General fixes for LPC1768 (#7834)

* fixed some include paths

* LPC1768: Fix Serial API

Add missing serial methods used if TX_BUFFER_SIZE is set
Change return value of HalSerial:read to match Arduino API

* LPC1768: add filters to ADC

This is to try and compensate for hardware issue and oversensitivity to noise

* LPC1768: remove the polling section of delayMicroseconds

* LPC1768: lock usb mass storage device while device accesses it.

Currently only applicable to persistent store,
The device always has priority and will unmount the sd card from the host, Windows then tries to automount again so it can look like the explorer window freezes. Linux Mint, by default, just closes the Nemo window.

* Add timeout to make sure if Serial never connects that Marlin still boots

* Remove unneeded ifdef CPU_32_BIT

In general the need for ifdef CPU_32_BIT blocks means that something is missing from the HAL API or a Platform, in this case HAL_TICKS_PER_US was missing from the AVR Platform

* LPC1768: relocate RE-ARM debug_extra_script.py
2.0.x
Chris Pepper 7 years ago committed by Scott Lahteine
parent 7258218f89
commit 46b2773e13

@ -29,7 +29,7 @@
#ifndef _HAL_H #ifndef _HAL_H
#define _HAL_H #define _HAL_H
#include "src/inc/SPI.h" #include "../inc/SPI.h"
#ifdef __AVR__ #ifdef __AVR__
#include "HAL_AVR/HAL_AVR.h" #include "HAL_AVR/HAL_AVR.h"

@ -105,6 +105,7 @@ extern "C" {
#define HAL_TIMER_RATE ((F_CPU) / 8.0) #define HAL_TIMER_RATE ((F_CPU) / 8.0)
#define HAL_STEPPER_TIMER_RATE HAL_TIMER_RATE #define HAL_STEPPER_TIMER_RATE HAL_TIMER_RATE
#define STEPPER_TIMER_PRESCALE INT0_PRESCALER #define STEPPER_TIMER_PRESCALE INT0_PRESCALER
#define HAL_TICKS_PER_US (((F_CPU) / 8) / 1000000) // Can not be of type double
#define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A) #define ENABLE_STEPPER_DRIVER_INTERRUPT() SBI(TIMSK1, OCIE1A)
#define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A) #define DISABLE_STEPPER_DRIVER_INTERRUPT() CBI(TIMSK1, OCIE1A)

