Coding standards

2.0.x
Scott Lahteine 6 years ago
parent 19af90face
commit 3a1b6fe8c1

@ -231,7 +231,7 @@ void HardFault_HandlerC(unsigned long *sp, unsigned long lr, unsigned long cause
// Reset controller
NVIC_SystemReset();
while(1) { WDT_Restart(WDT); }
for (;;) WDT_Restart(WDT);
}
__attribute__((naked)) void NMI_Handler(void) {

@ -95,7 +95,7 @@ void u8g_SetPILevel_DUE_hw_spi(u8g_t *u8g, uint8_t pin_index, uint8_t level) {
}
uint8_t u8g_com_HAL_DUE_shared_hw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) {
switch(msg) {
switch (msg) {
case U8G_COM_MSG_STOP:
break;

@ -206,7 +206,7 @@ void HardFault_HandlerC(unsigned long *sp, unsigned long lr, unsigned long cause
// Reset controller
NVIC_SystemReset();
while(1) { watchdog_init(); }
for (;;) watchdog_init();
}
extern "C" {

@ -45,7 +45,6 @@
#define OUTPUT 1
#define INPUT_PULLUP 2
uint8_t LPC1768_PIN_PORT(const uint8_t pin);
uint8_t LPC1768_PIN_PIN(const uint8_t pin);
@ -63,7 +62,7 @@ void pinMode_LCD(uint8_t pin, uint8_t mode) {
PINSEL_FUNC_0,
PINSEL_PINMODE_TRISTATE,
PINSEL_PINMODE_NORMAL };
switch(mode) {
switch (mode) {
case INPUT:
LPC_GPIO(LPC1768_PIN_PORT(pin))->FIODIR &= ~LPC_PIN(LPC1768_PIN_PIN(pin));
PINSEL_ConfigPin(&config);
@ -77,8 +76,7 @@ void pinMode_LCD(uint8_t pin, uint8_t mode) {
config.Pinmode = PINSEL_PINMODE_PULLUP;
PINSEL_ConfigPin(&config);
break;
default:
break;
default: break;
}
}
@ -105,7 +103,6 @@ uint8_t u8g_GetPinLevel(uint8_t pin) {
return (uint32_t)LPC_GPIO(LPC1768_PIN_PORT(pin))->FIOPIN & LPC_PIN(LPC1768_PIN_PIN(pin)) ? 1 : 0;
}
#ifdef __cplusplus
}
#endif

@ -95,9 +95,8 @@ uint8_t u8g_com_ssd_I2C_start_sequence(u8g_t *u8g) {
if (u8g->pin_list[U8G_PI_SET_A0] == 0) return 1;
/* setup bus, might be a repeated start */
if (u8g_i2c_start(I2C_SLA) == 0)
return 0;
if (u8g->pin_list[U8G_PI_A0_STATE] == 0 ) {
if (u8g_i2c_start(I2C_SLA) == 0) return 0;
if (u8g->pin_list[U8G_PI_A0_STATE] == 0) {
if (u8g_i2c_send_byte(I2C_CMD_MODE) == 0) return 0;
}
else if (u8g_i2c_send_byte(I2C_DATA_MODE) == 0)
@ -108,7 +107,7 @@ uint8_t u8g_com_ssd_I2C_start_sequence(u8g_t *u8g) {
}
uint8_t u8g_com_HAL_LPC1768_ssd_hw_i2c_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) {
switch(msg) {
switch (msg) {
case U8G_COM_MSG_INIT:
//u8g_com_arduino_digital_write(u8g, U8G_PI_SCL, HIGH);
//u8g_com_arduino_digital_write(u8g, U8G_PI_SDA, HIGH);

@ -91,7 +91,7 @@ static void u8g_com_LPC1768_st7920_write_byte_hw_spi(uint8_t rs, uint8_t val) {
}
uint8_t u8g_com_HAL_LPC1768_ST7920_hw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) {
switch(msg) {
switch (msg) {
case U8G_COM_MSG_INIT:
u8g_SetPILevel(u8g, U8G_PI_CS, 0);
u8g_SetPIOutput(u8g, U8G_PI_CS);

@ -89,10 +89,8 @@ static void u8g_com_LPC1768_st7920_write_byte_sw_spi(uint8_t rs, uint8_t val) {
swSpiTransfer(val << 4, SPI_speed, SCK_pin_ST7920_HAL, -1, MOSI_pin_ST7920_HAL_HAL);
}
uint8_t u8g_com_HAL_LPC1768_ST7920_sw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr)
{
switch(msg)
{
uint8_t u8g_com_HAL_LPC1768_ST7920_sw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) {
switch (msg) {
case U8G_COM_MSG_INIT:
SCK_pin_ST7920_HAL = u8g->pin_list[U8G_PI_SCK];
MOSI_pin_ST7920_HAL_HAL = u8g->pin_list[U8G_PI_MOSI];

@ -72,7 +72,7 @@ static void u8g_sw_spi_HAL_LPC1768_shift_out(uint8_t dataPin, uint8_t clockPin,
}
uint8_t u8g_com_HAL_LPC1768_sw_spi_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, void *arg_ptr) {
switch(msg) {
switch (msg) {
case U8G_COM_MSG_INIT:
u8g_SetPIOutput(u8g, U8G_PI_SCK);
u8g_SetPIOutput(u8g, U8G_PI_MOSI);

@ -58,7 +58,7 @@ uint8_t u8g_com_stm32duino_fsmc_fn(u8g_t *u8g, uint8_t msg, uint8_t arg_val, voi
static uint8_t isCommand;
switch(msg) {
switch (msg) {
case U8G_COM_MSG_STOP:
break;
case U8G_COM_MSG_INIT:
@ -154,7 +154,7 @@ void LCD_IO_Init(uint8_t cs, uint8_t rs) {
if (fsmcInit) return;
fsmcInit = 1;
switch(cs) {
switch (cs) {
case FSMC_CS_NE1: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION1; break;
case FSMC_CS_NE2: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION2; break;
case FSMC_CS_NE3: controllerAddress = (uint32_t)FSMC_NOR_PSRAM_REGION3; break;
@ -164,7 +164,7 @@ void LCD_IO_Init(uint8_t cs, uint8_t rs) {
#define _ORADDR(N) controllerAddress |= (_BV32(N) - 2)
switch(rs) {
switch (rs) {
case FSMC_RS_A0: _ORADDR( 1); break;
case FSMC_RS_A1: _ORADDR( 2); break;
case FSMC_RS_A2: _ORADDR( 3); break;

@ -71,7 +71,7 @@ void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
}
void HAL_timer_enable_interrupt(const uint8_t timer_num) {
switch(timer_num) {
switch (timer_num) {
case 0: NVIC_ENABLE_IRQ(IRQ_FTM0); break;
case 1: NVIC_ENABLE_IRQ(IRQ_FTM1); break;
}
@ -98,7 +98,7 @@ bool HAL_timer_interrupt_enabled(const uint8_t timer_num) {
}
void HAL_timer_isr_prologue(const uint8_t timer_num) {
switch(timer_num) {
switch (timer_num) {
case 0:
FTM0_CNT = 0x0000;
FTM0_SC &= ~FTM_SC_TOF; // Clear FTM Overflow flag

@ -72,7 +72,7 @@ void HAL_timer_start(const uint8_t timer_num, const uint32_t frequency) {
}
void HAL_timer_enable_interrupt(const uint8_t timer_num) {
switch(timer_num) {
switch (timer_num) {
case 0: NVIC_ENABLE_IRQ(IRQ_FTM0); break;
case 1: NVIC_ENABLE_IRQ(IRQ_FTM1); break;
}
@ -99,7 +99,7 @@ bool HAL_timer_interrupt_enabled(const uint8_t timer_num) {
}
void HAL_timer_isr_prologue(const uint8_t timer_num) {
switch(timer_num) {
switch (timer_num) {
case 0:
FTM0_CNT = 0x0000;
FTM0_SC &= ~FTM_SC_TOF; // Clear FTM Overflow flag

@ -76,7 +76,7 @@ void HAL_analog_pin_state(char buffer[], int8_t pin) {
*/
bool HAL_pwm_status(int8_t pin) {
char buffer[20]; // for the sprintf statements
switch(pin) {
switch (pin) {
FTM_CASE(0,0);
FTM_CASE(0,1);
FTM_CASE(0,2);

@ -103,7 +103,7 @@ typedef struct {
* Macros
**************************************************************************/
#define M_IsOriginValid(v) (((v) & 0x7F) ? true : false)
#define M_IsOriginValid(v) !!((v) & 0x7F)
#define M_Origin2Str(v) ((v) ? "VALID" : "INVALID")
#ifdef UNW_DEBUG

@ -32,23 +32,17 @@
* \retval false This is not a data-processing instruction,
*/
static bool isDataProc(uint32_t instr) {
uint8_t opcode = (instr & 0x01E00000) >> 21;
bool S = (instr & 0x00100000) ? true : false;
if ((instr & 0xFC000000) != 0xE0000000) return false;
if ((instr & 0xFC000000) != 0xE0000000) {
return false;
}
else if (!S && opcode >= 8 && opcode <= 11) {
/* TST, TEQ, CMP and CMN all require S to be set */
return false;
}
else
bool S = !!(instr & 0x00100000);
if (!S && opcode >= 8 && opcode <= 11) return false;
return true;
}
UnwResult UnwStartArm(UnwState * const state) {
bool found = false;
uint16_t t = UNW_MAX_INSTR_COUNT;
@ -56,9 +50,8 @@ UnwResult UnwStartArm(UnwState * const state) {
uint32_t instr;
/* Attempt to read the instruction */
if (!state->cb->readW(state->regData[15].v, &instr)) {
if (!state->cb->readW(state->regData[15].v, &instr))
return UNWIND_IREAD_W_FAIL;
}
UnwPrintd4("A %x %x %08x:", state->regData[13].v, state->regData[15].v, instr);
@ -103,31 +96,20 @@ UnwResult UnwStartArm(UnwState * const state) {
}
/* Determine the return mode */
if (state->regData[rn].v & 0x1) {
/* Branching to THUMB */
if (state->regData[rn].v & 0x1) /* Branching to THUMB */
return UnwStartThumb(state);
}
else {
/* Branch to ARM */
/* Account for the auto-increment which isn't needed */
state->regData[15].v -= 4;
}
}
/* Branch */
else if ((instr & 0xFF000000) == 0xEA000000) {
int32_t offset = (instr & 0x00FFFFFF);
/* Shift value */
offset = offset << 2;
int32_t offset = (instr & 0x00FFFFFF) << 2;
/* Sign extend if needed */
if (offset & 0x02000000) {
offset |= 0xFC000000;
}
if (offset & 0x02000000) offset |= 0xFC000000;
UnwPrintd2("B %d\n", offset);
@ -142,11 +124,12 @@ UnwResult UnwStartArm(UnwState * const state) {
/* MRS */
else if ((instr & 0xFFBF0FFF) == 0xE10F0000) {
#ifdef UNW_DEBUG
bool R = (instr & 0x00400000) ? true : false;
#endif
#ifdef UNW_DEBUG
const bool R = !!(instr & 0x00400000);
#else
constexpr bool R = false;
#endif
uint8_t rd = (instr & 0x0000F000) >> 12;
UnwPrintd4("MRS r%d,%s\t; r%d invalidated", rd, R ? "SPSR" : "CPSR", rd);
/* Status registers untracked */
@ -154,11 +137,10 @@ UnwResult UnwStartArm(UnwState * const state) {
}
/* MSR */
else if ((instr & 0xFFB0F000) == 0xE120F000) {
#ifdef UNW_DEBUG
bool R = (instr & 0x00400000) ? true : false;
#ifdef UNW_DEBUG
UnwPrintd2("MSR %s_?, ???", (instr & 0x00400000) ? "SPSR" : "CPSR");
#endif
UnwPrintd2("MSR %s_?, ???", R ? "SPSR" : "CPSR");
#endif
/* Status registers untracked.
* Potentially this could change processor mode and switch
* banked registers r8-r14. Most likely is that r13 (sp) will
@ -170,18 +152,18 @@ UnwResult UnwStartArm(UnwState * const state) {
}
/* Data processing */
else if (isDataProc(instr)) {
bool I = (instr & 0x02000000) ? true : false;
bool I = !!(instr & 0x02000000);
uint8_t opcode = (instr & 0x01E00000) >> 21;
#ifdef UNW_DEBUG
bool S = (instr & 0x00100000) ? true : false;
#endif
#ifdef UNW_DEBUG
bool S = !!(instr & 0x00100000);
#endif
uint8_t rn = (instr & 0x000F0000) >> 16;
uint8_t rd = (instr & 0x0000F000) >> 12;
uint16_t operand2 = (instr & 0x00000FFF);
uint32_t op2val;
int op2origin;
switch(opcode) {
switch (opcode) {
case 0: UnwPrintd4("AND%s r%d,r%d,", S ? "S" : "", rd, rn); break;
case 1: UnwPrintd4("EOR%s r%d,r%d,", S ? "S" : "", rd, rn); break;
case 2: UnwPrintd4("SUB%s r%d,r%d,", S ? "S" : "", rd, rn); break;
@ -217,26 +199,23 @@ UnwResult UnwStartArm(UnwState * const state) {
/* Register and shift */
uint8_t rm = (operand2 & 0x000F);
uint8_t regShift = (operand2 & 0x0010) ? true : false;
uint8_t regShift = !!(operand2 & 0x0010);
uint8_t shiftType = (operand2 & 0x0060) >> 5;
uint32_t shiftDist;
#ifdef UNW_DEBUG
#ifdef UNW_DEBUG
const char * const shiftMnu[4] = { "LSL", "LSR", "ASR", "ROR" };
#endif
#endif
UnwPrintd2("r%d ", rm);
/* Get the shift distance */
if (regShift) {
uint8_t rs = (operand2 & 0x0F00) >> 8;
if (operand2 & 0x00800) {
UnwPrintd1("\nError: Bit should be zero\n");
return UNWIND_ILLEGAL_INSTR;
}
else if (rs == 15) {
UnwPrintd1("\nError: Cannot use R15 with register shift\n");
return UNWIND_ILLEGAL_INSTR;
}
@ -250,46 +229,33 @@ UnwResult UnwStartArm(UnwState * const state) {
else {
shiftDist = (operand2 & 0x0F80) >> 7;
op2origin = REG_VAL_FROM_CONST;
if (shiftDist) {
UnwPrintd3("%s #%d", shiftMnu[shiftType], shiftDist);
}
if (shiftDist) UnwPrintd3("%s #%d", shiftMnu[shiftType], shiftDist);
UnwPrintd3("\t; r%d %s", rm, M_Origin2Str(state->regData[rm].o));
}
/* Apply the shift type to the source register */
switch(shiftType) {
switch (shiftType) {
case 0: /* logical left */
op2val = state->regData[rm].v << shiftDist;
break;
case 1: /* logical right */
if (!regShift && shiftDist == 0) {
shiftDist = 32;
}
if (!regShift && shiftDist == 0) shiftDist = 32;
op2val = state->regData[rm].v >> shiftDist;
break;
case 2: /* arithmetic right */
if (!regShift && shiftDist == 0) {
shiftDist = 32;
}
if (!regShift && shiftDist == 0) shiftDist = 32;
if (state->regData[rm].v & 0x80000000) {
/* Register shifts maybe greater than 32 */
if (shiftDist >= 32) {
if (shiftDist >= 32)
op2val = 0xFFFFFFFF;
else
op2val = (state->regData[rm].v >> shiftDist) | (0xFFFFFFFF << (32 - shiftDist));
}
else {
op2val = state->regData[rm].v >> shiftDist;
op2val |= 0xFFFFFFFF << (32 - shiftDist);
}
}
else {
else
op2val = state->regData[rm].v >> shiftDist;
}
break;
case 3: /* rotate right */
@ -317,19 +283,14 @@ UnwResult UnwStartArm(UnwState * const state) {
}
/* Decide the data origin */
if (M_IsOriginValid(op2origin) &&
M_IsOriginValid(state->regData[rm].o)) {
op2origin = state->regData[rm].o;
op2origin |= REG_VAL_ARITHMETIC;
}
else {
if (M_IsOriginValid(op2origin) && M_IsOriginValid(state->regData[rm].o))
op2origin = REG_VAL_ARITHMETIC | state->regData[rm].o;
else
op2origin = REG_VAL_INVALID;
}
}
/* Propagate register validity */
switch(opcode) {
switch (opcode) {
case 0: /* AND: Rd := Op1 AND Op2 */
case 1: /* EOR: Rd := Op1 EOR Op2 */
case 2: /* SUB: Rd:= Op1 - Op2 */
@ -374,14 +335,11 @@ UnwResult UnwStartArm(UnwState * const state) {
* to specify the shift amount the PC will be 12 bytes
* ahead.
*/
if (!I && (operand2 & 0x0010))
state->regData[rn].v += 12;
else
state->regData[rn].v += 8;
state->regData[rn].v += ((!I && (operand2 & 0x0010)) ? 12 : 8);
}
/* Compute values */
switch(opcode) {
switch (opcode) {
case 0: /* AND: Rd := Op1 AND Op2 */
state->regData[rd].v = state->regData[rn].v & op2val;
break;
@ -429,12 +387,8 @@ UnwResult UnwStartArm(UnwState * const state) {
}
/* Remove the prefetch offset from the PC */
if (rd != 15 && rn == 15) {
if (!I && (operand2 & 0x0010))
state->regData[rn].v -= 12;
else
state->regData[rn].v -= 8;
}
if (rd != 15 && rn == 15)
state->regData[rn].v -= ((!I && (operand2 & 0x0010)) ? 12 : 8);
}
/* Block Data Transfer
@ -442,26 +396,25 @@ UnwResult UnwStartArm(UnwState * const state) {
*/
else if ((instr & 0xFE000000) == 0xE8000000) {
bool P = (instr & 0x01000000) ? true : false;
bool U = (instr & 0x00800000) ? true : false;
bool S = (instr & 0x00400000) ? true : false;
bool W = (instr & 0x00200000) ? true : false;
bool L = (instr & 0x00100000) ? true : false;
bool P = !!(instr & 0x01000000),
U = !!(instr & 0x00800000),
S = !!(instr & 0x00400000),
W = !!(instr & 0x00200000),
L = !!(instr & 0x00100000);
uint16_t baseReg = (instr & 0x000F0000) >> 16;
uint16_t regList = (instr & 0x0000FFFF);
uint32_t addr = state->regData[baseReg].v;
bool addrValid = M_IsOriginValid(state->regData[baseReg].o);
int8_t r;
#ifdef UNW_DEBUG
#ifdef UNW_DEBUG
/* Display the instruction */
if (L) {
if (L)
UnwPrintd6("LDM%c%c r%d%s, {reglist}%s\n", P ? 'E' : 'F', U ? 'D' : 'A', baseReg, W ? "!" : "", S ? "^" : "");
}
else {
else
UnwPrintd6("STM%c%c r%d%s, {reglist}%s\n", !P ? 'E' : 'F', !U ? 'D' : 'A', baseReg, W ? "!" : "", S ? "^" : "");
}
#endif
#endif
/* S indicates that banked registers (untracked) are used, unless
* this is a load including the PC when the S-bit indicates that
* that CPSR is loaded from SPSR (also untracked, but ignored).
@ -489,44 +442,35 @@ UnwResult UnwStartArm(UnwState * const state) {
/* Check if the register is to be transferred */
if (regList & (0x01 << r)) {
if (P)
addr += U ? 4 : -4;
if (P) addr += U ? 4 : -4;
if (L) {
if (addrValid) {
if (!UnwMemReadRegister(state, addr, &state->regData[r])) {
if (!UnwMemReadRegister(state, addr, &state->regData[r]))
return UNWIND_DREAD_W_FAIL;
}
/* Update the origin if read via the stack pointer */
if (M_IsOriginValid(state->regData[r].o) && baseReg == 13) {
if (M_IsOriginValid(state->regData[r].o) && baseReg == 13)
state->regData[r].o = REG_VAL_FROM_STACK;
}
UnwPrintd5(" R%d = 0x%08x\t; r%d %s\n",r,state->regData[r].v,r, M_Origin2Str(state->regData[r].o));
}
else {
/* Invalidate the register as the base reg was invalid */
state->regData[r].o = REG_VAL_INVALID;
UnwPrintd2(" R%d = ???\n", r);
}
}
else {
if (addrValid) {
if (!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r])) {
if (addrValid && !UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r]))
return UNWIND_DWRITE_W_FAIL;
}
}
UnwPrintd2(" R%d = 0x%08x\n", r);
}
if (!P)
addr += U ? 4 : -4;
if (!P) addr += U ? 4 : -4;
}
/* Check the next register */
@ -535,8 +479,7 @@ UnwResult UnwStartArm(UnwState * const state) {
} while (r >= 0 && r <= 15);
/* Check the writeback bit */
if (W)
state->regData[baseReg].v = addr;
if (W) state->regData[baseReg].v = addr;
/* Check if the PC was loaded */
if (L && (regList & (0x01 << 15))) {
@ -547,9 +490,8 @@ UnwResult UnwStartArm(UnwState * const state) {
}
else {
/* Store the return address */
if (!UnwReportRetAddr(state, state->regData[15].v)) {
if (!UnwReportRetAddr(state, state->regData[15].v))
return UNWIND_TRUNCATED;
}
UnwPrintd2(" Return PC=0x%x", state->regData[15].v);
@ -585,9 +527,7 @@ UnwResult UnwStartArm(UnwState * const state) {
/* Garbage collect the memory hash (used only for the stack) */
UnwMemHashGC(state);
t--;
if (t == 0)
return UNWIND_EXHAUSTED;
if (--t == 0) return UNWIND_EXHAUSTED;
} while (!found);

