_CONTROLLER)
#define DOGLCD #define DOGLCD

@ -159,6 +159,43 @@
#define MSG_ERR_EEPROM_WRITE "Error writing to EEPROM!" #define MSG_ERR_EEPROM_WRITE "Error writing to EEPROM!"
// temperature.cpp strings
#define MSG_PID_AUTOTUNE "PID Autotune"
#define MSG_PID_AUTOTUNE_START MSG_PID_AUTOTUNE " start"
#define MSG_PID_AUTOTUNE_FAILED MSG_PID_AUTOTUNE " failed!"
#define MSG_PID_BAD_EXTRUDER_NUM MSG_PID_AUTOTUNE_FAILED " Bad extruder number"
#define MSG_PID_TEMP_TOO_HIGH MSG_PID_AUTOTUNE_FAILED " Temperature too high"
#define MSG_PID_TIMEOUT MSG_PID_AUTOTUNE_FAILED " timeout"
#define MSG_BIAS " bias: "
#define MSG_D " d: "
#define MSG_MIN " min: "
#define MSG_MAX " max: "
#define MSG_KU " Ku: "
#define MSG_TU " Tu: "
#define MSG_CLASSIC_PID " Classic PID "
#define MSG_KP " Kp: "
#define MSG_KI " Ki: "
#define MSG_KD " Kd: "
#define MSG_OK_B "ok B:"
#define MSG_OK_T "ok T:"
#define MSG_AT " @:"
#define MSG_PID_AUTOTUNE_FINISHED MSG_PID_AUTOTUNE " finished! Put the last Kp, Ki and Kd constants from above into Configuration.h"
#define MSG_PID_DEBUG " PID_DEBUG "
#define MSG_PID_DEBUG_INPUT ": Input "
#define MSG_PID_DEBUG_OUTPUT " Output "
#define MSG_PID_DEBUG_PTERM " pTerm "
#define MSG_PID_DEBUG_ITERM " iTerm "
#define MSG_PID_DEBUG_DTERM " dTerm "
#define MSG_HEATING_FAILED "Heating failed"
#define MSG_EXTRUDER_SWITCHED_OFF "Extruder switched off. Temperature difference between temp sensors is too high !"
#define MSG_INVALID_EXTRUDER_NUM " - Invalid extruder number !"
#define MSG_THERMAL_RUNAWAY_STOP "Thermal Runaway, system stopped! Heater_ID: "
#define MSG_SWITCHED_OFF_MAX " switched off. MAXTEMP triggered !!"
#define MSG_MINTEMP_EXTRUDER_OFF ": Extruder switched off. MINTEMP triggered !"
#define MSG_MAXTEMP_EXTRUDER_OFF ": Extruder" MSG_SWITCHED_OFF_MAX
#define MSG_MAXTEMP_BED_OFF "Heated bed" MSG_SWITCHED_OFF_MAX
// LCD Menu Messages // LCD Menu Messages
// Add your own character. Reference: https://github.com/MarlinFirmware/Marlin/pull/1434 photos // Add your own character. Reference: https://github.com/MarlinFirmware/Marlin/pull/1434 photos