@ -113,6 +113,7 @@ void HAL_adc_enable_channel(int pin) {
}; };
} }
uint8_t active_adc = 0;
void HAL_adc_start_conversion(const uint8_t adc_pin) { void HAL_adc_start_conversion(const uint8_t adc_pin) {
if (adc_pin >= (NUM_ANALOG_INPUTS) || adc_pin_map[adc_pin].port == 0xFF) { if (adc_pin >= (NUM_ANALOG_INPUTS) || adc_pin_map[adc_pin].port == 0xFF) {
usb_serial.printf("HAL: HAL_adc_start_conversion: no pinmap for %d\n", adc_pin); usb_serial.printf("HAL: HAL_adc_start_conversion: no pinmap for %d\n", adc_pin);
@ -121,14 +122,52 @@ void HAL_adc_start_conversion(const uint8_t adc_pin) {
LPC_ADC->ADCR &= ~0xFF; // Reset LPC_ADC->ADCR &= ~0xFF; // Reset
SBI(LPC_ADC->ADCR, adc_pin_map[adc_pin].adc); // Select Channel SBI(LPC_ADC->ADCR, adc_pin_map[adc_pin].adc); // Select Channel
SBI(LPC_ADC->ADCR, 24); // Start conversion SBI(LPC_ADC->ADCR, 24); // Start conversion
active_adc = adc_pin;
} }
bool HAL_adc_finished(void) { return LPC_ADC->ADGDR & ADC_DONE; } bool HAL_adc_finished(void) {
return LPC_ADC->ADGDR & ADC_DONE;
}
// possible config options if something similar is extended to more platforms.
#define ADC_USE_MEDIAN_FILTER // filter out erroneous readings
#define ADC_USE_LOWPASS_FILTER // filter out high frequency noise
#define ADC_LOWPASS_K_VALUE 4 // how much to smooth out noise (1:8)
struct MedianFilter {
uint16_t values[3];
uint8_t next_val;
MedianFilter() {
next_val = 0;
values[0] = values[1] = values[2] = 0;
}
uint16_t update(uint16_t value) {
values[next_val++] = value;
next_val = next_val % 3;
return max(min(values[0], values[1]), min(max(values[0], values[1]), values[2])); //median
}
};
uint16_t lowpass_filter(uint16_t value) {
const uint8_t k_data_shift = ADC_LOWPASS_K_VALUE;
static uint32_t data_delay[NUM_ANALOG_INPUTS] = { 0 };
uint32_t &active_filter = data_delay[active_adc];
active_filter = active_filter - (active_filter >> k_data_shift) + value;
return (uint16_t)(active_filter >> k_data_shift);
}
uint16_t HAL_adc_get_result(void) { uint16_t HAL_adc_get_result(void) {
uint32_t data = LPC_ADC->ADGDR; uint32_t data = LPC_ADC->ADGDR;
CBI(LPC_ADC->ADCR, 24); // Stop conversion CBI(LPC_ADC->ADCR, 24); // Stop conversion
return (data & ADC_OVERRUN) ? 0 : (data >> 6) & 0x3FF; // 10bit if (data & ADC_OVERRUN) return 0;
#ifdef ADC_USE_MEDIAN_FILTER
static MedianFilter median_filter[NUM_ANALOG_INPUTS];
data = median_filter[active_adc].update((uint16_t)data);
#endif
#ifdef ADC_USE_LOWPASS_FILTER
data = lowpass_filter((uint16_t)data);
#endif
return ((data >> 6) & 0x3ff); // 10bit
} }
#define SBIT_CNTEN 0 #define SBIT_CNTEN 0

@ -57,21 +57,10 @@ void delayMicroseconds(uint32_t us) {
us = us % 1000; us = us % 1000;
} }
if (us < 5) { // burn cycles, time in interrupts will not be taken into account // burn cycles, time in interrupts will not be taken into account
loops = us * nop_factor; loops = us * nop_factor;
while (loops > 0) --loops; while (loops > 0) --loops;
} }
else { // poll systick, more accurate through interrupts
uint32_t start = SysTick->VAL;
uint32_t load = SysTick->LOAD;
uint32_t end = start - (load / 1000) * us;
if (end >> 31)
while (!(SysTick->VAL > start && SysTick->VAL < (load + end))) __NOP();
else
while (SysTick->VAL > end) __NOP();
}
}
extern "C" void delay(const int msec) { extern "C" void delay(const int msec) {
volatile millis_t end = _millis + msec; volatile millis_t end = _millis + msec;

@ -9,6 +9,9 @@
#include "chanfs/diskio.h" #include "chanfs/diskio.h"
#include "chanfs/ff.h" #include "chanfs/ff.h"
extern uint32_t MSC_Aquire_Lock();
extern uint32_t MSC_Release_Lock();
namespace HAL { namespace HAL {
namespace PersistentStore { namespace PersistentStore {
@ -16,14 +19,20 @@ FATFS fat_fs;
FIL eeprom_file; FIL eeprom_file;
bool access_start() { bool access_start() {
f_mount(&fat_fs, "", 1); MSC_Aquire_Lock();
if(f_mount(&fat_fs, "", 1)){
MSC_Release_Lock();
return false;
}
FRESULT res = f_open(&eeprom_file, "eeprom.dat", FA_OPEN_ALWAYS | FA_WRITE | FA_READ); FRESULT res = f_open(&eeprom_file, "eeprom.dat", FA_OPEN_ALWAYS | FA_WRITE | FA_READ);
if(res) MSC_Release_Lock();
return (res == FR_OK); return (res == FR_OK);
} }
bool access_finish() { bool access_finish() {
f_close(&eeprom_file); f_close(&eeprom_file);
f_unmount(""); f_unmount("");
MSC_Release_Lock();
return true; return true;
} }