@ -25,17 +25,11 @@
* \param value The value to sign extend.
* \return The signed-11 bit value stored in a 16bit data type.
*/
static int32_t signExtend11(uint16_t value) {
if(value & 0x400) {
value |= 0xFFFFF800;
}
return value;
static int32_t signExtend11(const uint16_t value) {
return (value & 0x400) ? value | 0xFFFFF800 : value;
}
UnwResult UnwStartThumb(UnwState * const state) {
bool found = false;
uint16_t t = UNW_MAX_INSTR_COUNT;
uint32_t lastJumpAddr = 0; // Last JUMP address, to try to detect infinite loops
@ -45,20 +39,19 @@ UnwResult UnwStartThumb(UnwState * const state) {
uint16_t instr;
/* Attempt to read the instruction */
if(!state->cb->readH(state->regData[15].v & (~0x1), &instr)) {
if (!state->cb->readH(state->regData[15].v & (~0x1), &instr))
return UNWIND_IREAD_H_FAIL;
}
UnwPrintd4("T %x %x %04x:", state->regData[13].v, state->regData[15].v, instr);
/* Check that the PC is still on Thumb alignment */
if(!(state->regData[15].v & 0x1)) {
if (!(state->regData[15].v & 0x1)) {
UnwPrintd1("\nError: PC misalignment\n");
return UNWIND_INCONSISTENT;
}
/* Check that the SP and PC have not been invalidated */
if(!M_IsOriginValid(state->regData[13].o) || !M_IsOriginValid(state->regData[15].o)) {
if (!M_IsOriginValid(state->regData[13].o) || !M_IsOriginValid(state->regData[15].o)) {
UnwPrintd1("\nError: PC or SP invalidated\n");
return UNWIND_INCONSISTENT;
}
@ -73,9 +66,8 @@ UnwResult UnwStartThumb(UnwState * const state) {
state->regData[15].v += 2;
/* Attempt to read the 2nd part of the instruction */
if(!state->cb->readH(state->regData[15].v & (~0x1), &instr2)) {
if (!state->cb->readH(state->regData[15].v & (~0x1), &instr2))
return UNWIND_IREAD_H_FAIL;
}
UnwPrintd3(" %x %04x:", state->regData[15].v, instr2);
@ -84,26 +76,25 @@ UnwResult UnwStartThumb(UnwState * const state) {
* PUSH and POP
*/
if ((instr & 0xFE6F) == 0xE82D) {
bool L = (instr & 0x10) ? true : false;
bool L = !!(instr & 0x10);
uint16_t rList = instr2;
if(L) {
if (L) {
uint8_t r;
/* Load from memory: POP */
UnwPrintd1("POP {Rlist}\n");
/* Load registers from stack */
for(r = 0; r < 16; r++) {
if(rList & (0x1 << r)) {
for (r = 0; r < 16; r++) {
if (rList & (0x1 << r)) {
/* Read the word */
if(!UnwMemReadRegister(state, state->regData[13].v, &state->regData[r])) {
if (!UnwMemReadRegister(state, state->regData[13].v, &state->regData[r]))
return UNWIND_DREAD_W_FAIL;
}
/* Alter the origin to be from the stack if it was valid */
if(M_IsOriginValid(state->regData[r].o)) {
if (M_IsOriginValid(state->regData[r].o)) {
state->regData[r].o = REG_VAL_FROM_STACK;
@ -114,7 +105,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
* the caller was from Thumb. This would allow return
* by BX for interworking APCS.
*/
if((state->regData[15].v & 0x1) == 0) {
if ((state->regData[15].v & 0x1) == 0) {
UnwPrintd2("Warning: Return address not to Thumb: 0x%08x\n", state->regData[15].v);
/* Pop into the PC will not switch mode */
@ -122,9 +113,8 @@ UnwResult UnwStartThumb(UnwState * const state) {
}
/* Store the return address */
if(!UnwReportRetAddr(state, state->regData[15].v)) {
if (!UnwReportRetAddr(state, state->regData[15].v))
return UNWIND_TRUNCATED;
}
/* Now have the return address */
UnwPrintd2(" Return PC=%x\n", state->regData[15].v);
@ -155,19 +145,18 @@ UnwResult UnwStartThumb(UnwState * const state) {
/* Store to memory: PUSH */
UnwPrintd1("PUSH {Rlist}");
for(r = 15; r >= 0; r--) {
if(rList & (0x1 << r)) {
for (r = 15; r >= 0; r--) {
if (rList & (0x1 << r)) {
UnwPrintd4("\n r%d = 0x%08x\t; %s", r, state->regData[r].v, M_Origin2Str(state->regData[r].o));
state->regData[13].v -= 4;
if(!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r])) {
if (!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r]))
return UNWIND_DWRITE_W_FAIL;
}
}
}
}
}
/*
* PUSH register
*/
@ -180,10 +169,9 @@ UnwResult UnwStartThumb(UnwState * const state) {
state->regData[13].v -= 4;
if(!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r])) {
if (!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r]))
return UNWIND_DWRITE_W_FAIL;
}
}
/*
* POP register
*/
@ -194,12 +182,11 @@ UnwResult UnwStartThumb(UnwState * const state) {
UnwPrintd2("POP {R%d}\n", r);
/* Read the word */
if(!UnwMemReadRegister(state, state->regData[13].v, &state->regData[r])) {
if (!UnwMemReadRegister(state, state->regData[13].v, &state->regData[r]))
return UNWIND_DREAD_W_FAIL;
}
/* Alter the origin to be from the stack if it was valid */
if(M_IsOriginValid(state->regData[r].o)) {
if (M_IsOriginValid(state->regData[r].o)) {
state->regData[r].o = REG_VAL_FROM_STACK;
@ -210,7 +197,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
* the caller was from Thumb. This would allow return
* by BX for interworking APCS.
*/
if((state->regData[15].v & 0x1) == 0) {
if ((state->regData[15].v & 0x1) == 0) {
UnwPrintd2("Warning: Return address not to Thumb: 0x%08x\n", state->regData[15].v);
/* Pop into the PC will not switch mode */
@ -218,9 +205,8 @@ UnwResult UnwStartThumb(UnwState * const state) {
}
/* Store the return address */
if(!UnwReportRetAddr(state, state->regData[15].v)) {
if (!UnwReportRetAddr(state, state->regData[15].v))
return UNWIND_TRUNCATED;
}
/* Now have the return address */
UnwPrintd2(" Return PC=%x\n", state->regData[15].v);
@ -255,7 +241,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
* the switch clauses
*/
uint8_t rn = instr & 0xF;
bool H = (instr2 & 0x10) ? true : false;
bool H = !!(instr2 & 0x10);
UnwPrintd5("TB%c [r%d,r%d%s]\n", H ? 'H' : 'B', rn, (instr2 & 0xF), H ? ",LSL #1" : "");
@ -263,15 +249,14 @@ UnwResult UnwStartThumb(UnwState * const state) {
if (rn == 15) {
if (H) {
uint16_t rv;
if(!state->cb->readH((state->regData[15].v & (~1)) + 2, &rv)) {
if (!state->cb->readH((state->regData[15].v & (~1)) + 2, &rv))
return UNWIND_DREAD_H_FAIL;
}
state->regData[15].v += rv * 2;
} else {
}
else {
uint8_t rv;
if(!state->cb->readB((state->regData[15].v & (~1)) + 2, &rv)) {
if (!state->cb->readB((state->regData[15].v & (~1)) + 2, &rv))
return UNWIND_DREAD_B_FAIL;
}
state->regData[15].v += rv * 2;
}
}
@ -355,12 +340,11 @@ UnwResult UnwStartThumb(UnwState * const state) {
UnwPrintd2(" Return PC=%x", state->regData[15].v);
/* Report the return address, including mode bit */
if(!UnwReportRetAddr(state, state->regData[15].v)) {
if (!UnwReportRetAddr(state, state->regData[15].v))
return UNWIND_TRUNCATED;
}
/* Determine the new mode */
if(state->regData[15].v & 0x1) {
if (state->regData[15].v & 0x1) {
/* Branching to THUMB */
/* Account for the auto-increment which isn't needed */
@ -411,10 +395,10 @@ UnwResult UnwStartThumb(UnwState * const state) {
* PC-relative load
* LDR Rd,[PC, #+/-imm]
*/
else if((instr & 0xFF7F) == 0xF85F) {
else if ((instr & 0xFF7F) == 0xF85F) {
uint8_t rt = (instr2 & 0xF000) >> 12;
uint8_t imm12 = (instr2 & 0x0FFF);
bool A = (instr & 0x80) ? true : false;
bool A = !!(instr & 0x80);
uint32_t address;
/* Compute load address, adding a word to account for prefetch */
@ -424,10 +408,9 @@ UnwResult UnwStartThumb(UnwState * const state) {
UnwPrintd4("LDR r%d,[PC #%c0x%08x]", rt, A?'+':'-', address);
if(!UnwMemReadRegister(state, address, &state->regData[rt])) {
if (!UnwMemReadRegister(state, address, &state->regData[rt]))
return UNWIND_DREAD_W_FAIL;
}
}
/*
* LDR immediate.
* We are only interested when destination is PC.
@ -441,13 +424,13 @@ UnwResult UnwStartThumb(UnwState * const state) {
/* If destination is PC and we don't know the source value, then fail */
if (!M_IsOriginValid(state->regData[rn].o)) {
state->regData[rt].o = state->regData[rn].o;
} else {
}
else {
uint32_t address = state->regData[rn].v + imm12;
if(!UnwMemReadRegister(state, address, &state->regData[rt])) {
if (!UnwMemReadRegister(state, address, &state->regData[rt]))
return UNWIND_DREAD_W_FAIL;
}
}
}
/*
* LDR immediate
* We are only interested when destination is PC.
@ -459,31 +442,20 @@ UnwResult UnwStartThumb(UnwState * const state) {
uint8_t rn = (instr & 0xF);
uint8_t rt = (instr2 & 0xF000) >> 12;
uint16_t imm8 = (instr2 & 0xFF);
bool P = (instr2 & 0x400) ? true : false;
bool U = (instr2 & 0x200) ? true : false;
bool W = (instr2 & 0x100) ? true : false;
bool P = !!(instr2 & 0x400);
bool U = !!(instr2 & 0x200);
bool W = !!(instr2 & 0x100);
if (!M_IsOriginValid(state->regData[rn].o)) {
if (!M_IsOriginValid(state->regData[rn].o))
state->regData[rt].o = state->regData[rn].o;
} else {
uint32_t offaddress = state->regData[rn].v + imm8;
if (U) offaddress += imm8;
else offaddress -= imm8;
uint32_t address;
if (P) {
address = offaddress;
} else {
address = state->regData[rn].v;
}
else {
uint32_t offaddress = state->regData[rn].v + (U ? imm8 + imm8 : 0),
address = P ? offaddress : state->regData[rn].v;
if(!UnwMemReadRegister(state, address, &state->regData[rt])) {
if (!UnwMemReadRegister(state, address, &state->regData[rt]))
return UNWIND_DREAD_W_FAIL;
}
if (W) {
state->regData[rn].v = offaddress;
}
if (W) state->regData[rn].v = offaddress;
}
}
/*
@ -493,32 +465,30 @@ UnwResult UnwStartThumb(UnwState * const state) {
* Where Rt is PC, Rn value is known, Rm is not known or unknown
*/
else if ((instr & 0xFFF0) == 0xF850 && (instr2 & 0x0FC0) == 0x0000) {
uint8_t rn = (instr & 0xF);
uint8_t rt = (instr2 & 0xF000) >> 12;
uint8_t rm = (instr2 & 0xF);
uint8_t imm2 = (instr2 & 0x30) >> 4;
const uint8_t rn = (instr & 0xF),
rt = (instr2 & 0xF000) >> 12,
rm = (instr2 & 0xF),
imm2 = (instr2 & 0x30) >> 4;
if (!M_IsOriginValid(state->regData[rn].o) ||
!M_IsOriginValid(state->regData[rm].o)) {
if (!M_IsOriginValid(state->regData[rn].o) || !M_IsOriginValid(state->regData[rm].o)) {
/* If Rt is PC, and Rn is known, then do an exception and assume
Rm equals 0 => This takes the first case in a switch() */
if (rt == 15 && M_IsOriginValid(state->regData[rn].o)) {
uint32_t address = state->regData[rn].v;
if(!UnwMemReadRegister(state, address, &state->regData[rt])) {
if (!UnwMemReadRegister(state, address, &state->regData[rt]))
return UNWIND_DREAD_W_FAIL;
}
} else {
/* Propagate unknown value */
else /* Propagate unknown value */
state->regData[rt].o = state->regData[rn].o;
}
} else {
else {
uint32_t address = state->regData[rn].v + (state->regData[rm].v << imm2);
if(!UnwMemReadRegister(state, address, &state->regData[rt])) {
if (!UnwMemReadRegister(state, address, &state->regData[rt]))
return UNWIND_DREAD_W_FAIL;
}
}
}
else {
UnwPrintd1("???? (32)");
@ -533,14 +503,14 @@ UnwResult UnwStartThumb(UnwState * const state) {
* LSR Rd, Rs, #Offset5
* ASR Rd, Rs, #Offset5
*/
else if((instr & 0xE000) == 0x0000 && (instr & 0x1800) != 0x1800) {
else if ((instr & 0xE000) == 0x0000 && (instr & 0x1800) != 0x1800) {
bool signExtend;
uint8_t op = (instr & 0x1800) >> 11;
uint8_t offset5 = (instr & 0x07C0) >> 6;
uint8_t rs = (instr & 0x0038) >> 3;
uint8_t rd = (instr & 0x0007);
const uint8_t op = (instr & 0x1800) >> 11,
offset5 = (instr & 0x07C0) >> 6,
rs = (instr & 0x0038) >> 3,
rd = (instr & 0x0007);
switch(op) {
switch (op) {
case 0: /* LSL */
UnwPrintd6("LSL r%d, r%d, #%d\t; r%d %s", rd, rs, offset5, rs, M_Origin2Str(state->regData[rs].o));
state->regData[rd].v = state->regData[rs].v << offset5;
@ -558,11 +528,9 @@ UnwResult UnwStartThumb(UnwState * const state) {
case 2: /* ASR */
UnwPrintd6("ASL r%d, r%d, #%d\t; r%d %s", rd, rs, offset5, rs, M_Origin2Str(state->regData[rs].o));
signExtend = (state->regData[rs].v & 0x8000) ? true : false;
signExtend = !!(state->regData[rs].v & 0x8000);
state->regData[rd].v = state->regData[rs].v >> offset5;
if(signExtend) {
state->regData[rd].v |= 0xFFFFFFFF << (32 - offset5);
}
if (signExtend) state->regData[rd].v |= 0xFFFFFFFF << (32 - offset5);
state->regData[rd].o = state->regData[rs].o;
state->regData[rd].o |= REG_VAL_ARITHMETIC;
break;
@ -574,9 +542,9 @@ UnwResult UnwStartThumb(UnwState * const state) {
* SUB Rd, Rs, Rn
* SUB Rd, Rs, #Offset3
*/
else if((instr & 0xF800) == 0x1800) {
bool I = (instr & 0x0400) ? true : false;
bool op = (instr & 0x0200) ? true : false;
else if ((instr & 0xF800) == 0x1800) {
bool I = !!(instr & 0x0400);
bool op = !!(instr & 0x0200);
uint8_t rn = (instr & 0x01C0) >> 6;
uint8_t rs = (instr & 0x0038) >> 3;
uint8_t rd = (instr & 0x0007);
@ -584,36 +552,24 @@ UnwResult UnwStartThumb(UnwState * const state) {
/* Print decoding */
UnwPrintd6("%s r%d, r%d, %c%d\t;",op ? "SUB" : "ADD",rd, rs,I ? '#' : 'r',rn);
UnwPrintd5("r%d %s, r%d %s",rd, M_Origin2Str(state->regData[rd].o),rs, M_Origin2Str(state->regData[rs].o));
if(!I) {
if (!I) {
UnwPrintd3(", r%d %s", rn, M_Origin2Str(state->regData[rn].o));
/* Perform calculation */
if(op) {
state->regData[rd].v = state->regData[rs].v - state->regData[rn].v;
}
else {
state->regData[rd].v = state->regData[rs].v + state->regData[rn].v;
}
state->regData[rd].v = state->regData[rs].v + (op ? -state->regData[rn].v : state->regData[rn].v);
/* Propagate the origin */
if(M_IsOriginValid(state->regData[rs].o) &&
M_IsOriginValid(state->regData[rn].o)) {
if (M_IsOriginValid(state->regData[rs].o) && M_IsOriginValid(state->regData[rn].o)) {
state->regData[rd].o = state->regData[rs].o;
state->regData[rd].o |= REG_VAL_ARITHMETIC;
}
else {
else
state->regData[rd].o = REG_VAL_INVALID;
}
}
else {
/* Perform calculation */
if(op) {
state->regData[rd].v = state->regData[rs].v - rn;
}
else {
state->regData[rd].v = state->regData[rs].v + rn;
}
state->regData[rd].v = state->regData[rs].v + (op ? -rn : rn);
/* Propagate the origin */
state->regData[rd].o = state->regData[rs].o;
@ -626,13 +582,13 @@ UnwResult UnwStartThumb(UnwState * const state) {
* ADD Rd, #Offset8
* SUB Rd, #Offset8
*/
else if((instr & 0xE000) == 0x2000) {
else if ((instr & 0xE000) == 0x2000) {
uint8_t op = (instr & 0x1800) >> 11;
uint8_t rd = (instr & 0x0700) >> 8;
uint8_t offset8 = (instr & 0x00FF);
switch(op) {
switch (op) {
case 0: /* MOV */
UnwPrintd3("MOV r%d, #0x%x", rd, offset8);
state->regData[rd].v = offset8;
@ -675,7 +631,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
* BIC Rd, Rs
* MVN Rd, Rs
*/
else if((instr & 0xFC00) == 0x4000) {
else if ((instr & 0xFC00) == 0x4000) {
uint8_t op = (instr & 0x03C0) >> 6;
uint8_t rs = (instr & 0x0038) >> 3;
uint8_t rd = (instr & 0x0007);
@ -688,7 +644,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
"ORR", "MUL", "BIC", "MVN" };
#endif
/* Print the mnemonic and registers */
switch(op) {
switch (op) {
case 0: /* AND */
case 1: /* EOR */
case 2: /* LSL */
@ -720,7 +676,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
}
/* Perform operation */
switch(op) {
switch (op) {
case 0: /* AND */
state->regData[rd].v &= state->regData[rs].v;
break;
@ -738,7 +694,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
break;
case 4: /* ASR */
if(state->regData[rd].v & 0x80000000) {
if (state->regData[rd].v & 0x80000000) {
state->regData[rd].v >>= state->regData[rs].v;
state->regData[rd].v |= 0xFFFFFFFF << (32 - state->regData[rs].v);
}
@ -782,7 +738,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
}
/* Propagate data origins */
switch(op) {
switch (op) {
case 0: /* AND */
case 1: /* EOR */
case 2: /* LSL */
@ -792,13 +748,12 @@ UnwResult UnwStartThumb(UnwState * const state) {
case 12: /* ORR */
case 13: /* MUL */
case 14: /* BIC */
if(M_IsOriginValid(state->regData[rd].o) && M_IsOriginValid(state->regData[rs].o)) {
if (M_IsOriginValid(state->regData[rd].o) && M_IsOriginValid(state->regData[rs].o)) {
state->regData[rd].o = state->regData[rs].o;
state->regData[rd].o |= REG_VAL_ARITHMETIC;
}
else {
else
state->regData[rd].o = REG_VAL_INVALID;
}
break;
case 5: /* ADC */
@ -825,7 +780,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
* CMP Hd, Rs
* MOV Hd, Hs
*/
else if((instr & 0xFC00) == 0x4400) {
else if ((instr & 0xFC00) == 0x4400) {
uint8_t op = (instr & 0x0300) >> 8;
bool h1 = (instr & 0x0080) ? true: false;
bool h2 = (instr & 0x0040) ? true: false;
@ -833,12 +788,10 @@ UnwResult UnwStartThumb(UnwState * const state) {
uint8_t rhd = (instr & 0x0007);
/* Adjust the register numbers */
if(h2)
rhs += 8;
if(h1)
rhd += 8;
if (h2) rhs += 8;
if (h1) rhd += 8;
switch(op) {
switch (op) {
case 0: /* ADD */
UnwPrintd5("ADD r%d, r%d\t; r%d %s", rhd, rhs, rhs, M_Origin2Str(state->regData[rhs].o));
state->regData[rhd].v += state->regData[rhs].v;
@ -861,29 +814,26 @@ UnwResult UnwStartThumb(UnwState * const state) {
UnwPrintd4("BX r%d\t; r%d %s\n", rhs, rhs, M_Origin2Str(state->regData[rhs].o));
/* Only follow BX if the data was from the stack or BX LR */
if(rhs == 14 || state->regData[rhs].o == REG_VAL_FROM_STACK) {
if (rhs == 14 || state->regData[rhs].o == REG_VAL_FROM_STACK) {
UnwPrintd2(" Return PC=0x%x\n", state->regData[rhs].v & (~0x1));
/* Report the return address, including mode bit */
if(!UnwReportRetAddr(state, state->regData[rhs].v)) {
if (!UnwReportRetAddr(state, state->regData[rhs].v))
return UNWIND_TRUNCATED;
}
/* Update the PC */
state->regData[15].v = state->regData[rhs].v;
/* Determine the new mode */
if(state->regData[rhs].v & 0x1) {
if (state->regData[rhs].v & 0x1) {
/* Branching to THUMB */
/* Account for the auto-increment which isn't needed */
state->regData[15].v -= 2;
}
else {
/* Branch to ARM */
else /* Branch to ARM */
return UnwStartArm(state);
}
}
else {
UnwPrintd4("\nError: BX to invalid register: r%d = 0x%x (%s)\n", rhs, state->regData[rhs].o, M_Origin2Str(state->regData[rhs].o));
return UNWIND_FAILURE;
@ -893,7 +843,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
/* Format 9: PC-relative load
* LDR Rd,[PC, #imm]
*/
else if((instr & 0xF800) == 0x4800) {
else if ((instr & 0xF800) == 0x4800) {
uint8_t rd = (instr & 0x0700) >> 8;
uint8_t word8 = (instr & 0x00FF);
uint32_t address;
@ -903,19 +853,18 @@ UnwResult UnwStartThumb(UnwState * const state) {
UnwPrintd3("LDR r%d, 0x%08x", rd, address);
if(!UnwMemReadRegister(state, address, &state->regData[rd])) {
if (!UnwMemReadRegister(state, address, &state->regData[rd]))
return UNWIND_DREAD_W_FAIL;
}
}
/* Format 13: add offset to Stack Pointer
* ADD sp,#+imm
* ADD sp,#-imm
*/
else if((instr & 0xFF00) == 0xB000) {
else if ((instr & 0xFF00) == 0xB000) {
uint8_t value = (instr & 0x7F) * 4;
/* Check the negative bit */
if((instr & 0x80) != 0) {
if ((instr & 0x80) != 0) {
UnwPrintd2("SUB sp,#0x%x", value);
state->regData[13].v -= value;
}
@ -930,29 +879,27 @@ UnwResult UnwStartThumb(UnwState * const state) {
* POP {Rlist}
* POP {Rlist, PC}
*/
else if((instr & 0xF600) == 0xB400) {
bool L = (instr & 0x0800) ? true : false;
bool R = (instr & 0x0100) ? true : false;
else if ((instr & 0xF600) == 0xB400) {
bool L = !!(instr & 0x0800);
bool R = !!(instr & 0x0100);
uint8_t rList = (instr & 0x00FF);
if(L) {
if (L) {
uint8_t r;
/* Load from memory: POP */
UnwPrintd2("POP {Rlist%s}\n", R ? ", PC" : "");
for(r = 0; r < 8; r++) {
if(rList & (0x1 << r)) {
for (r = 0; r < 8; r++) {
if (rList & (0x1 << r)) {
/* Read the word */
if(!UnwMemReadRegister(state, state->regData[13].v, &state->regData[r])) {
if (!UnwMemReadRegister(state, state->regData[13].v, &state->regData[r]))
return UNWIND_DREAD_W_FAIL;
}
/* Alter the origin to be from the stack if it was valid */
if(M_IsOriginValid(state->regData[r].o)) {
if (M_IsOriginValid(state->regData[r].o))
state->regData[r].o = REG_VAL_FROM_STACK;
}
state->regData[13].v += 4;
@ -961,14 +908,13 @@ UnwResult UnwStartThumb(UnwState * const state) {
}
/* Check if the PC is to be popped */
if(R) {
if (R) {
/* Get the return address */
if(!UnwMemReadRegister(state, state->regData[13].v, &state->regData[15])) {
if (!UnwMemReadRegister(state, state->regData[13].v, &state->regData[15]))
return UNWIND_DREAD_W_FAIL;
}
/* Alter the origin to be from the stack if it was valid */
if(!M_IsOriginValid(state->regData[15].o)) {
if (!M_IsOriginValid(state->regData[15].o)) {
/* Return address is not valid */
UnwPrintd1("PC popped with invalid address\n");
return UNWIND_FAILURE;
@ -978,7 +924,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
* the caller was from Thumb. This would allow return
* by BX for interworking APCS.
*/
if((state->regData[15].v & 0x1) == 0) {
if ((state->regData[15].v & 0x1) == 0) {
UnwPrintd2("Warning: Return address not to Thumb: 0x%08x\n", state->regData[15].v);
/* Pop into the PC will not switch mode */
@ -986,9 +932,8 @@ UnwResult UnwStartThumb(UnwState * const state) {
}
/* Store the return address */
if(!UnwReportRetAddr(state, state->regData[15].v)) {
if (!UnwReportRetAddr(state, state->regData[15].v))
return UNWIND_TRUNCATED;
}
/* Now have the return address */
UnwPrintd2(" Return PC=%x\n", state->regData[15].v);
@ -1008,36 +953,34 @@ UnwResult UnwStartThumb(UnwState * const state) {
UnwPrintd2("PUSH {Rlist%s}", R ? ", LR" : "");
/* Check if the LR is to be pushed */
if(R) {
if (R) {
UnwPrintd3("\n lr = 0x%08x\t; %s", state->regData[14].v, M_Origin2Str(state->regData[14].o));
state->regData[13].v -= 4;
/* Write the register value to memory */
if(!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[14])) {
if (!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[14]))
return UNWIND_DWRITE_W_FAIL;
}
}
for(r = 7; r >= 0; r--) {
if(rList & (0x1 << r)) {
for (r = 7; r >= 0; r--) {
if (rList & (0x1 << r)) {
UnwPrintd4("\n r%d = 0x%08x\t; %s", r, state->regData[r].v, M_Origin2Str(state->regData[r].o));
state->regData[13].v -= 4;
if(!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r])) {
if (!UnwMemWriteRegister(state, state->regData[13].v, &state->regData[r]))
return UNWIND_DWRITE_W_FAIL;
}
}
}
}
}
/*
* Conditional branches
* Bcond
*/
else if((instr & 0xF000) == 0xD000) {
else if ((instr & 0xF000) == 0xD000) {
int32_t branchValue = (instr & 0xFF);
if (branchValue & 0x80) branchValue |= 0xFFFFFF00;
@ -1066,7 +1009,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
/* Format 18: unconditional branch
* B label
*/
else if((instr & 0xF800) == 0xE000) {
else if ((instr & 0xF800) == 0xE000) {
uint32_t v;
int32_t branchValue = signExtend11(instr & 0x07FF);
@ -1106,8 +1049,7 @@ UnwResult UnwStartThumb(UnwState * const state) {
UnwPrintd1("\n");
/* Should never hit the reset vector */
if(state->regData[15].v == 0)
return UNWIND_RESET;
if (state->regData[15].v == 0) return UNWIND_RESET;
/* Check next address */
state->regData[15].v += 2;
@ -1115,11 +1057,9 @@ UnwResult UnwStartThumb(UnwState * const state) {
/* Garbage collect the memory hash (used only for the stack) */
UnwMemHashGC(state);
t--;
if(t == 0)
return UNWIND_EXHAUSTED;
if (--t == 0) return UNWIND_EXHAUSTED;
} while(!found);
} while (!found);
return UNWIND_SUCCESS;
}