@ -65,6 +65,18 @@
#ifndef MSG_PREHEAT_ABS_SETTINGS #ifndef MSG_PREHEAT_ABS_SETTINGS
#define MSG_PREHEAT_ABS_SETTINGS MSG_PREHEAT_ABS " conf" #define MSG_PREHEAT_ABS_SETTINGS MSG_PREHEAT_ABS " conf"
#endif #endif
#ifndef MSG_H1
#define MSG_H1 "1"
#endif
#ifndef MSG_H2
#define MSG_H2 "2"
#endif
#ifndef MSG_H3
#define MSG_H3 "3"
#endif
#ifndef MSG_H4
#define MSG_H4 "4"
#endif
#ifndef MSG_COOLDOWN #ifndef MSG_COOLDOWN
#define MSG_COOLDOWN "Cooldown" #define MSG_COOLDOWN "Cooldown"
#endif #endif
@ -110,6 +122,15 @@
#ifndef MSG_NOZZLE #ifndef MSG_NOZZLE
#define MSG_NOZZLE "Nozzle" #define MSG_NOZZLE "Nozzle"
#endif #endif
#ifndef MSG_N2
#define MSG_N2 " 2"
#endif
#ifndef MSG_N3
#define MSG_N3 " 3"
#endif
#ifndef MSG_N4
#define MSG_N4 " 4"
#endif
#ifndef MSG_BED #ifndef MSG_BED
#define MSG_BED "Bed" #define MSG_BED "Bed"
#endif #endif
@ -119,6 +140,18 @@
#ifndef MSG_FLOW #ifndef MSG_FLOW
#define MSG_FLOW "Flow" #define MSG_FLOW "Flow"
#endif #endif
#ifndef MSG_F0
#define MSG_F0 " 0"
#endif
#ifndef MSG_F1
#define MSG_F1 " 1"
#endif
#ifndef MSG_F2
#define MSG_F2 " 2"
#endif
#ifndef MSG_F3
#define MSG_F3 " 3"
#endif
#ifndef MSG_CONTROL #ifndef MSG_CONTROL
#define MSG_CONTROL "Control" #define MSG_CONTROL "Control"
#endif #endif
@ -152,6 +185,15 @@
#ifndef MSG_PID_C #ifndef MSG_PID_C
#define MSG_PID_C "PID-C" #define MSG_PID_C "PID-C"
#endif #endif
#ifndef MSG_E2
#define MSG_E2 " E2"
#endif
#ifndef MSG_E3
#define MSG_E3 " E3"
#endif
#ifndef MSG_E4
#define MSG_E4 " E4"
#endif
#ifndef MSG_ACC #ifndef MSG_ACC
#define MSG_ACC "Accel" #define MSG_ACC "Accel"
#endif #endif
@ -341,6 +383,24 @@
#ifndef MSG_ENDSTOP_ABORT #ifndef MSG_ENDSTOP_ABORT
#define MSG_ENDSTOP_ABORT "Endstop abort" #define MSG_ENDSTOP_ABORT "Endstop abort"
#endif #endif
#ifndef MSG_HEATING_FAILED_LCD
#define MSG_HEATING_FAILED_LCD "Heating failed"
#endif
#ifndef MSG_ERR_REDUNDANT_TEMP
#define MSG_ERR_REDUNDANT_TEMP "Err: REDUNDANT TEMP ERROR"
#endif
#ifndef MSG_THERMAL_RUNAWAY
#define MSG_THERMAL_RUNAWAY "THERMAL RUNAWAY"
#endif
#ifndef MSG_ERR_MAXTEMP
#define MSG_ERR_MAXTEMP "Err: MAXTEMP"
#endif
#ifndef MSG_ERR_MINTEMP
#define MSG_ERR_MINTEMP "Err: MINTEMP"
#endif
#ifndef MSG_ERR_MAXTEMP_BED
#define MSG_ERR_MAXTEMP_BED "Err: MAXTEMP BED"
#endif
#ifdef DELTA_CALIBRATION_MENU #ifdef DELTA_CALIBRATION_MENU
#ifndef MSG_DELTA_CALIBRATE #ifndef MSG_DELTA_CALIBRATE

@ -122,12 +122,22 @@
#ifdef ULTRA_LCD #ifdef ULTRA_LCD
#ifdef NEWPANEL #ifdef NEWPANEL
#ifdef PANEL_ONE
#define LCD_PINS_RS 40
#define LCD_PINS_ENABLE 42
#define LCD_PINS_D4 65
#define LCD_PINS_D5 66
#define LCD_PINS_D6 44
#define LCD_PINS_D7 64
#else
#define LCD_PINS_RS 16 #define LCD_PINS_RS 16
#define LCD_PINS_ENABLE 17 #define LCD_PINS_ENABLE 17
#define LCD_PINS_D4 23 #define LCD_PINS_D4 23
#define LCD_PINS_D5 25 #define LCD_PINS_D5 25
#define LCD_PINS_D6 27 #define LCD_PINS_D6 27
#define LCD_PINS_D7 29 #define LCD_PINS_D7 29
#endif
#ifdef REPRAP_DISCOUNT_SMART_CONTROLLER #ifdef REPRAP_DISCOUNT_SMART_CONTROLLER
#define BEEPER 37 #define BEEPER 37
@ -162,6 +172,10 @@
#define SHIFT_OUT 40 // shift register #define SHIFT_OUT 40 // shift register
#define SHIFT_CLK 44 // shift register #define SHIFT_CLK 44 // shift register
#define SHIFT_LD 42 // shift register #define SHIFT_LD 42 // shift register
#elif defined(PANEL_ONE)
#define BTN_EN1 59 // AUX2 PIN 3
#define BTN_EN2 63 // AUX2 PIN 4
#define BTN_ENC 49 // AUX3 PIN 7
#else #else
#define BTN_EN1 37 #define BTN_EN1 37
#define BTN_EN2 35 #define BTN_EN2 35