@ -100,6 +100,7 @@ public:
} }
char read() { char read() {
if(receive_buffer.empty()) return -1;
return (char)receive_buffer.read(); return (char)receive_buffer.read();
} }
@ -117,6 +118,17 @@ public:
} }
void flush() { void flush() {
receive_buffer.clear();
}
uint8_t availableForWrite(void){
return transmit_buffer.free() > 255 ? 255 : (uint8_t)transmit_buffer.free();
}
void flushTX(void){
if(host_connected) {
while(transmit_buffer.available());
}
} }
void printf(const char *format, ...) { void printf(const char *format, ...) {

@ -681,7 +681,8 @@ void setup() {
#endif #endif
MYSERIAL.begin(BAUDRATE); MYSERIAL.begin(BAUDRATE);
while(!MYSERIAL); uint32_t serial_connect_timeout = millis() + 1000;
while(!MYSERIAL && PENDING(millis(), serial_connect_timeout));
SERIAL_PROTOCOLLNPGM("start"); SERIAL_PROTOCOLLNPGM("start");
SERIAL_ECHO_START(); SERIAL_ECHO_START();

@ -23,7 +23,7 @@
#ifndef ULCDST7920_H #ifndef ULCDST7920_H
#define ULCDST7920_H #define ULCDST7920_H
#include <src/Marlin.h> #include "../../Marlin.h"
#if ENABLED(U8GLIB_ST7920) #if ENABLED(U8GLIB_ST7920)

@ -323,13 +323,8 @@ void Stepper::isr() {
HAL_TIMER_TYPE ocr_val; HAL_TIMER_TYPE ocr_val;
#ifdef CPU_32_BIT
#define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch #define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
#define OCR_VAL_TOLERANCE 500 * HAL_TICKS_PER_US // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms #define OCR_VAL_TOLERANCE 500 * HAL_TICKS_PER_US // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
#else
#define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
#define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
#endif
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
// Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars) // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)

@ -3,7 +3,7 @@
#include <stdio.h> #include <stdio.h>
#include <string.h> #include <string.h>
#include <inttypes.h> #include <inttypes.h>
#include "arduino.h" #include <arduino.h>
// When the display powers up, it is configured as follows: // When the display powers up, it is configured as follows:
// //