@ -19,7 +19,7 @@
#include "unwarmmem.h"
#include "unwarm.h"
#define M_IsIdxUsed(a, v) (((a)[v >> 3] & (1 << (v & 0x7))) ? true : false)
#define M_IsIdxUsed(a, v) !!((a)[v >> 3] & (1 << (v & 0x7)))
#define M_SetIdxUsed(a, v) ((a)[v >> 3] |= (1 << (v & 0x7)))
#define M_ClrIdxUsed(a, v) ((a)[v >> 3] &= ~(1 << (v & 0x7)))
@ -34,11 +34,9 @@ static int16_t memHashIndex(MemData * const memData, const uint32_t addr) {
do {
/* Check if the element is occupied */
if(M_IsIdxUsed(memData->used, s)) {
if (M_IsIdxUsed(memData->used, s)) {
/* Check if it is occupied with the sought data */
if(memData->a[s] == addr) {
return s;
}
if (memData->a[s] == addr) return s;
}
else {
/* Item is free, this is where the item should be stored */
@ -47,10 +45,8 @@ static int16_t memHashIndex(MemData * const memData, const uint32_t addr) {
/* Search the next entry */
s++;
if(s > MEM_HASH_SIZE) {
s = 0;
}
} while(s != v);
if (s > MEM_HASH_SIZE) s = 0;
} while (s != v);
/* Search failed, hash is full and the address not stored */
return -1;
@ -58,9 +54,9 @@ static int16_t memHashIndex(MemData * const memData, const uint32_t addr) {
bool UnwMemHashRead(MemData * const memData, uint32_t addr,uint32_t * const data, bool * const tracked) {
int16_t i = memHashIndex(memData, addr);
const int16_t i = memHashIndex(memData, addr);
if(i >= 0 && M_IsIdxUsed(memData->used, i) && memData->a[i] == addr) {
if (i >= 0 && M_IsIdxUsed(memData->used, i) && memData->a[i] == addr) {
*data = memData->v[i];
*tracked = M_IsIdxUsed(memData->tracked, i);
return true;
@ -72,20 +68,14 @@ bool UnwMemHashRead(MemData * const memData, uint32_t addr,uint32_t * const data
}
bool UnwMemHashWrite(MemData * const memData, uint32_t addr, uint32_t val, bool valValid) {
const int16_t i = memHashIndex(memData, addr);
if (i < 0) return false; /* Hash full */
int16_t i = memHashIndex(memData, addr);
if(i < 0){
/* Hash full */
return false;
}
else {
/* Store the item */
memData->a[i] = addr;
M_SetIdxUsed(memData->used, i);
if(valValid)
{
if (valValid) {
memData->v[i] = val;
M_SetIdxUsed(memData->tracked, i);
}
@ -97,7 +87,6 @@ bool UnwMemHashWrite(MemData * const memData, uint32_t addr, uint32_t val, bool
}
return true;
}
}
void UnwMemHashGC(UnwState * const state) {
@ -106,10 +95,9 @@ void UnwMemHashGC(UnwState * const state) {
MemData * const memData = &state->memData;
uint16_t t;
for(t = 0; t < MEM_HASH_SIZE; t++) {
if(M_IsIdxUsed(memData->used, t) && (memData->a[t] < minValidAddr)) {
for (t = 0; t < MEM_HASH_SIZE; t++) {
if (M_IsIdxUsed(memData->used, t) && (memData->a[t] < minValidAddr)) {
UnwPrintd3("MemHashGC: Free elem %d, addr 0x%08x\n", t, memData->a[t]);
M_ClrIdxUsed(memData->used, t);
}
}