@ -6,6 +6,10 @@
#error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu. #error Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu.
#endif #endif
#if EXTRUDERS > 3
#error RUMBA supports up to 3 extruders. Comment this line to keep going.
#endif
#define X_STEP_PIN 17 #define X_STEP_PIN 17
#define X_DIR_PIN 16 #define X_DIR_PIN 16
#define X_ENABLE_PIN 48 #define X_ENABLE_PIN 48

@ -399,24 +399,24 @@ ISR(TIMER1_COMPA_vect)
count_direction[Y_AXIS]=1; count_direction[Y_AXIS]=1;
} }
// Set direction en check limit switches if(check_endstops) // check X and Y Endstops
{
#ifndef COREXY #ifndef COREXY
if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis if ((out_bits & (1<<X_AXIS)) != 0) // stepping along -X axis (regular cartesians bot)
#else #else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS != (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == -DeltaY, the movement is only in Y axis
if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots. if ((out_bits & (1<<X_HEAD)) != 0) //AlexBorro: Head direction in -X axis for CoreXY bots.
#endif #endif
{ { // -direction
CHECK_ENDSTOPS
{
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) if ((current_block->active_extruder == 0 && X_HOME_DIR == -1) || (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
|| (current_block->active_extruder != 0 && X2_HOME_DIR == -1))
#endif #endif
{ {
#if defined(X_MIN_PIN) && X_MIN_PIN > -1 #if defined(X_MIN_PIN) && X_MIN_PIN > -1
bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING); bool x_min_endstop=(READ(X_MIN_PIN) != X_MIN_ENDSTOP_INVERTING);
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) { if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0))
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true; endstop_x_hit=true;
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
@ -425,20 +425,17 @@ ISR(TIMER1_COMPA_vect)
#endif #endif
} }
} }
}
else else
{ // +direction { // +direction
CHECK_ENDSTOPS
{
#ifdef DUAL_X_CARRIAGE #ifdef DUAL_X_CARRIAGE
// with 2 x-carriages, endstops are only checked in the homing direction for the active extruder // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder
if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) if ((current_block->active_extruder == 0 && X_HOME_DIR == 1) || (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
|| (current_block->active_extruder != 0 && X2_HOME_DIR == 1))
#endif #endif
{ {
#if defined(X_MAX_PIN) && X_MAX_PIN > -1 #if defined(X_MAX_PIN) && X_MAX_PIN > -1
bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING); bool x_max_endstop=(READ(X_MAX_PIN) != X_MAX_ENDSTOP_INVERTING);
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){ if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0))
{
endstops_trigsteps[X_AXIS] = count_position[X_AXIS]; endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
endstop_x_hit=true; endstop_x_hit=true;
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
@ -447,19 +444,18 @@ ISR(TIMER1_COMPA_vect)
#endif #endif
} }
} }
}
#ifndef COREXY #ifndef COREXY
if ((out_bits & (1<<Y_AXIS)) != 0) // -direction if ((out_bits & (1<<Y_AXIS)) != 0) // -direction
#else #else
if (!((current_block->steps_x == current_block->steps_y) && ((out_bits & (1<<X_AXIS))>>X_AXIS == (out_bits & (1<<Y_AXIS))>>Y_AXIS))) // AlexBorro: If DeltaX == DeltaY, the movement is only in X axis
if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots. if ((out_bits & (1<<Y_HEAD)) != 0) //AlexBorro: Head direction in -Y axis for CoreXY bots.
#endif #endif
{ { // -direction
CHECK_ENDSTOPS
{
#if defined(Y_MIN_PIN) && Y_MIN_PIN > -1 #if defined(Y_MIN_PIN) && Y_MIN_PIN > -1
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING); bool y_min_endstop=(READ(Y_MIN_PIN) != Y_MIN_ENDSTOP_INVERTING);
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) { if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true; endstop_y_hit=true;
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
@ -467,20 +463,19 @@ ISR(TIMER1_COMPA_vect)
old_y_min_endstop = y_min_endstop; old_y_min_endstop = y_min_endstop;
#endif #endif
} }
}
else else
{ // +direction { // +direction
CHECK_ENDSTOPS
{
#if defined(Y_MAX_PIN) && Y_MAX_PIN > -1 #if defined(Y_MAX_PIN) && Y_MAX_PIN > -1
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING); bool y_max_endstop=(READ(Y_MAX_PIN) != Y_MAX_ENDSTOP_INVERTING);
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){ if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0))
{
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS]; endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
endstop_y_hit=true; endstop_y_hit=true;
step_events_completed = current_block->step_event_count; step_events_completed = current_block->step_event_count;
} }
old_y_max_endstop = y_max_endstop; old_y_max_endstop = y_max_endstop;
#endif #endif
} }
} }