@ -26,6 +26,7 @@ extern "C" {
#include "usbhw.h" #include "usbhw.h"
#include "usbcore.h" #include "usbcore.h"
#include "mscuser.h" #include "mscuser.h"
#include "lpc17xx_wdt.h"
#include "../chanfs/diskio.h" #include "../chanfs/diskio.h"
#include <debug_frmwrk.h> #include <debug_frmwrk.h>
@ -44,13 +45,71 @@ uint8_t BulkStage; /* Bulk Stage */
uint8_t BulkBuf[MSC_MAX_PACKET]; /* Bulk In/Out Buffer */ uint8_t BulkBuf[MSC_MAX_PACKET]; /* Bulk In/Out Buffer */
uint8_t block_cache[MSC_BLOCK_SIZE]; uint8_t block_cache[MSC_BLOCK_SIZE];
uint8_t BulkLen; /* Bulk In/Out Length */ uint8_t BulkLen; /* Bulk In/Out Length */
Sense sense_data;
MSC_CBW CBW; /* Command Block Wrapper */ MSC_CBW CBW; /* Command Block Wrapper */
MSC_CSW CSW; /* Command Status Wrapper */ MSC_CSW CSW; /* Command Status Wrapper */
uint8_t media_lock = 0; volatile uint8_t media_lock = 0;
volatile bool device_wants_lock = false;
#define NO_LOCK 0
#define HOST_LOCK 1
#define DEVICE_LOCK 2
extern uint32_t millis();
extern void _delay_ms(int delay);
uint32_t MSC_Aquire_Lock() {
NVIC_DisableIRQ(USB_IRQn);
device_wants_lock = true;
uint32_t end_millis = millis() + 1000;
if(media_lock == HOST_LOCK) {
NVIC_EnableIRQ(USB_IRQn);
while(media_lock == HOST_LOCK) {
if(((long)(end_millis - (millis())) < 0)) {
_DBG("No signal from Host, Assume success\n");
break;
}
WDT_Feed();
}
}
NVIC_DisableIRQ(USB_IRQn);
media_lock = DEVICE_LOCK;
NVIC_EnableIRQ(USB_IRQn);
_DBG("Device MSC Lock\n");
device_wants_lock = false;
return 0;
}
uint32_t MSC_Release_Lock() {
if(media_lock != DEVICE_LOCK) {
return 0; // Didn't have lock
}
media_lock = NO_LOCK;
if(disk_status(0) != STA_NOINIT) disk_ioctl(0, GET_SECTOR_COUNT, (void *)(&MSC_BlockCount));
_DBG("Device MSC Unlock\n");
NVIC_DisableIRQ(USB_IRQn);
sense_data.set(Sense_KEY::UNIT_ATTENTION, Sense_ASC::MEDIA_CHANGED);
NVIC_EnableIRQ(USB_IRQn);
return 0; // Released
}
uint32_t MSC_SD_Lock() { uint32_t MSC_SD_Lock() {
media_lock = CBW.CB[4]; //0x1 - lock, 0x0 - unlock if(media_lock == DEVICE_LOCK || (device_wants_lock && CBW.CB[4])) {
CSW.bStatus = CSW_CMD_FAILED;
sense_data.set(Sense_KEY::NOT_READY, Sense_ASC::LOGICAL_UNIT_NOT_READY, Sense_ASCQ::DEVICE_IS_BUSY);
MSC_SetCSW();
_DBG("Device has Lock (or is waiting for lock) cannot Lock..\n");
return 1;
}
if(CBW.CB[4]) {
media_lock = HOST_LOCK;
_DBG("OS MSC Lock\n");
} else {
media_lock = NO_LOCK;
_DBG("OS MSC Unlock\n");
}
// logical_unit = CBW.CB[1] & 0xE0; // logical_unit = CBW.CB[1] & 0xE0;
CSW.bStatus = CSW_CMD_PASSED; CSW.bStatus = CSW_CMD_PASSED;
MSC_SetCSW(); MSC_SetCSW();
@ -78,20 +137,28 @@ void MSC_StartStopUnit() {