@ -33,13 +33,11 @@ static int HasUnwindTableInfo(void) {
}
UnwResult UnwindStart(UnwindFrame* frame, const UnwindCallbacks *cb, void *data) {
if (HasUnwindTableInfo()) {
/* We have unwind information tables */
return UnwindByTableStart(frame, cb, data);
} else {
}
else {
/* We don't have unwind information tables */
UnwState state;
@ -48,12 +46,7 @@ UnwResult UnwindStart(UnwindFrame* frame, const UnwindCallbacks *cb, void *data)
UnwInitState(&state, cb, data, frame->pc, frame->sp);
/* Check the Thumb bit */
if(frame->pc & 0x1) {
return UnwStartThumb(&state);
}
else {
return UnwStartArm(&state);
}
return (frame->pc & 0x1) ? UnwStartThumb(&state) : UnwStartArm(&state);
}
}
#endif

@ -143,7 +143,7 @@ public:
break;
case EP_M876:
switch(c) {
switch (c) {
case ' ': break;
case 'S': state = EP_M876S; break;
default: state = EP_IGNORE; break;

@ -557,7 +557,7 @@ void MMU2::toolChange(const char* special) {
set_runout_valid(false);
KEEPALIVE_STATE(IN_HANDLER);
switch(*special) {
switch (*special) {
case '?': {
uint8_t index = mmu2_chooseFilament();
while (!thermalManager.wait_for_hotend(active_extruder, false)) safe_delay(100);

@ -248,7 +248,7 @@ inline void probe_side(measurements_t &m, const float uncertainty, const side_t
park_above_object(m, uncertainty);
switch(side) {
switch (side) {
case TOP: {
const float measurement = measure(Z_AXIS, -1, true, &m.backlash[TOP], uncertainty);
m.obj_center[Z_AXIS] = measurement - dimensions[Z_AXIS] / 2;

@ -112,7 +112,7 @@ static const uint8_t u8g_dev_sh1106_128x64_init_seq_2_wire[] PROGMEM = {
};
uint8_t u8g_dev_sh1106_128x64_2x_2_wire_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) {
switch(msg) {
switch (msg) {
case U8G_DEV_MSG_INIT:
u8g_InitCom(u8g, dev, U8G_SPI_CLK_CYCLE_300NS);
u8g_WriteEscSeqP_2_wire(u8g, dev, u8g_dev_sh1106_128x64_init_seq_2_wire);
@ -180,7 +180,7 @@ static const uint8_t u8g_dev_ssd1306_128x64_init_seq_2_wire[] PROGMEM = {
};
uint8_t u8g_dev_ssd1306_128x64_2x_2_wire_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) {
switch(msg) {
switch (msg) {
case U8G_DEV_MSG_INIT:
u8g_InitCom(u8g, dev, U8G_SPI_CLK_CYCLE_300NS);
u8g_WriteEscSeqP_2_wire(u8g, dev, u8g_dev_ssd1306_128x64_init_seq_2_wire);
@ -227,7 +227,7 @@ u8g_dev_t u8g_dev_ssd1306_128x64_2x_i2c_2_wire = { u8g_dev_ssd1306_128x64_2x_2_w
uint8_t u8g_WriteEscSeqP_2_wire(u8g_t *u8g, u8g_dev_t *dev, const uint8_t *esc_seq) {
uint8_t is_escape = 0;
uint8_t value;
for(;;) {
for (;;) {
value = u8g_pgm_read(esc_seq);
if (is_escape == 0) {
if (value != 255) {

@ -149,7 +149,7 @@ static const uint8_t u8g_dev_st7565_64128n_HAL_sleep_off[] PROGMEM = {
};
uint8_t u8g_dev_st7565_64128n_HAL_fn(u8g_t *u8g, u8g_dev_t *dev, const uint8_t msg, void *arg) {
switch(msg) {
switch (msg) {
case U8G_DEV_MSG_INIT:
u8g_InitCom(u8g, dev, U8G_SPI_CLK_CYCLE_400NS);
u8g_WriteEscSeqP(u8g, dev, u8g_dev_st7565_64128n_HAL_init_seq);
@ -183,7 +183,7 @@ uint8_t u8g_dev_st7565_64128n_HAL_fn(u8g_t *u8g, u8g_dev_t *dev, const uint8_t m
}
uint8_t u8g_dev_st7565_64128n_HAL_2x_fn(u8g_t *u8g, u8g_dev_t *dev, const uint8_t msg, void *arg) {
switch(msg) {
switch (msg) {
case U8G_DEV_MSG_INIT:
u8g_InitCom(u8g, dev, U8G_SPI_CLK_CYCLE_400NS);
u8g_WriteEscSeqP(u8g, dev, u8g_dev_st7565_64128n_HAL_init_seq);

@ -106,7 +106,7 @@ void clear_graphics_DRAM(u8g_t *u8g, u8g_dev_t *dev) {
}
uint8_t u8g_dev_st7920_128x64_HAL_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) {
switch(msg) {
switch (msg) {
case U8G_DEV_MSG_INIT:
u8g_InitCom(u8g, dev, U8G_SPI_CLK_CYCLE_400NS);
u8g_WriteEscSeqP(u8g, dev, u8g_dev_st7920_128x64_HAL_init_seq);
@ -149,7 +149,7 @@ uint8_t u8g_dev_st7920_128x64_HAL_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, vo
}
uint8_t u8g_dev_st7920_128x64_HAL_4x_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) {
switch(msg) {
switch (msg) {
case U8G_DEV_MSG_INIT:
u8g_InitCom(u8g, dev, U8G_SPI_CLK_CYCLE_400NS);
u8g_WriteEscSeqP(u8g, dev, u8g_dev_st7920_128x64_HAL_init_seq);

@ -125,7 +125,7 @@ uint8_t u8g_dev_tft_320x240_upscale_from_128x64_fn(u8g_t *u8g, u8g_dev_t *dev, u
uint16_t buffer[256];
uint32_t i, j, k;
switch(msg) {
switch (msg) {
case U8G_DEV_MSG_INIT:
dev->com_fn(u8g, U8G_COM_MSG_INIT, U8G_SPI_CLK_CYCLE_NONE, &lcd_id);
if (lcd_id == 0x040404) return 0; // No connected display on FSMC

@ -109,7 +109,7 @@ static const uint8_t u8g_dev_uc1701_mini12864_HAL_data_start[] PROGMEM = {
};
uint8_t u8g_dev_uc1701_mini12864_HAL_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) {
switch(msg) {
switch (msg) {
case U8G_DEV_MSG_INIT:
u8g_InitCom(u8g, dev, U8G_SPI_CLK_CYCLE_300NS);
u8g_WriteEscSeqP(u8g, dev, u8g_dev_uc1701_mini12864_HAL_init_seq);
@ -138,7 +138,7 @@ uint8_t u8g_dev_uc1701_mini12864_HAL_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg,
}
uint8_t u8g_dev_uc1701_mini12864_HAL_2x_fn(u8g_t *u8g, u8g_dev_t *dev, uint8_t msg, void *arg) {
switch(msg) {
switch (msg) {
case U8G_DEV_MSG_INIT:
u8g_InitCom(u8g, dev, U8G_SPI_CLK_CYCLE_300NS);
u8g_WriteEscSeqP(u8g, dev, u8g_dev_uc1701_mini12864_HAL_init_seq);