File diff suppressed because it is too large Load Diff

@ -85,55 +85,25 @@ extern float current_temperature_bed;
//inline so that there is no performance decrease. //inline so that there is no performance decrease.
//deg=degreeCelsius //deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) { FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
return current_temperature[extruder]; FORCE_INLINE float degBed() { return current_temperature_bed; }
};
#ifdef SHOW_TEMP_ADC_VALUES #ifdef SHOW_TEMP_ADC_VALUES
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
return current_temperature_raw[extruder]; FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
};
FORCE_INLINE float rawBedTemp() {
return current_temperature_bed_raw;
};
#endif #endif
FORCE_INLINE float degBed() { FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
return current_temperature_bed; FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
};
FORCE_INLINE float degTargetHotend(uint8_t extruder) {
return target_temperature[extruder];
};
FORCE_INLINE float degTargetBed() {
return target_temperature_bed;
};
FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) {
target_temperature[extruder] = celsius;
};
FORCE_INLINE void setTargetBed(const float &celsius) {
target_temperature_bed = celsius;
};
FORCE_INLINE bool isHeatingHotend(uint8_t extruder){ FORCE_INLINE void setTargetHotend(const float &celsius, uint8_t extruder) { target_temperature[extruder] = celsius; }
return target_temperature[extruder] > current_temperature[extruder]; FORCE_INLINE void setTargetBed(const float &celsius) { target_temperature_bed = celsius; }
};
FORCE_INLINE bool isHeatingBed() { FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
return target_temperature_bed > current_temperature_bed; FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
};
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
return target_temperature[extruder] < current_temperature[extruder]; FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
};
FORCE_INLINE bool isCoolingBed() {
return target_temperature_bed < current_temperature_bed;
};
#define degHotend0() degHotend(0) #define degHotend0() degHotend(0)
#define degTargetHotend0() degTargetHotend(0) #define degTargetHotend0() degTargetHotend(0)
@ -141,38 +111,36 @@ FORCE_INLINE bool isCoolingBed() {
#define isHeatingHotend0() isHeatingHotend(0) #define isHeatingHotend0() isHeatingHotend(0)
#define isCoolingHotend0() isCoolingHotend(0) #define isCoolingHotend0() isCoolingHotend(0)
#if EXTRUDERS > 1 #if EXTRUDERS > 1
#define degHotend1() degHotend(1) #define degHotend1() degHotend(1)
#define degTargetHotend1() degTargetHotend(1) #define degTargetHotend1() degTargetHotend(1)
#define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1) #define setTargetHotend1(_celsius) setTargetHotend((_celsius), 1)
#define isHeatingHotend1() isHeatingHotend(1) #define isHeatingHotend1() isHeatingHotend(1)
#define isCoolingHotend1() isCoolingHotend(1) #define isCoolingHotend1() isCoolingHotend(1)
#else #else
#define setTargetHotend1(_celsius) do{}while(0) #define setTargetHotend1(_celsius) do{}while(0)
#endif #endif
#if EXTRUDERS > 2 #if EXTRUDERS > 2
#define degHotend2() degHotend(2) #define degHotend2() degHotend(2)
#define degTargetHotend2() degTargetHotend(2) #define degTargetHotend2() degTargetHotend(2)
#define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2) #define setTargetHotend2(_celsius) setTargetHotend((_celsius), 2)
#define isHeatingHotend2() isHeatingHotend(2) #define isHeatingHotend2() isHeatingHotend(2)
#define isCoolingHotend2() isCoolingHotend(2) #define isCoolingHotend2() isCoolingHotend(2)
#else #else
#define setTargetHotend2(_celsius) do{}while(0) #define setTargetHotend2(_celsius) do{}while(0)
#endif #endif
#if EXTRUDERS > 3 #if EXTRUDERS > 3
#define degHotend3() degHotend(3) #define degHotend3() degHotend(3)
#define degTargetHotend3() degTargetHotend(3) #define degTargetHotend3() degTargetHotend(3)
#define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3) #define setTargetHotend3(_celsius) setTargetHotend((_celsius), 3)
#define isHeatingHotend3() isHeatingHotend(3) #define isHeatingHotend3() isHeatingHotend(3)
#define isCoolingHotend3() isCoolingHotend(3) #define isCoolingHotend3() isCoolingHotend(3)
#else #else
#define setTargetHotend3(_celsius) do{}while(0) #define setTargetHotend3(_celsius) do{}while(0)
#endif #endif
#if EXTRUDERS > 4 #if EXTRUDERS > 4
#error Invalid number of extruders #error Invalid number of extruders
#endif #endif
int getHeaterPower(int heater); int getHeaterPower(int heater);
void disable_heater(); void disable_heater();
void setWatch(); void setWatch();
@ -189,15 +157,14 @@ static bool thermal_runaway = false;
#endif #endif
#endif #endif
FORCE_INLINE void autotempShutdown(){ FORCE_INLINE void autotempShutdown() {
#ifdef AUTOTEMP #ifdef AUTOTEMP
if(autotemp_enabled) if (autotemp_enabled) {
{ autotemp_enabled = false;
autotemp_enabled=false; if (degTargetHotend(active_extruder) > autotemp_min)
if(degTargetHotend(active_extruder)>autotemp_min) setTargetHotend(0, active_extruder);
setTargetHotend(0,active_extruder);
} }
#endif #endif
} }
void PID_autotune(float temp, int extruder, int ncycles); void PID_autotune(float temp, int extruder, int ncycles);