switch (CBW.CB[4] & 0x03) { switch (CBW.CB[4] & 0x03) {
case STARTSTOP_EJECT: case STARTSTOP_EJECT:
MSC_SD_Release(0); MSC_SD_Release(0);
media_lock = NO_LOCK;
_DBG("OS Media Ejected UNLOCK\n");
break; break;
case STARTSTOP_LOAD: case STARTSTOP_LOAD:
if(MSC_BlockCount == 0) { if(MSC_BlockCount == 0) {
if(MSC_SD_Init(0) != 0) { if(MSC_SD_Init(0) != 0) {
CSW.bStatus = CSW_CMD_FAILED; CSW.bStatus = CSW_CMD_FAILED;
sense_data.set(Sense_KEY::NOT_READY, Sense_ASC::MEDIUM_NOT_PRESENT, Sense_ASCQ::MANUAL_INTERVENTION_REQUIRED);
MSC_SetCSW(); MSC_SetCSW();
return; return;
} }
} }
media_lock = HOST_LOCK;
_DBG("OS Media Mount LOCKED\n");
break; break;
default: default:
_DBG("MSC_StartStopUnit unknown startstopunit sub command\n"); _DBG("MSC_StartStopUnit unknown startstopunit sub command: ");
_DBH(CBW.CB[4] & 0x03);
_DBG("\n");
} }
CSW.bStatus = CSW_CMD_PASSED; CSW.bStatus = CSW_CMD_PASSED;
sense_data.reset();
MSC_SetCSW(); MSC_SetCSW();
} }
@ -122,6 +189,18 @@ uint32_t MSC_GetMaxLUN (void) {
} }
bool host_get_lock(void) {
if(media_lock != DEVICE_LOCK && !device_wants_lock) {
media_lock = HOST_LOCK;
return true;
} else {
CSW.bStatus = CSW_CMD_FAILED;
sense_data.set(Sense_KEY::NOT_READY, Sense_ASC::LOGICAL_UNIT_NOT_READY, Sense_ASCQ::DEVICE_IS_BUSY);
MSC_SetCSW();
return false;
}
}
/* /*
* MSC Memory Read Callback * MSC Memory Read Callback
* Called automatically on Memory Read Event * Called automatically on Memory Read Event
@ -130,6 +209,12 @@ uint32_t MSC_GetMaxLUN (void) {
*/ */
void MSC_MemoryRead (void) { void MSC_MemoryRead (void) {
if(!host_get_lock()) {
_DBG("Auto Lock Fail Permission Denied Device has Lock\n");
return;
}
WDT_Feed();
uint32_t n = (length > MSC_MAX_PACKET) ? MSC_MAX_PACKET : length; uint32_t n = (length > MSC_MAX_PACKET) ? MSC_MAX_PACKET : length;
if (lba > MSC_BlockCount) { if (lba > MSC_BlockCount) {
@ -158,6 +243,7 @@ void MSC_MemoryRead (void) {
if (BulkStage != MSC_BS_DATA_IN) { if (BulkStage != MSC_BS_DATA_IN) {
CSW.bStatus = CSW_CMD_PASSED; CSW.bStatus = CSW_CMD_PASSED;
sense_data.reset();
} }
} }
@ -170,6 +256,11 @@ void MSC_MemoryRead (void) {
*/ */
void MSC_MemoryWrite (void) { void MSC_MemoryWrite (void) {
if(!host_get_lock()) {
_DBG("Auto Lock Fail Permission Denied Device has Lock\n");
return;
}
WDT_Feed();
for (uint32_t n = 0; n < BulkLen; n++) { for (uint32_t n = 0; n < BulkLen; n++) {
block_cache[block_offset + n] = BulkBuf[n]; block_cache[block_offset + n] = BulkBuf[n];
@ -192,6 +283,7 @@ void MSC_MemoryWrite (void) {
if ((length == 0) || (BulkStage == MSC_BS_CSW)) { if ((length == 0) || (BulkStage == MSC_BS_CSW)) {