@ -339,7 +339,7 @@ bool Sd2Card::readBlock(uint32_t blockNumber, uint8_t* dst) {
#if ENABLED(SD_CHECK_AND_RETRY)
uint8_t retryCnt = 3;
for(;;) {
for (;;) {
if (cardCommand(CMD17, blockNumber))
error(SD_CARD_ERROR_CMD17);
else if (readData(dst, 512))

@ -56,13 +56,13 @@ void USB::setUsbTaskState(uint8_t state) {
EpInfo* USB::getEpInfoEntry(uint8_t addr, uint8_t ep) {
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
if(!p || !p->epinfo)
if (!p || !p->epinfo)
return NULL;
EpInfo *pep = p->epinfo;
for(uint8_t i = 0; i < p->epcount; i++) {
if((pep)->epAddr == ep)
for (uint8_t i = 0; i < p->epcount; i++) {
if ((pep)->epAddr == ep)
return pep;
pep++;
@ -74,12 +74,12 @@ EpInfo* USB::getEpInfoEntry(uint8_t addr, uint8_t ep) {
/* each device is different and has different number of endpoints. This function plugs endpoint record structure, defined in application, to devtable */
uint8_t USB::setEpInfoEntry(uint8_t addr, uint8_t epcount, EpInfo* eprecord_ptr) {
if(!eprecord_ptr)
if (!eprecord_ptr)
return USB_ERROR_INVALID_ARGUMENT;
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
if(!p)
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->address.devAddress = addr;
@ -92,15 +92,15 @@ uint8_t USB::setEpInfoEntry(uint8_t addr, uint8_t epcount, EpInfo* eprecord_ptr)
uint8_t USB::SetAddress(uint8_t addr, uint8_t ep, EpInfo **ppep, uint16_t *nak_limit) {
UsbDevice *p = addrPool.GetUsbDevicePtr(addr);
if(!p)
if (!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if(!p->epinfo)
if (!p->epinfo)
return USB_ERROR_EPINFO_IS_NULL;
*ppep = getEpInfoEntry(addr, ep);
if(!*ppep)
if (!*ppep)
return USB_ERROR_EP_NOT_FOUND_IN_TBL;
*nak_limit = (0x0001UL << (((*ppep)->bmNakPower > USB_NAK_MAX_POWER) ? USB_NAK_MAX_POWER : (*ppep)->bmNakPower));
@ -145,9 +145,7 @@ uint8_t USB::ctrlReq(uint8_t addr, uint8_t ep, uint8_t bmReqType, uint8_t bReque
uint16_t nak_limit = 0;
rcode = SetAddress(addr, ep, &pep, &nak_limit);
if(rcode)
return rcode;
if (rcode) return rcode;
direction = ((bmReqType & 0x80) > 0);
@ -162,49 +160,40 @@ uint8_t USB::ctrlReq(uint8_t addr, uint8_t ep, uint8_t bmReqType, uint8_t bReque
bytesWr(rSUDFIFO, 8, (uint8_t*) & setup_pkt); //transfer to setup packet FIFO
rcode = dispatchPkt(tokSETUP, ep, nak_limit); //dispatch packet
if (rcode) return rcode; // Return HRSLT if not zero
if(rcode) //return HRSLT if not zero
return ( rcode);
if(dataptr != NULL) //data stage, if present
{
if(direction) //IN transfer
{
if (dataptr != NULL) { //data stage, if present
if (direction) { //IN transfer
uint16_t left = total;
pep->bmRcvToggle = 1; //bmRCVTOG1;
while(left) {
while (left) {
// Bytes read into buffer
uint16_t read = nbytes;
//uint16_t read = (left<nbytes) ? left : nbytes;
rcode = InTransfer(pep, nak_limit, &read, dataptr);
if(rcode == hrTOGERR) {
if (rcode == hrTOGERR) {
// yes, we flip it wrong here so that next time it is actually correct!
pep->bmRcvToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 0 : 1;
continue;
}
if(rcode)
return rcode;
if (rcode) return rcode;
// Invoke callback function if inTransfer completed successfully and callback function pointer is specified
if(!rcode && p)
((USBReadParser*)p)->Parse(read, dataptr, total - left);
if (!rcode && p) ((USBReadParser*)p)->Parse(read, dataptr, total - left);
left -= read;
if(read < nbytes)
break;
if (read < nbytes) break;
}
}
} else //OUT transfer
{
else { //OUT transfer
pep->bmSndToggle = 1; //bmSNDTOG1;
rcode = OutTransfer(pep, nak_limit, nbytes, dataptr);
}
if(rcode) //return error
return ( rcode);
if (rcode) return rcode; // return error
}
// Status stage
return dispatchPkt((direction) ? tokOUTHS : tokINHS, ep, nak_limit); //GET if direction
@ -220,8 +209,7 @@ uint8_t USB::inTransfer(uint8_t addr, uint8_t ep, uint16_t *nbytesptr, uint8_t*
uint16_t nak_limit = 0;
uint8_t rcode = SetAddress(addr, ep, &pep, &nak_limit);
if(rcode) {
if (rcode) {
USBTRACE3("(USB::InTransfer) SetAddress Failed ", rcode, 0x81);
USBTRACE3("(USB::InTransfer) addr requested ", addr, 0x81);
USBTRACE3("(USB::InTransfer) ep requested ", ep, 0x81);
@ -242,30 +230,30 @@ uint8_t USB::InTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t *nbytesptr, ui
regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); //set toggle value
// use a 'break' to exit this loop
while(1) {
for (;;) {
rcode = dispatchPkt(tokIN, pep->epAddr, nak_limit); //IN packet to EP-'endpoint'. Function takes care of NAKS.
if(rcode == hrTOGERR) {
if (rcode == hrTOGERR) {
// yes, we flip it wrong here so that next time it is actually correct!
pep->bmRcvToggle = (regRd(rHRSL) & bmRCVTOGRD) ? 0 : 1;
regWr(rHCTL, (pep->bmRcvToggle) ? bmRCVTOG1 : bmRCVTOG0); //set toggle value
continue;
}
if(rcode) {
if (rcode) {
//printf(">>>>>>>> Problem! dispatchPkt %2.2x\r\n", rcode);
break; //should be 0, indicating ACK. Else return error code.
}
/* check for RCVDAVIRQ and generate error if not present */
/* the only case when absence of RCVDAVIRQ makes sense is when toggle error occurred. Need to add handling for that */
if((regRd(rHIRQ) & bmRCVDAVIRQ) == 0) {
if ((regRd(rHIRQ) & bmRCVDAVIRQ) == 0) {
//printf(">>>>>>>> Problem! NO RCVDAVIRQ!\r\n");
rcode = 0xf0; //receive error
rcode = 0xF0; //receive error
break;
}
pktsize = regRd(rRCVBC); //number of received bytes
//printf("Got %i bytes \r\n", pktsize);
// This would be OK, but...
//assert(pktsize <= nbytes);
if(pktsize > nbytes) {
if (pktsize > nbytes) {
// This can happen. Use of assert on Arduino locks up the Arduino.
// So I will trim the value, and hope for the best.
//printf(">>>>>>>> Problem! Wanted %i bytes but got %i.\r\n", nbytes, pktsize);
@ -273,9 +261,7 @@ uint8_t USB::InTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t *nbytesptr, ui
}
int16_t mem_left = (int16_t)nbytes - *((int16_t*)nbytesptr);
if(mem_left < 0)
mem_left = 0;
if (mem_left < 0) mem_left = 0;
data = bytesRd(rRCVFIFO, ((pktsize > mem_left) ? mem_left : pktsize), data);
@ -285,17 +271,17 @@ uint8_t USB::InTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t *nbytesptr, ui
/* The transfer is complete under two conditions: */
/* 1. The device sent a short packet (L.T. maxPacketSize) */
/* 2. 'nbytes' have been transferred. */
if((pktsize < maxpktsize) || (*nbytesptr >= nbytes)) // have we transferred 'nbytes' bytes?
{
if (pktsize < maxpktsize || *nbytesptr >= nbytes) { // Transferred 'nbytes' bytes?
// Save toggle value
pep->bmRcvToggle = ((regRd(rHRSL) & bmRCVTOGRD)) ? 1 : 0;
//printf("\r\n");
rcode = 0;
break;
} else if(bInterval > 0)
}
else if (bInterval > 0)
delay(bInterval); // Delay according to polling interval
} //while( 1 )
return ( rcode);
}
return rcode;
}
/* OUT transfer to arbitrary endpoint. Handles multiple packets if necessary. Transfers 'nbytes' bytes. */
@ -307,9 +293,7 @@ uint8_t USB::outTransfer(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* dat
uint16_t nak_limit = 0;
uint8_t rcode = SetAddress(addr, ep, &pep, &nak_limit);
if(rcode)
return rcode;
if (rcode) return rcode;
return OutTransfer(pep, nak_limit, nbytes, data);
}
@ -322,35 +306,35 @@ uint8_t USB::OutTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t nbytes, uint8
uint8_t maxpktsize = pep->maxPktSize;
if(maxpktsize < 1 || maxpktsize > 64)
if (maxpktsize < 1 || maxpktsize > 64)
return USB_ERROR_INVALID_MAX_PKT_SIZE;
uint32_t timeout = (uint32_t)millis() + USB_XFER_TIMEOUT;
regWr(rHCTL, (pep->bmSndToggle) ? bmSNDTOG1 : bmSNDTOG0); //set toggle value
while(bytes_left) {
while (bytes_left) {
retry_count = 0;
nak_count = 0;
bytes_tosend = (bytes_left >= maxpktsize) ? maxpktsize : bytes_left;
bytesWr(rSNDFIFO, bytes_tosend, data_p); //filling output FIFO
regWr(rSNDBC, bytes_tosend); //set number of bytes
regWr(rHXFR, (tokOUT | pep->epAddr)); //dispatch packet
while(!(regRd(rHIRQ) & bmHXFRDNIRQ)); //wait for the completion IRQ
while (!(regRd(rHIRQ) & bmHXFRDNIRQ)); //wait for the completion IRQ
regWr(rHIRQ, bmHXFRDNIRQ); //clear IRQ
rcode = (regRd(rHRSL) & 0x0f);
rcode = (regRd(rHRSL) & 0x0F);
while(rcode && ((int32_t)((uint32_t)millis() - timeout) < 0L)) {
switch(rcode) {
while (rcode && ((int32_t)((uint32_t)millis() - timeout) < 0L)) {
switch (rcode) {
case hrNAK:
nak_count++;
if(nak_limit && (nak_count == nak_limit))
if (nak_limit && (nak_count == nak_limit))
goto breakout;
//return ( rcode);
break;
case hrTIMEOUT:
retry_count++;
if(retry_count == USB_RETRY_LIMIT)
if (retry_count == USB_RETRY_LIMIT)
goto breakout;
//return ( rcode);
break;
@ -361,31 +345,32 @@ uint8_t USB::OutTransfer(EpInfo *pep, uint16_t nak_limit, uint16_t nbytes, uint8
break;
default:
goto breakout;
}//switch( rcode
}
/* process NAK according to Host out NAK bug */
regWr(rSNDBC, 0);
regWr(rSNDFIFO, *data_p);
regWr(rSNDBC, bytes_tosend);
regWr(rHXFR, (tokOUT | pep->epAddr)); //dispatch packet
while(!(regRd(rHIRQ) & bmHXFRDNIRQ)); //wait for the completion IRQ
while (!(regRd(rHIRQ) & bmHXFRDNIRQ)); //wait for the completion IRQ
regWr(rHIRQ, bmHXFRDNIRQ); //clear IRQ
rcode = (regRd(rHRSL) & 0x0f);
}//while( rcode && ....
rcode = (regRd(rHRSL) & 0x0F);
} // while rcode && ....
bytes_left -= bytes_tosend;
data_p += bytes_tosend;
}//while( bytes_left...
} // while bytes_left...
breakout:
pep->bmSndToggle = (regRd(rHRSL) & bmSNDTOGRD) ? 1 : 0; //bmSNDTOG1 : bmSNDTOG0; //update toggle
return ( rcode); //should be 0 in all cases
}
/* dispatch USB packet. Assumes peripheral address is set and relevant buffer is loaded/empty */
/* If NAK, tries to re-send up to nak_limit times */
/* If nak_limit == 0, do not count NAKs, exit after timeout */
/* If bus timeout, re-sends up to USB_RETRY_LIMIT times */
/* return codes 0x00-0x0f are HRSLT( 0x00 being success ), 0xff means timeout */
/* return codes 0x00-0x0F are HRSLT( 0x00 being success ), 0xFF means timeout */
uint8_t USB::dispatchPkt(uint8_t token, uint8_t ep, uint16_t nak_limit) {
uint32_t timeout = (uint32_t)millis() + USB_XFER_TIMEOUT;
uint8_t tmpdata;
@ -393,55 +378,53 @@ uint8_t USB::dispatchPkt(uint8_t token, uint8_t ep, uint16_t nak_limit) {
uint8_t retry_count = 0;
uint16_t nak_count = 0;
while((int32_t)((uint32_t)millis() - timeout) < 0L) {
#if defined(ESP8266) || defined(ESP32)
while ((int32_t)((uint32_t)millis() - timeout) < 0L) {
#if defined(ESP8266) || defined(ESP32)
yield(); // needed in order to reset the watchdog timer on the ESP8266
#endif
#endif
regWr(rHXFR, (token | ep)); //launch the transfer
rcode = USB_ERROR_TRANSFER_TIMEOUT;
while((int32_t)((uint32_t)millis() - timeout) < 0L) //wait for transfer completion
{
#if defined(ESP8266) || defined(ESP32)
yield(); // needed in order to reset the watchdog timer on the ESP8266
#endif
while ((int32_t)((uint32_t)millis() - timeout) < 0L) { //wait for transfer completion
#if defined(ESP8266) || defined(ESP32)
yield(); // needed to reset the watchdog timer on the ESP8266
#endif
tmpdata = regRd(rHIRQ);
if(tmpdata & bmHXFRDNIRQ) {
if (tmpdata & bmHXFRDNIRQ) {
regWr(rHIRQ, bmHXFRDNIRQ); //clear the interrupt
rcode = 0x00;
break;
}//if( tmpdata & bmHXFRDNIRQ
}
}//while ( millis() < timeout
} // while millis() < timeout
//if (rcode != 0x00) //exit if timeout
// return ( rcode);
rcode = (regRd(rHRSL) & 0x0f); //analyze transfer result
rcode = (regRd(rHRSL) & 0x0F); //analyze transfer result
switch(rcode) {
switch (rcode) {
case hrNAK:
nak_count++;
if(nak_limit && (nak_count == nak_limit))
if (nak_limit && (nak_count == nak_limit))
return (rcode);
break;
case hrTIMEOUT:
retry_count++;
if(retry_count == USB_RETRY_LIMIT)
if (retry_count == USB_RETRY_LIMIT)
return (rcode);
break;
default:
return (rcode);
}//switch( rcode
}
}//while( timeout > millis()
return ( rcode);
} // while timeout > millis()
return rcode;
}
/* USB main task. Performs enumeration/cleanup */
void USB::Task(void) //USB state machine
{
void USB::Task(void) { //USB state machine
uint8_t rcode;
uint8_t tmpdata;
static uint32_t delay = 0;
@ -453,38 +436,36 @@ void USB::Task(void) //USB state machine
tmpdata = getVbusState();
/* modify USB task state if Vbus changed */
switch(tmpdata) {
switch (tmpdata) {
case SE1: //illegal state
usb_task_state = USB_DETACHED_SUBSTATE_ILLEGAL;
lowspeed = false;
break;
case SE0: //disconnected
if((usb_task_state & USB_STATE_MASK) != USB_STATE_DETACHED)
if ((usb_task_state & USB_STATE_MASK) != USB_STATE_DETACHED)
usb_task_state = USB_DETACHED_SUBSTATE_INITIALIZE;
lowspeed = false;
break;
case LSHOST:
lowspeed = true;
//intentional fallthrough
case FSHOST: //attached
if((usb_task_state & USB_STATE_MASK) == USB_STATE_DETACHED) {
if ((usb_task_state & USB_STATE_MASK) == USB_STATE_DETACHED) {
delay = (uint32_t)millis() + USB_SETTLE_DELAY;
usb_task_state = USB_ATTACHED_SUBSTATE_SETTLE;
}
break;
}// switch( tmpdata
}
for(uint8_t i = 0; i < USB_NUMDEVICES; i++)
if(devConfig[i])
rcode = devConfig[i]->Poll();
for (uint8_t i = 0; i < USB_NUMDEVICES; i++)
if (devConfig[i]) rcode = devConfig[i]->Poll();
switch(usb_task_state) {
switch (usb_task_state) {
case USB_DETACHED_SUBSTATE_INITIALIZE:
init();
for(uint8_t i = 0; i < USB_NUMDEVICES; i++)
if(devConfig[i])