@ -1096,13 +1096,26 @@ const short temptable_1047[][2] PROGMEM = {
#endif #endif
#if (THERMISTORHEATER_0 == 999) || (THERMISTORHEATER_1 == 999) || (THERMISTORHEATER_2 == 999) || (THERMISTORHEATER_3 == 999) || (THERMISTORBED == 999) //User defined table #if (THERMISTORHEATER_0 == 999) || (THERMISTORHEATER_1 == 999) || (THERMISTORHEATER_2 == 999) || (THERMISTORHEATER_3 == 999) || (THERMISTORBED == 999) //User defined table
// Dummy Thermistor table.. It will ALWAYS read 25C. // Dummy Thermistor table.. It will ALWAYS read a fixed value.
const short temptable_999[][2] PROGMEM = { #ifndef DUMMY_THERMISTOR_999_VALUE
{1*OVERSAMPLENR, 25}, #define DUMMY_THERMISTOR_999_VALUE 25
{1023*OVERSAMPLENR, 25} #endif
const short temptable_999[][2] PROGMEM = {
{1*OVERSAMPLENR, DUMMY_THERMISTOR_999_VALUE},
{1023*OVERSAMPLENR, DUMMY_THERMISTOR_999_VALUE}
}; };
#endif #endif
#if (THERMISTORHEATER_0 == 998) || (THERMISTORHEATER_1 == 998) || (THERMISTORHEATER_2 == 998) || (THERMISTORHEATER_3 == 998) || (THERMISTORBED == 998) //User defined table
// Dummy Thermistor table.. It will ALWAYS read a fixed value.
#ifndef DUMMY_THERMISTOR_998_VALUE
#define DUMMY_THERMISTOR_998_VALUE 25
#endif
const short temptable_998[][2] PROGMEM = {
{1*OVERSAMPLENR, DUMMY_THERMISTOR_998_VALUE},
{1023*OVERSAMPLENR, DUMMY_THERMISTOR_998_VALUE}
};
#endif
#define _TT_NAME(_N) temptable_ ## _N #define _TT_NAME(_N) temptable_ ## _N

File diff suppressed because it is too large Load Diff
Loading…
Cancel
Save