CSW.bStatus = CSW_CMD_PASSED; CSW.bStatus = CSW_CMD_PASSED;
sense_data.reset();
MSC_SetCSW(); MSC_SetCSW();
} }
} }
@ -205,6 +297,11 @@ void MSC_MemoryWrite (void) {
*/ */
void MSC_MemoryVerify (void) { void MSC_MemoryVerify (void) {
if(!host_get_lock()) {
_DBG("Auto Lock Fail Permission Denied Device has Lock\n");
return;
}
WDT_Feed();
if(!block_offset) { if(!block_offset) {
disk_read(0, block_cache, lba, 1); disk_read(0, block_cache, lba, 1);
@ -222,7 +319,13 @@ void MSC_MemoryVerify (void) {
CSW.dDataResidue -= BulkLen; CSW.dDataResidue -= BulkLen;
if ((length == 0) || (BulkStage == MSC_BS_CSW)) { if ((length == 0) || (BulkStage == MSC_BS_CSW)) {
CSW.bStatus = (MemOK) ? CSW_CMD_PASSED : CSW_CMD_FAILED; if(MemOK) {
CSW.bStatus = CSW_CMD_PASSED;
sense_data.reset();
} else {
CSW.bStatus = CSW_CMD_FAILED;
sense_data.set(Sense_KEY::MEDIUM_ERROR);
}
MSC_SetCSW(); MSC_SetCSW();
} }
} }
@ -321,10 +424,15 @@ void MSC_TestUnitReady (void) {
} }
} }
if(MSC_BlockCount > 0) { if(device_wants_lock) {
sense_data.set(Sense_KEY::NOT_READY, Sense_ASC::MEDIUM_NOT_PRESENT, Sense_ASCQ::REASON_UNKNOWN);
CSW.bStatus = CSW_CMD_FAILED;
} else if(MSC_BlockCount > 0) {
sense_data.reset();
CSW.bStatus = CSW_CMD_PASSED; CSW.bStatus = CSW_CMD_PASSED;
} else { } else {
CSW.bStatus = CSW_CMD_FAILED; CSW.bStatus = CSW_CMD_FAILED;
sense_data.set(Sense_KEY::NOT_READY, Sense_ASC::MEDIUM_NOT_PRESENT, Sense_ASCQ::LOADABLE);
} }
MSC_SetCSW(); MSC_SetCSW();
@ -341,9 +449,13 @@ void MSC_RequestSense (void) {
if (!DataInFormat()) return; if (!DataInFormat()) return;
if(media_lock == DEVICE_LOCK || device_wants_lock) {
sense_data.set(Sense_KEY::NOT_READY, Sense_ASC::MEDIUM_NOT_PRESENT, Sense_ASCQ::REASON_UNKNOWN);
}
BulkBuf[ 0] = 0x70; /* Response Code */ BulkBuf[ 0] = 0x70; /* Response Code */
BulkBuf[ 1] = 0x00; BulkBuf[ 1] = 0x00;
BulkBuf[ 2] = static_cast<uint8_t>(Sense_KEY::ILLEGAL_REQUEST); BulkBuf[ 2] = static_cast<uint8_t>(sense_data.key);
BulkBuf[ 3] = 0x00; BulkBuf[ 3] = 0x00;
BulkBuf[ 4] = 0x00; BulkBuf[ 4] = 0x00;
BulkBuf[ 5] = 0x00; BulkBuf[ 5] = 0x00;
@ -354,17 +466,17 @@ void MSC_RequestSense (void) {
BulkBuf[ 9] = 0x00; BulkBuf[ 9] = 0x00;
BulkBuf[10] = 0x00; BulkBuf[10] = 0x00;
BulkBuf[11] = 0x00; BulkBuf[11] = 0x00;
BulkBuf[12] = static_cast<uint8_t>(Sense_ASC::CANNOT_READ_MEDIUM); BulkBuf[12] = static_cast<uint8_t>(sense_data.asc);
BulkBuf[13] = static_cast<uint8_t>(Sense_ASCQ::UNKNOWN_FORMAT); BulkBuf[13] = static_cast<uint8_t>(sense_data.ascq);
BulkBuf[14] = 0x00; BulkBuf[14] = 0x00;
BulkBuf[15] = 0x00; BulkBuf[15] = 0x00;
BulkBuf[16] = 0x00; BulkBuf[16] = 0x00;