for (uint8_t i = 0; i < USB_NUMDEVICES; i++)
if (devConfig[i])
rcode = devConfig[i]->Release();
usb_task_state = USB_DETACHED_SUBSTATE_WAIT_FOR_DEVICE;
@ -494,7 +475,7 @@ void USB::Task(void) //USB state machine
case USB_DETACHED_SUBSTATE_ILLEGAL: //just sit here
break;
case USB_ATTACHED_SUBSTATE_SETTLE: //settle time for just attached device
if((int32_t)((uint32_t)millis() - delay) >= 0L)
if ((int32_t)((uint32_t)millis() - delay) >= 0L)
usb_task_state = USB_ATTACHED_SUBSTATE_RESET_DEVICE;
else break; // don't fall through
case USB_ATTACHED_SUBSTATE_RESET_DEVICE:
@ -502,7 +483,7 @@ void USB::Task(void) //USB state machine
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE;
break;
case USB_ATTACHED_SUBSTATE_WAIT_RESET_COMPLETE:
if((regRd(rHCTL) & bmBUSRST) == 0) {
if ((regRd(rHCTL) & bmBUSRST) == 0) {
tmpdata = regRd(rMODE) | bmSOFKAENAB; //start SOF generation
regWr(rMODE, tmpdata);
usb_task_state = USB_ATTACHED_SUBSTATE_WAIT_SOF;
@ -510,7 +491,7 @@ void USB::Task(void) //USB state machine
}
break;
case USB_ATTACHED_SUBSTATE_WAIT_SOF: //todo: change check order
if(regRd(rHIRQ) & bmFRAMEIRQ) {
if (regRd(rHIRQ) & bmFRAMEIRQ) {
//when first SOF received _and_ 20ms has passed we can continue
/*
if (delay < (uint32_t)millis()) //20ms passed
@ -521,7 +502,7 @@ void USB::Task(void) //USB state machine
}
break;
case USB_ATTACHED_SUBSTATE_WAIT_RESET:
if((int32_t)((uint32_t)millis() - delay) >= 0L) usb_task_state = USB_STATE_CONFIGURING;
if ((int32_t)((uint32_t)millis() - delay) >= 0L) usb_task_state = USB_STATE_CONFIGURING;
else break; // don't fall through
case USB_STATE_CONFIGURING:
@ -530,20 +511,19 @@ void USB::Task(void) //USB state machine
rcode = Configuring(0, 0, lowspeed);
if(rcode) {
if(rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE) {
if (!rcode)
usb_task_state = USB_STATE_RUNNING;
else if (rcode != USB_DEV_CONFIG_ERROR_DEVICE_INIT_INCOMPLETE) {
usb_error = rcode;
usb_task_state = USB_STATE_ERROR;
}
} else
usb_task_state = USB_STATE_RUNNING;
break;
case USB_STATE_RUNNING:
break;
case USB_STATE_ERROR:
//MAX3421E::Init();
break;
} // switch( usb_task_state )
}
}
uint8_t USB::DefaultAddressing(uint8_t parent, uint8_t port, bool lowspeed) {
@ -553,38 +533,28 @@ uint8_t USB::DefaultAddressing(uint8_t parent, uint8_t port, bool lowspeed) {
// Get pointer to pseudo device with address 0 assigned
p0 = addrPool.GetUsbDevicePtr(0);
if (!p0) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if (!p0->epinfo) return USB_ERROR_EPINFO_IS_NULL;
if(!p0)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if(!p0->epinfo)
return USB_ERROR_EPINFO_IS_NULL;
p0->lowspeed = (lowspeed) ? true : false;
p0->lowspeed = lowspeed;
// Allocate new address according to device class
uint8_t bAddress = addrPool.AllocAddress(parent, false, port);
if(!bAddress)
return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
if (!bAddress) return USB_ERROR_OUT_OF_ADDRESS_SPACE_IN_POOL;
p = addrPool.GetUsbDevicePtr(bAddress);
if(!p)
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
if (!p) return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
p->lowspeed = lowspeed;
// Assign new address to the device
rcode = setAddr(0, 0, bAddress);
if(rcode) {
if (rcode) {
addrPool.FreeAddress(bAddress);
bAddress = 0;
return rcode;
}
return 0;
};
return rcode;
}
uint8_t USB::AttemptConfig(uint8_t driver, uint8_t parent, uint8_t port, bool lowspeed) {
//printf("AttemptConfig: parent = %i, port = %i\r\n", parent, port);
@ -592,35 +562,40 @@ uint8_t USB::AttemptConfig(uint8_t driver, uint8_t parent, uint8_t port, bool lo
again:
uint8_t rcode = devConfig[driver]->ConfigureDevice(parent, port, lowspeed);
if(rcode == USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET) {
if(parent == 0) {
if (rcode == USB_ERROR_CONFIG_REQUIRES_ADDITIONAL_RESET) {
if (parent == 0) {
// Send a bus reset on the root interface.
regWr(rHCTL, bmBUSRST); //issue bus reset
delay(102); // delay 102ms, compensate for clock inaccuracy.
} else {
}
else {
// reset parent port
devConfig[parent]->ResetHubPort(port);
}
} else if(rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works
}
else if (rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works
delay(100);
retries++;
goto again;
} else if(rcode)
}
else if (rcode)
return rcode;
rcode = devConfig[driver]->Init(parent, port, lowspeed);
if(rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works
if (rcode == hrJERR && retries < 3) { // Some devices returns this when plugged in - trying to initialize the device again usually works
delay(100);
retries++;
goto again;
}
if(rcode) {
if (rcode) {
// Issue a bus reset, because the device may be in a limbo state
if(parent == 0) {
if (parent == 0) {
// Send a bus reset on the root interface.
regWr(rHCTL, bmBUSRST); //issue bus reset
delay(102); // delay 102ms, compensate for clock inaccuracy.
} else {
}
else {
// reset parent port
devConfig[parent]->ResetHubPort(port);
}
@ -628,11 +603,10 @@ again:
return rcode;
}
/*
* This is broken. We need to enumerate differently.
/**
* This is broken. It needs to enumerate differently.
* It causes major problems with several devices if detected in an unexpected order.
*
*
* Oleg - I wouldn't do anything before the newly connected device is considered sane.
* i.e.(delays are not indicated for brevity):
* 1. reset
@ -649,7 +623,7 @@ again:
* 4: set address
* 5: pUsb->setEpInfoEntry(bAddress, 1, epInfo), exit on fail
* 6: while (configurations) {
* for(each configuration) {
* for (each configuration) {
* for (each driver) {
* 6a: Ask device if it likes configuration. Returns 0 on OK.
* If successful, the driver configured device.
@ -663,7 +637,7 @@ again:
* }
* }
* }
* 7: for(each driver) {
* 7: for (each driver) {
* 7a: Ask device if it knows this VID/PID. Acts exactly like 6a, but using VID/PID
* 8: if we get here, no driver likes the device plugged in, so exit failure.
*
@ -689,7 +663,7 @@ uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) {
AddressPool &addrPool = GetAddressPool();
// Get pointer to pseudo device with address 0 assigned
p = addrPool.GetUsbDevicePtr(0);
if(!p) {
if (!p) {
//printf("Configuring error: USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL\r\n");
return USB_ERROR_ADDRESS_NOT_FOUND_IN_POOL;
}
@ -709,7 +683,7 @@ uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) {
// Restore p->epinfo
p->epinfo = oldep_ptr;
if(rcode) {
if (rcode) {
//printf("Configuring error: Can't get USB_DEVICE_DESCRIPTOR\r\n");
return rcode;
}
@ -718,40 +692,36 @@ uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) {
// Allocate new address according to device class
//bAddress = addrPool.AllocAddress(parent, false, port);
uint16_t vid = udd->idVendor;
uint16_t pid = udd->idProduct;
uint8_t klass = udd->bDeviceClass;
uint8_t subklass = udd->bDeviceSubClass;
uint16_t vid = udd->idVendor, pid = udd->idProduct;
uint8_t klass = udd->bDeviceClass, subklass = udd->bDeviceSubClass;
// Attempt to configure if VID/PID or device class matches with a driver
// Qualify with subclass too.
//
// VID/PID & class tests default to false for drivers not yet ported
// subclass defaults to true, so you don't have to define it if you don't have to.
//
for(devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) {
if(!devConfig[devConfigIndex]) continue; // no driver
if(devConfig[devConfigIndex]->GetAddress()) continue; // consumed
if(devConfig[devConfigIndex]->DEVSUBCLASSOK(subklass) && (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass))) {
for (devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) {
if (!devConfig[devConfigIndex]) continue; // no driver
if (devConfig[devConfigIndex]->GetAddress()) continue; // consumed
if (devConfig[devConfigIndex]->DEVSUBCLASSOK(subklass) && (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass))) {
rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed);
if(rcode != USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED)
if (rcode != USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED)
break;
}
}
if(devConfigIndex < USB_NUMDEVICES) {
return rcode;
}
if (devConfigIndex < USB_NUMDEVICES) return rcode;
// blindly attempt to configure
for(devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) {
if(!devConfig[devConfigIndex]) continue;
if(devConfig[devConfigIndex]->GetAddress()) continue; // consumed
if(devConfig[devConfigIndex]->DEVSUBCLASSOK(subklass) && (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass))) continue; // If this is true it means it must have returned USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED above
for (devConfigIndex = 0; devConfigIndex < USB_NUMDEVICES; devConfigIndex++) {
if (!devConfig[devConfigIndex]) continue;
if (devConfig[devConfigIndex]->GetAddress()) continue; // consumed
if (devConfig[devConfigIndex]->DEVSUBCLASSOK(subklass) && (devConfig[devConfigIndex]->VIDPIDOK(vid, pid) || devConfig[devConfigIndex]->DEVCLASSOK(klass))) continue; // If this is true it means it must have returned USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED above
rcode = AttemptConfig(devConfigIndex, parent, port, lowspeed);
//printf("ERROR ENUMERATING %2.2x\r\n", rcode);
if(!(rcode == USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED || rcode == USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE)) {
if (!(rcode == USB_DEV_CONFIG_ERROR_DEVICE_NOT_SUPPORTED || rcode == USB_ERROR_CLASS_INSTANCE_ALREADY_IN_USE)) {
// in case of an error dev_index should be reset to 0
// in order to start from the very beginning the
// next time the program gets here
@ -760,21 +730,18 @@ uint8_t USB::Configuring(uint8_t parent, uint8_t port, bool lowspeed) {
return rcode;
}
}
// if we get here that means that the device class is not supported by any of registered classes
rcode = DefaultAddressing(parent, port, lowspeed);
return rcode;
// Arriving here means the device class is unsupported by registered classes
return DefaultAddressing(parent, port, lowspeed);
}
uint8_t USB::ReleaseDevice(uint8_t addr) {
if(!addr)
return 0;
for(uint8_t i = 0; i < USB_NUMDEVICES; i++) {
if(!devConfig[i]) continue;
if(devConfig[i]->GetAddress() == addr)
if (addr) {
for (uint8_t i = 0; i < USB_NUMDEVICES; i++) {
if (!devConfig[i]) continue;
if (devConfig[i]->GetAddress() == addr)
return devConfig[i]->Release();
}
}
return 0;
}
@ -782,12 +749,12 @@ uint8_t USB::ReleaseDevice(uint8_t addr) {
//get device descriptor
uint8_t USB::getDevDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t* dataptr) {
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, 0x00, USB_DESCRIPTOR_DEVICE, 0x0000, nbytes, nbytes, dataptr, NULL));
return ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, 0x00, USB_DESCRIPTOR_DEVICE, 0x0000, nbytes, nbytes, dataptr, NULL);
}
//get configuration descriptor
uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint16_t nbytes, uint8_t conf, uint8_t* dataptr) {
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, nbytes, nbytes, dataptr, NULL));
return ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, nbytes, nbytes, dataptr, NULL);
}
/* Requests Configuration Descriptor. Sends two Get Conf Descr requests. The first one gets the total length of all descriptors, then the second one requests this
@ -798,21 +765,19 @@ uint8_t USB::getConfDescr(uint8_t addr, uint8_t ep, uint8_t conf, USBReadParser
USB_CONFIGURATION_DESCRIPTOR *ucd = reinterpret_cast<USB_CONFIGURATION_DESCRIPTOR *>(buf);
uint8_t ret = getConfDescr(addr, ep, 9, conf, buf);
if(ret)
return ret;
if (ret) return ret;
uint16_t total = ucd->wTotalLength;
//USBTRACE2("\r\ntotal conf.size:", total);
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, total, bufSize, buf, p));
return ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, conf, USB_DESCRIPTOR_CONFIGURATION, 0x0000, total, bufSize, buf, p);
}
//get string descriptor
uint8_t USB::getStrDescr(uint8_t addr, uint8_t ep, uint16_t ns, uint8_t index, uint16_t langid, uint8_t* dataptr) {
return ( ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, index, USB_DESCRIPTOR_STRING, langid, ns, ns, dataptr, NULL));
return ctrlReq(addr, ep, bmREQ_GET_DESCR, USB_REQUEST_GET_DESCRIPTOR, index, USB_DESCRIPTOR_STRING, langid, ns, ns, dataptr, NULL);
}
//set address
@ -821,12 +786,12 @@ uint8_t USB::setAddr(uint8_t oldaddr, uint8_t ep, uint8_t newaddr) {
//delay(2); //per USB 2.0 sect.9.2.6.3
delay(300); // Older spec says you should wait at least 200ms
return rcode;
//return ( ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL));
//return ctrlReq(oldaddr, ep, bmREQ_SET, USB_REQUEST_SET_ADDRESS, newaddr, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL);
}
//set configuration
uint8_t USB::setConf(uint8_t addr, uint8_t ep, uint8_t conf_value) {
return ( ctrlReq(addr, ep, bmREQ_SET, USB_REQUEST_SET_CONFIGURATION, conf_value, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL));
return ctrlReq(addr, ep, bmREQ_SET, USB_REQUEST_SET_CONFIGURATION, conf_value, 0x00, 0x0000, 0x0000, 0x0000, NULL, NULL);
}
#endif // defined(USB_METHODS_INLINE)