BulkBuf[17] = 0x00; BulkBuf[17] = 0x00;
if (MSC_BlockCount == 0) { if(sense_data.has_sense()){
BulkBuf[ 2] = static_cast<uint8_t>(Sense_KEY::NOT_READY); _DBG("Sent Response to SenseRequest: ");
BulkBuf[12] = static_cast<uint8_t>(Sense_ASC::MEDIUM_NOT_PRESENT); _DBH(static_cast<uint8_t>(sense_data.key));
BulkBuf[13] = static_cast<uint8_t>(Sense_ASCQ::LOADABLE); _DBG("\n");
} }
BulkLen = 18; BulkLen = 18;
@ -423,10 +535,6 @@ void MSC_Inquiry (void) {
BulkBuf[34] = '0'; BulkBuf[34] = '0';
BulkBuf[35] = ' '; BulkBuf[35] = ' ';
if(MSC_BlockCount == 0) {
BulkBuf[0] = 0x20; // Direct Access Device usually available but not currently
}
BulkLen = 36; BulkLen = 36;
DataInTransfer(); DataInTransfer();
} }
@ -553,8 +661,9 @@ void MSC_GetCBW (void) {
CSW.dDataResidue = CBW.dDataLength; CSW.dDataResidue = CBW.dDataLength;
if ((CBW.bLUN != 0) || (CBW.bCBLength < 1) || CBW.bCBLength > 16) { if ((CBW.bLUN != 0) || (CBW.bCBLength < 1) || CBW.bCBLength > 16) {
fail: CSW.bStatus = CSW_CMD_FAILED; fail: CSW.bStatus = CSW_CMD_FAILED;
sense_data.set(Sense_KEY::ILLEGAL_REQUEST);
MSC_SetCSW(); MSC_SetCSW();
_DBG("Failed SCSI OP code "); _DBG("Unsupported SCSI OP code ");
_DBH(CBW.CB[0]); _DBH(CBW.CB[0]);
_DBG("\n"); _DBG("\n");
} else { } else {
@ -627,6 +736,20 @@ fail: CSW.bStatus = CSW_CMD_FAILED;
} }
} }
break; break;
case 0x35: // SCSI_SYNCHRONIZECACHE10
_DBG("SCSI_SYNCHRONIZECACHE10 Unsupported\n");
CSW.bStatus = CSW_CMD_FAILED;
sense_data.set(Sense_KEY::ILLEGAL_REQUEST);
MSC_SetCSW();
break;
case 0x9E: // SCSI_SERVICEACTIONIN16
_DBG("ServiceAction(16) Action: ");
_DBH(CBW.CB[1]);
_DBG(" Unsupported\n");
CSW.bStatus = CSW_CMD_FAILED;
sense_data.set(Sense_KEY::ILLEGAL_REQUEST);
MSC_SetCSW();
break;
default: default:
goto fail; goto fail;
} }
@ -647,7 +770,6 @@ fail: CSW.bStatus = CSW_CMD_FAILED;
*/ */
void MSC_SetCSW (void) { void MSC_SetCSW (void) {
CSW.dSignature = MSC_CSW_Signature; CSW.dSignature = MSC_CSW_Signature;
USB_WriteEP(MSC_EP_IN, (uint8_t *)&CSW, sizeof(CSW)); USB_WriteEP(MSC_EP_IN, (uint8_t *)&CSW, sizeof(CSW));
BulkStage = MSC_BS_CSW; BulkStage = MSC_BS_CSW;
@ -661,7 +783,6 @@ void MSC_SetCSW (void) {
*/ */
void MSC_BulkIn (void) { void MSC_BulkIn (void) {
switch (BulkStage) { switch (BulkStage) {
case MSC_BS_DATA_IN: case MSC_BS_DATA_IN:
switch (CBW.CB[0]) { switch (CBW.CB[0]) {
@ -691,7 +812,6 @@ void MSC_BulkIn (void) {
*/ */
void MSC_BulkOut (void) { void MSC_BulkOut (void) {
BulkLen = (uint8_t)USB_ReadEP(MSC_EP_OUT, BulkBuf); BulkLen = (uint8_t)USB_ReadEP(MSC_EP_OUT, BulkBuf);
switch (BulkStage) { switch (BulkStage) {
case MSC_BS_CBW: case MSC_BS_CBW:

@ -38,7 +38,7 @@ extern void MSC_SetCSW (void);
extern void MSC_BulkIn (void); extern void MSC_BulkIn (void);
extern void MSC_BulkOut(void); extern void MSC_BulkOut(void);
enum class Sense_KEY : uint8_t { enum struct Sense_KEY : uint8_t {
NO_SENSE, NO_SENSE,
RECOVERED_ERROR, RECOVERED_ERROR,
NOT_READY, NOT_READY,
@ -49,15 +49,25 @@ enum class Sense_KEY : uint8_t {
DATA_PROTECT DATA_PROTECT
}; };
enum class Sense_ASC : uint8_t { enum struct Sense_ASC : uint8_t {
NONE = 0x0,
LOGICAL_UNIT_NOT_READY = 0x04,
CANNOT_READ_MEDIUM = 0x30, CANNOT_READ_MEDIUM = 0x30,
MEDIUM_NOT_PRESENT = 0x3A MEDIUM_NOT_PRESENT = 0x3A,
MEDIA_CHANGED = 0x28
}; };
enum class Sense_ASCQ : uint8_t { enum struct Sense_ASCQ : uint8_t {
// CANNOT_READ_MEDIUM // ASC: LOGICAL_UNIT_NOT_READY
CAUSE_NOT_REPORTABLE = 0x00,
UNIT_IS_IN_PROCESS_OF_BECOMING_READY,
INITIALIZING_COMMAND_REQUIRED,
MANUAL_INTERVENTION_REQUIRED,
FORMAT_IN_PROGRESS,
DEVICE_IS_BUSY = 0xFF,
// ASC: CANNOT_READ_MEDIUM
UNKNOWN_FORMAT = 0x01, UNKNOWN_FORMAT = 0x01,
// MEDIUM_NOT_PRESENT // ASC: MEDIUM_NOT_PRESENT
REASON_UNKNOWN = 0x00, REASON_UNKNOWN = 0x00,
TRAY_CLOSED, TRAY_CLOSED,
TRAY_OPEN, TRAY_OPEN,
@ -65,5 +75,30 @@ enum class Sense_ASCQ : uint8_t {
AUXILIARY_MEMORY_ACCESSIBLE AUXILIARY_MEMORY_ACCESSIBLE
}; };
struct Sense {
Sense() {
reset();
}
void set(Sense_KEY key_val, Sense_ASC asc_val = Sense_ASC::NONE, Sense_ASCQ ascq_val = Sense_ASCQ::REASON_UNKNOWN) {
key = key_val;
asc = asc_val;
ascq = ascq_val;
}
void reset() {
key = Sense_KEY::NO_SENSE;
asc = Sense_ASC::NONE;
ascq = Sense_ASCQ::REASON_UNKNOWN;
}
bool has_sense() {
return key != Sense_KEY::NO_SENSE;
}
Sense_KEY key;
Sense_ASC asc;
Sense_ASCQ ascq;
};
#endif /* __MSCUSER_H__ */ #endif /* __MSCUSER_H__ */

@ -164,9 +164,10 @@ board = lpc1768
board_f_cpu = 100000000L board_f_cpu = 100000000L
build_flags = !python Marlin/src/HAL/HAL_LPC1768/lpc1768_flag_script.py build_flags = !python Marlin/src/HAL/HAL_LPC1768/lpc1768_flag_script.py
lib_ldf_mode = off lib_ldf_mode = off
lib_deps = U8glib-ARM lib_extra_dirs = frameworks
lib_deps = U8glib-ARM, CMSIS-LPC1768
src_filter = ${common.default_src_filter} src_filter = ${common.default_src_filter}
extra_scripts = debug_extra_script.py, Marlin/src/HAL/HAL_LPC1768/lpc1768_flag_script.py extra_scripts = Marlin/src/HAL/HAL_LPC1768/debug_extra_script.py, Marlin/src/HAL/HAL_LPC1768/lpc1768_flag_script.py
debug_tool = custom debug_tool = custom
debug_server = debug_server =
C:\Program Files (x86)\SEGGER\JLink_V618d\JLinkGDBServerCL.exe C:\Program Files (x86)\SEGGER\JLink_V618d\JLinkGDBServerCL.exe

Loading…
Cancel
Save