@ -22,8 +22,9 @@
* Web : http://www.circuitsathome.com
* e-mail : support@circuitsathome.com
*/
#pragma once
/* USB functions */
#ifndef _usb_h_
#define _usb_h_
#include "../../../inc/MarlinConfigPre.h"
@ -50,4 +51,4 @@
#include "parsetools.h"
#include "confdescparser.h"
#endif //_usb_h_
#undef _usb_h_

@ -231,8 +231,8 @@ public:
};
uint8_t RegisterDeviceClass(USBDeviceConfig *pdev) {
for(uint8_t i = 0; i < USB_NUMDEVICES; i++) {
if(!devConfig[i]) {
for (uint8_t i = 0; i < USB_NUMDEVICES; i++) {
if (!devConfig[i]) {
devConfig[i] = pdev;
return 0;
}

@ -22,13 +22,11 @@
* Web : http://www.circuitsathome.com
* e-mail : support@circuitsathome.com
*/
#pragma once
#if !defined(_usb_h_) || defined(__ADDRESS_H__)
#error "Never include address.h directly; include Usb.h instead"
#else
#define __ADDRESS_H__
#ifndef _usb_h_
#error "Never include address.h directly; include Usb.h instead"
#endif
/* NAK powers. To save space in endpoint data structure, amount of retries before giving up and returning 0x4 is stored in */
/* bmNakPower as a power of 2. The actual nak_limit is then calculated as nak_limit = ( 2^bmNakPower - 1) */
@ -63,9 +61,7 @@ struct EpInfo {
//
struct UsbDeviceAddress {
union {
struct {
uint8_t bmAddress : 3; // device address/port number
uint8_t bmParent : 3; // parent hub address
@ -89,7 +85,7 @@ struct UsbDevice {
} __attribute__((packed));
class AddressPool {
public:
public:
virtual UsbDevice* GetUsbDevicePtr(uint8_t addr) = 0;
virtual uint8_t AllocAddress(uint8_t parent, bool is_hub = false, uint8_t port = 0) = 0;
virtual void FreeAddress(uint8_t addr) = 0;
@ -109,63 +105,61 @@ class AddressPoolImpl : public AddressPool {
UsbDevice thePool[MAX_DEVICES_ALLOWED];
// Initializes address pool entry
// Initialize address pool entry
void InitEntry(uint8_t index) {
thePool[index].address.devAddress = 0;
thePool[index].epcount = 1;
thePool[index].lowspeed = 0;
thePool[index].epinfo = &dev0ep;
};
}
// Returns thePool index for a given address
// Return thePool index for a given address
uint8_t FindAddressIndex(uint8_t address = 0) {
for(uint8_t i = 1; i < MAX_DEVICES_ALLOWED; i++) {
if(thePool[i].address.devAddress == address)
for (uint8_t i = 1; i < MAX_DEVICES_ALLOWED; i++)
if (thePool[i].address.devAddress == address)
return i;
}
return 0;
};
}
// Returns thePool child index for a given parent
// Return thePool child index for a given parent
uint8_t FindChildIndex(UsbDeviceAddress addr, uint8_t start = 1) {
for(uint8_t i = (start < 1 || start >= MAX_DEVICES_ALLOWED) ? 1 : start; i < MAX_DEVICES_ALLOWED; i++) {
if(thePool[i].address.bmParent == addr.bmAddress)
for (uint8_t i = (start < 1 || start >= MAX_DEVICES_ALLOWED) ? 1 : start; i < MAX_DEVICES_ALLOWED; i++) {
if (thePool[i].address.bmParent == addr.bmAddress)
return i;
}
return 0;
};
}
// Frees address entry specified by index parameter
void FreeAddressByIndex(uint8_t index) {
// Zero field is reserved and should not be affected
if(index == 0)
return;
if (index == 0) return;
UsbDeviceAddress uda = thePool[index].address;
// If a hub was switched off all port addresses should be freed
if(uda.bmHub == 1) {
for(uint8_t i = 1; (i = FindChildIndex(uda, i));)
if (uda.bmHub == 1) {
for (uint8_t i = 1; (i = FindChildIndex(uda, i));)
FreeAddressByIndex(i);
// If the hub had the last allocated address, hubCounter should be decremented
if(hubCounter == uda.bmAddress)
hubCounter--;
if (hubCounter == uda.bmAddress) hubCounter--;
}
InitEntry(index);
}
// Initializes the whole address pool at once
// Initialize the whole address pool at once
void InitAllAddresses() {
for(uint8_t i = 1; i < MAX_DEVICES_ALLOWED; i++)
for (uint8_t i = 1; i < MAX_DEVICES_ALLOWED; i++)
InitEntry(i);
hubCounter = 0;
};
}
public:
@ -182,55 +176,50 @@ public:
dev0ep.bmNakPower = USB_NAK_MAX_POWER;
InitAllAddresses();
};
}
// Returns a pointer to a specified address entry
// Return a pointer to a specified address entry
virtual UsbDevice* GetUsbDevicePtr(uint8_t addr) {
if(!addr)
return thePool;
if (!addr) return thePool;
uint8_t index = FindAddressIndex(addr);
return index ? thePool + index : NULL;
}
return (!index) ? NULL : thePool + index;
};
// Performs an operation specified by pfunc for each addressed device
// Perform an operation specified by pfunc for each addressed device
void ForEachUsbDevice(UsbDeviceHandleFunc pfunc) {
if(!pfunc)
return;
for(uint8_t i = 1; i < MAX_DEVICES_ALLOWED; i++)
if(thePool[i].address.devAddress)
if (pfunc) {
for (uint8_t i = 1; i < MAX_DEVICES_ALLOWED; i++)
if (thePool[i].address.devAddress)
pfunc(thePool + i);
};
}
}
// Allocates new address
// Allocate new address
virtual uint8_t AllocAddress(uint8_t parent, bool is_hub = false, uint8_t port = 0) {
/* if (parent != 0 && port == 0)
USB_HOST_SERIAL.println("PRT:0"); */
UsbDeviceAddress _parent;
_parent.devAddress = parent;
if(_parent.bmReserved || port > 7)
if (_parent.bmReserved || port > 7)
//if(parent > 127 || port > 7)
return 0;
if(is_hub && hubCounter == 7)
return 0;
if (is_hub && hubCounter == 7) return 0;
// finds first empty address entry starting from one
uint8_t index = FindAddressIndex(0);
if(!index) // if empty entry is not found
return 0;
if (!index) return 0; // if empty entry is not found
if(_parent.devAddress == 0) {
if(is_hub) {
if (_parent.devAddress == 0) {
if (is_hub) {
thePool[index].address.devAddress = 0x41;
hubCounter++;
} else
}
else
thePool[index].address.devAddress = 1;
return thePool[index].address.devAddress;
@ -239,10 +228,11 @@ public:
UsbDeviceAddress addr;
addr.devAddress = 0; // Ensure all bits are zero
addr.bmParent = _parent.bmAddress;
if(is_hub) {
if (is_hub) {
addr.bmHub = 1;
addr.bmAddress = ++hubCounter;
} else {
}
else {
addr.bmHub = 0;
addr.bmAddress = port;
}
@ -256,36 +246,26 @@ public:
USB_HOST_SERIAL.println(addr.bmAddress, HEX);
*/
return thePool[index].address.devAddress;
};
}
// Empties pool entry
// Empty the pool entry
virtual void FreeAddress(uint8_t addr) {
// if the root hub is disconnected all the addresses should be initialized
if(addr == 0x41) {
if (addr == 0x41) {
InitAllAddresses();
return;
}
uint8_t index = FindAddressIndex(addr);
FreeAddressByIndex(index);
};
FreeAddressByIndex(FindAddressIndex(addr));
}
// Returns number of hubs attached
// It can be rather helpfull to find out if there are hubs attached than getting the exact number of hubs.
//uint8_t GetNumHubs()
//{
// return hubCounter;
//};
//uint8_t GetNumDevices()
//{
// Return number of hubs attached
// It can be helpful to find out if hubs are attached when getting the exact number of hubs.
//uint8_t GetNumHubs() { return hubCounter; }
//uint8_t GetNumDevices() {
// uint8_t counter = 0;
// for (uint8_t i=1; i<MAX_DEVICES_ALLOWED; i++)
// if (thePool[i].address != 0);
// counter ++;
// for (uint8_t i = 1; i < MAX_DEVICES_ALLOWED; i++)
// if (thePool[i].address != 0); counter++;
// return counter;
//};
//}
};
#endif // __ADDRESS_H__

@ -22,11 +22,11 @@
* Web : http://www.circuitsathome.com
* e-mail : support@circuitsathome.com
*/
#if !defined(_usb_h_) || defined(__CONFDESCPARSER_H__)
#error "Never include confdescparser.h directly; include Usb.h instead"
#else
#pragma once
#define __CONFDESCPARSER_H__
#ifndef _usb_h_
#error "Never include confdescparser.h directly; include Usb.h instead"
#endif
class UsbConfigXtracter {
public:
@ -34,7 +34,7 @@ public:
//virtual void InterfaceXtract(uint8_t conf, const USB_INTERFACE_DESCRIPTOR *iface) = 0;
virtual void EndpointXtract(uint8_t conf __attribute__((unused)), uint8_t iface __attribute__((unused)), uint8_t alt __attribute__((unused)), uint8_t proto __attribute__((unused)), const USB_ENDPOINT_DESCRIPTOR *ep __attribute__((unused))) {
};
}
};
#define CP_MASK_COMPARE_CLASS 1
@ -69,33 +69,28 @@ class ConfigDescParser : public USBReadParser {
public:
void SetOR(void) {
UseOr = true;
}
void SetOR(void) { UseOr = true; }
ConfigDescParser(UsbConfigXtracter *xtractor);
void Parse(const uint16_t len, const uint8_t *pbuf, const uint16_t &offset);
};
template <const uint8_t CLASS_ID, const uint8_t SUBCLASS_ID, const uint8_t PROTOCOL_ID, const uint8_t MASK>
ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::ConfigDescParser(UsbConfigXtracter *xtractor) :
theXtractor(xtractor),
stateParseDescr(0),
dscrLen(0),
dscrType(0),
UseOr(false) {
theXtractor(xtractor),
stateParseDescr(0),
dscrLen(0),
dscrType(0),
UseOr(false) {
theBuffer.pValue = varBuffer;
valParser.Initialize(&theBuffer);
theSkipper.Initialize(&theBuffer);
};
};
template <const uint8_t CLASS_ID, const uint8_t SUBCLASS_ID, const uint8_t PROTOCOL_ID, const uint8_t MASK>
void ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::Parse(const uint16_t len, const uint8_t *pbuf, const uint16_t &offset __attribute__((unused))) {
uint16_t cntdn = (uint16_t)len;
uint8_t *p = (uint8_t*)pbuf;
while(cntdn)
if(!ParseDescriptor(&p, &cntdn))
return;
while (cntdn) if (!ParseDescriptor(&p, &cntdn)) return;
}
/* Parser for the configuration descriptor. Takes values for class, subclass, protocol fields in interface descriptor and
@ -104,14 +99,13 @@ template <const uint8_t CLASS_ID, const uint8_t SUBCLASS_ID, const uint8_t PROTO
bool ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::ParseDescriptor(uint8_t **pp, uint16_t *pcntdn) {
USB_CONFIGURATION_DESCRIPTOR* ucd = reinterpret_cast<USB_CONFIGURATION_DESCRIPTOR*>(varBuffer);
USB_INTERFACE_DESCRIPTOR* uid = reinterpret_cast<USB_INTERFACE_DESCRIPTOR*>(varBuffer);
switch(stateParseDescr) {
switch (stateParseDescr) {
case 0:
theBuffer.valueSize = 2;
valParser.Initialize(&theBuffer);
stateParseDescr = 1;
case 1:
if(!valParser.Parse(pp, pcntdn))
return false;
if (!valParser.Parse(pp, pcntdn)) return false;
dscrLen = *((uint8_t*)theBuffer.pValue);
dscrType = *((uint8_t*)theBuffer.pValue + 1);
stateParseDescr = 2;
@ -124,7 +118,7 @@ bool ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::ParseDescriptor
theBuffer.pValue = varBuffer + 2;
stateParseDescr = 3;
case 3:
switch(dscrType) {
switch (dscrType) {
case USB_DESCRIPTOR_INTERFACE:
isGoodInterface = false;
break;
@ -137,46 +131,38 @@ bool ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::ParseDescriptor
valParser.Initialize(&theBuffer);
stateParseDescr = 4;
case 4:
switch(dscrType) {
switch (dscrType) {
case USB_DESCRIPTOR_CONFIGURATION:
if(!valParser.Parse(pp, pcntdn))
return false;
if (!valParser.Parse(pp, pcntdn)) return false;
confValue = ucd->bConfigurationValue;
break;
case USB_DESCRIPTOR_INTERFACE:
if(!valParser.Parse(pp, pcntdn))
return false;
if((MASK & CP_MASK_COMPARE_CLASS) && uid->bInterfaceClass != CLASS_ID)
if (!valParser.Parse(pp, pcntdn)) return false;
if ((MASK & CP_MASK_COMPARE_CLASS) && uid->bInterfaceClass != CLASS_ID)
break;
if((MASK & CP_MASK_COMPARE_SUBCLASS) && uid->bInterfaceSubClass != SUBCLASS_ID)
break;
if(UseOr) {
if((!((MASK & CP_MASK_COMPARE_PROTOCOL) && uid->bInterfaceProtocol)))
break;
} else {
if((MASK & CP_MASK_COMPARE_PROTOCOL) && uid->bInterfaceProtocol != PROTOCOL_ID)
if ((MASK & CP_MASK_COMPARE_SUBCLASS) && uid->bInterfaceSubClass != SUBCLASS_ID)
break;
if (UseOr) {
if ((!((MASK & CP_MASK_COMPARE_PROTOCOL) && uid->bInterfaceProtocol))) break;
}
else if ((MASK & CP_MASK_COMPARE_PROTOCOL) && uid->bInterfaceProtocol != PROTOCOL_ID)
break;
isGoodInterface = true;
ifaceNumber = uid->bInterfaceNumber;
ifaceAltSet = uid->bAlternateSetting;
protoValue = uid->bInterfaceProtocol;
break;
case USB_DESCRIPTOR_ENDPOINT:
if(!valParser.Parse(pp, pcntdn))
return false;
if(isGoodInterface)
if(theXtractor)
if (!valParser.Parse(pp, pcntdn)) return false;
if (isGoodInterface && theXtractor)
theXtractor->EndpointXtract(confValue, ifaceNumber, ifaceAltSet, protoValue, (USB_ENDPOINT_DESCRIPTOR*)varBuffer);
break;
//case HID_DESCRIPTOR_HID:
// if (!valParser.Parse(pp, pcntdn))
// return false;
// if (!valParser.Parse(pp, pcntdn)) return false;
// PrintHidDescriptor((const USB_HID_DESCRIPTOR*)varBuffer);
// break;
default:
if(!theSkipper.Skip(pp, pcntdn, dscrLen - 2))
return false;
if (!theSkipper.Skip(pp, pcntdn, dscrLen - 2)) return false;
}
theBuffer.pValue = varBuffer;
stateParseDescr = 0;
@ -202,7 +188,7 @@ void ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::PrintHidDescrip
Notify(PSTR("\r\nbNumDescriptors:\t"), 0x80);
PrintHex<uint8_t > (pDesc->bNumDescriptors, 0x80);
for(uint8_t i = 0; i < pDesc->bNumDescriptors; i++) {
for (uint8_t i = 0; i < pDesc->bNumDescriptors; i++) {
HID_CLASS_DESCRIPTOR_LEN_AND_TYPE *pLT = (HID_CLASS_DESCRIPTOR_LEN_AND_TYPE*)&(pDesc->bDescrType);
Notify(PSTR("\r\nbDescrType:\t\t"), 0x80);
@ -213,6 +199,3 @@ void ConfigDescParser<CLASS_ID, SUBCLASS_ID, PROTOCOL_ID, MASK>::PrintHidDescrip
}
Notify(PSTR("\r\n"), 0x80);
}
#endif // __CONFDESCPARSER_H__

@ -22,11 +22,11 @@
* Web : http://www.circuitsathome.com
* e-mail : support@circuitsathome.com
*/
#pragma once
#if !defined(_usb_h_) || defined(__HEXDUMP_H__)
#error "Never include hexdump.h directly; include Usb.h instead"
#else
#define __HEXDUMP_H__
#ifndef _usb_h_
#error "Never include hexdump.h directly; include Usb.h instead"
#endif
extern int UsbDEBUGlvl;
@ -50,21 +50,19 @@ public:
template <class BASE_CLASS, class LEN_TYPE, class OFFSET_TYPE>
void HexDumper<BASE_CLASS, LEN_TYPE, OFFSET_TYPE>::Parse(const LEN_TYPE len, const uint8_t *pbuf, const OFFSET_TYPE &offset __attribute__((unused))) {
if(UsbDEBUGlvl >= 0x80) { // Fully bypass this block of code if we do not debug.
for(LEN_TYPE j = 0; j < len; j++, byteCount++, byteTotal++) {
if(!byteCount) {
if (UsbDEBUGlvl >= 0x80) { // Fully bypass this block of code if we do not debug.
for (LEN_TYPE j = 0; j < len; j++, byteCount++, byteTotal++) {
if (!byteCount) {
PrintHex<OFFSET_TYPE > (byteTotal, 0x80);
E_Notify(PSTR(": "), 0x80);
}
PrintHex<uint8_t > (pbuf[j], 0x80);
E_Notify(PSTR(" "), 0x80);
if(byteCount == 15) {
if (byteCount == 15) {
E_Notify(PSTR("\r\n"), 0x80);
byteCount = 0xFF;
}
}
}
}
#endif // __HEXDUMP_H__

@ -22,13 +22,12 @@
* Web : http://www.circuitsathome.com
* e-mail : support@circuitsathome.com
*/
#pragma once
#ifndef _usb_h_
#error "Never include macros.h directly; include Usb.h instead"
#endif
#pragma once
////////////////////////////////////////////////////////////////////////////////
// HANDY MACROS
////////////////////////////////////////////////////////////////////////////////
@ -36,7 +35,7 @@
#define VALUE_BETWEEN(v,l,h) (((v)>(l)) && ((v)<(h)))
#define VALUE_WITHIN(v,l,h) (((v)>=(l)) && ((v)<=(h)))
#define output_pgm_message(wa,fp,mp,el) wa = &mp, fp((char *)pgm_read_pointer(wa), el)
#define output_if_between(v,l,h,wa,fp,mp,el) if(VALUE_BETWEEN(v,l,h)) output_pgm_message(wa,fp,mp[v-(l+1)],el);
#define output_if_between(v,l,h,wa,fp,mp,el) if (VALUE_BETWEEN(v,l,h)) output_pgm_message(wa,fp,mp[v-(l+1)],el);
#define SWAP(a, b) (((a) ^= (b)), ((b) ^= (a)), ((a) ^= (b)))
#ifndef __BYTE_GRABBING_DEFINED__

File diff suppressed because it is too large Load Diff

@ -408,7 +408,7 @@ public:
CommandBlockWrapper() :
CommandBlockWrapperBase(0, 0, 0), bmReserved1(0), bmReserved2(0) {
for(int i = 0; i < 16; i++) CBWCB[i] = 0;
for (int i = 0; i < 16; i++) CBWCB[i] = 0;
}
// Generic Wrap, CDB zeroed.
@ -416,7 +416,7 @@ public:
CommandBlockWrapper(uint32_t tag, uint32_t xflen, uint8_t flgs, uint8_t lu, uint8_t cmdlen, uint8_t cmd) :
CommandBlockWrapperBase(tag, xflen, flgs),
bmCBWLUN(lu), bmReserved1(0), bmCBWCBLength(cmdlen), bmReserved2(0) {
for(int i = 0; i < 16; i++) CBWCB[i] = 0;
for (int i = 0; i < 16; i++) CBWCB[i] = 0;
// Type punning can cause optimization problems and bugs.
// Using reinterpret_cast to a dreinterpretifferent object is the proper way to do this.
//(((BASICCDB_t *) CBWCB)->LUN) = cmd;
@ -493,27 +493,17 @@ protected:
bool WriteOk[MASS_MAX_SUPPORTED_LUN];
void PrintEndpointDescriptor(const USB_ENDPOINT_DESCRIPTOR* ep_ptr);
// Additional Initialization Method for Subclasses
virtual uint8_t OnInit() {
return 0;
};
virtual uint8_t OnInit() { return 0; }
public:
BulkOnly(USB *p);
uint8_t GetLastUsbError() {
return bLastUsbError;
};
uint8_t GetLastUsbError() { return bLastUsbError; };
uint8_t GetbMaxLUN() {
return bMaxLUN; // Max LUN
}
uint8_t GetbTheLUN() {
return bTheLUN; // Active LUN
}
uint8_t GetbMaxLUN() { return bMaxLUN; } // Max LUN
uint8_t GetbTheLUN() { return bTheLUN; } // Active LUN
bool WriteProtected(uint8_t lun);
uint8_t MediaCTL(uint8_t lun, uint8_t ctl);
@ -533,16 +523,12 @@ public:
uint8_t Release();
uint8_t Poll();
virtual uint8_t GetAddress() {
return bAddress;
};
virtual uint8_t GetAddress() { return bAddress; }
// UsbConfigXtracter implementation
void EndpointXtract(uint8_t conf, uint8_t iface, uint8_t alt, uint8_t proto, const USB_ENDPOINT_DESCRIPTOR *ep);
virtual bool DEVCLASSOK(uint8_t klass) {
return (klass == USB_CLASS_MASS_STORAGE);
}
virtual bool DEVCLASSOK(uint8_t klass) { return klass == USB_CLASS_MASS_STORAGE; }
uint8_t SCSITransaction6(CDB6_t *cdb, uint16_t buf_size, void *buf, uint8_t dir);
uint8_t SCSITransaction10(CDB10_t *cdb, uint16_t buf_size, void *buf, uint8_t dir);
@ -573,5 +559,4 @@ private:
uint8_t Transaction(CommandBlockWrapper *cbw, uint16_t bsize, void *buf);
uint8_t HandleUsbError(uint8_t error, uint8_t index);
uint8_t HandleSCSIError(uint8_t status);
};

@ -22,11 +22,11 @@
* Web : http://www.circuitsathome.com
* e-mail : support@circuitsathome.com
*/
#if !defined(_usb_h_) || defined(_max3421e_h_)
#error "Never include max3421e.h directly; include Usb.h instead"
#else
#pragma once
#define _max3421e_h_
#ifndef _usb_h_
#error "Never include max3421e.h directly; include Usb.h instead"
#endif
/* MAX3421E register/bit names and bitmasks */
@ -231,6 +231,3 @@
#define MODE_FS_HOST (bmDPPULLDN|bmDMPULLDN|bmHOST|bmSOFKAENAB)
#define MODE_LS_HOST (bmDPPULLDN|bmDMPULLDN|bmHOST|bmLOWSPEED|bmSOFKAENAB)
#endif //_max3421e_h_

@ -35,97 +35,94 @@
int UsbDEBUGlvl = 0x80;
void E_Notifyc(char c, int lvl) {
if(UsbDEBUGlvl < lvl) return;
#if defined(ARDUINO) && ARDUINO >=100
USB_HOST_SERIAL.print(c);
#else
USB_HOST_SERIAL.print(c, BYTE);
#endif
if (UsbDEBUGlvl < lvl) return;
USB_HOST_SERIAL.print(c
#if !defined(ARDUINO) || ARDUINO < 100
, BYTE
#endif
);
//USB_HOST_SERIAL.flush();
}
void E_Notify(char const * msg, int lvl) {
if(UsbDEBUGlvl < lvl) return;
if(!msg) return;
char c;
while((c = pgm_read_byte(msg++))) E_Notifyc(c, lvl);
if (UsbDEBUGlvl < lvl) return;
if (!msg) return;
while (const char c = pgm_read_byte(msg++)) E_Notifyc(c, lvl);
}
void E_NotifyStr(char const * msg, int lvl) {
if(UsbDEBUGlvl < lvl) return;
if(!msg) return;
char c;
while((c = *msg++)) E_Notifyc(c, lvl);
if (UsbDEBUGlvl < lvl) return;
if (!msg) return;
while (const char c = *msg++) E_Notifyc(c, lvl);
}
void E_Notify(uint8_t b, int lvl) {
if(UsbDEBUGlvl < lvl) return;
#if defined(ARDUINO) && ARDUINO >=100
USB_HOST_SERIAL.print(b);
#else
USB_HOST_SERIAL.print(b, DEC);
#endif
if (UsbDEBUGlvl < lvl) return;
USB_HOST_SERIAL.print(b
#if !defined(ARDUINO) || ARDUINO < 100
, DEC
#endif
);
//USB_HOST_SERIAL.flush();
}
void E_Notify(double d, int lvl) {
if(UsbDEBUGlvl < lvl) return;
if (UsbDEBUGlvl < lvl) return;
USB_HOST_SERIAL.print(d);
//USB_HOST_SERIAL.flush();
}
#ifdef DEBUG_USB_HOST
void NotifyFailGetDevDescr(void) {
void NotifyFailGetDevDescr(void) {
Notify(PSTR("\r\ngetDevDescr "), 0x80);
}
}
void NotifyFailSetDevTblEntry(void) {
void NotifyFailSetDevTblEntry(void) {
Notify(PSTR("\r\nsetDevTblEn "), 0x80);
}
}
void NotifyFailGetConfDescr(void) {
void NotifyFailGetConfDescr(void) {
Notify(PSTR("\r\ngetConf "), 0x80);
}
}
void NotifyFailSetConfDescr(void) {
void NotifyFailSetConfDescr(void) {
Notify(PSTR("\r\nsetConf "), 0x80);
}
}
void NotifyFailGetDevDescr(uint8_t reason) {
void NotifyFailGetDevDescr(uint8_t reason) {
NotifyFailGetDevDescr();
NotifyFail(reason);
}
}
void NotifyFailSetDevTblEntry(uint8_t reason) {
void NotifyFailSetDevTblEntry(uint8_t reason) {
NotifyFailSetDevTblEntry();
NotifyFail(reason);
}
}
void NotifyFailGetConfDescr(uint8_t reason) {
void NotifyFailGetConfDescr(uint8_t reason) {
NotifyFailGetConfDescr();
NotifyFail(reason);
}
}
void NotifyFailSetConfDescr(uint8_t reason) {
void NotifyFailSetConfDescr(uint8_t reason) {
NotifyFailSetConfDescr();
NotifyFail(reason);
}
}
void NotifyFailUnknownDevice(uint16_t VID, uint16_t PID) {
void NotifyFailUnknownDevice(uint16_t VID, uint16_t PID) {
Notify(PSTR("\r\nUnknown Device Connected - VID: "), 0x80);
D_PrintHex<uint16_t > (VID, 0x80);
Notify(PSTR(" PID: "), 0x80);
D_PrintHex<uint16_t > (PID, 0x80);
}
}
void NotifyFail(uint8_t rcode) {
void NotifyFail(uint8_t rcode) {
D_PrintHex<uint8_t > (rcode, 0x80);
Notify(PSTR("\r\n"), 0x80);
}
}
#endif // DEBUG_USB_HOST
#endif // USB_FLASH_DRIVE_SUPPORT

@ -22,10 +22,11 @@
* Web : http://www.circuitsathome.com
* e-mail : support@circuitsathome.com
*/
#if !defined(_usb_h_) || defined(__MESSAGE_H__)
#error "Never include message.h directly; include Usb.h instead"
#else
#define __MESSAGE_H__
#pragma once
#ifndef _usb_h_
#error "Never include message.h directly; include Usb.h instead"
#endif
extern int UsbDEBUGlvl;
@ -35,52 +36,50 @@ void E_NotifyStr(char const * msg, int lvl);
void E_Notifyc(char c, int lvl);
#ifdef DEBUG_USB_HOST
#define Notify E_Notify
#define NotifyStr E_NotifyStr
#define Notifyc E_Notifyc
void NotifyFailGetDevDescr(uint8_t reason);
void NotifyFailSetDevTblEntry(uint8_t reason);
void NotifyFailGetConfDescr(uint8_t reason);
void NotifyFailSetConfDescr(uint8_t reason);
void NotifyFailGetDevDescr(void);
void NotifyFailSetDevTblEntry(void);
void NotifyFailGetConfDescr(void);
void NotifyFailSetConfDescr(void);
void NotifyFailUnknownDevice(uint16_t VID, uint16_t PID);
void NotifyFail(uint8_t rcode);
#define Notify E_Notify
#define NotifyStr E_NotifyStr
#define Notifyc E_Notifyc
void NotifyFailGetDevDescr(uint8_t reason);
void NotifyFailSetDevTblEntry(uint8_t reason);
void NotifyFailGetConfDescr(uint8_t reason);
void NotifyFailSetConfDescr(uint8_t reason);
void NotifyFailGetDevDescr(void);
void NotifyFailSetDevTblEntry(void);
void NotifyFailGetConfDescr(void);
void NotifyFailSetConfDescr(void);
void NotifyFailUnknownDevice(uint16_t VID, uint16_t PID);
void NotifyFail(uint8_t rcode);
#else
#define Notify(...) ((void)0)
#define NotifyStr(...) ((void)0)
#define Notifyc(...) ((void)0)
#define NotifyFailGetDevDescr(...) ((void)0)
#define NotifyFailSetDevTblEntry(...) ((void)0)
#define NotifyFailGetConfDescr(...) ((void)0)
#define NotifyFailGetDevDescr(...) ((void)0)
#define NotifyFailSetDevTblEntry(...) ((void)0)
#define NotifyFailGetConfDescr(...) ((void)0)
#define NotifyFailSetConfDescr(...) ((void)0)
#define NotifyFailUnknownDevice(...) ((void)0)
#define NotifyFail(...) ((void)0)
#define Notify(...) ((void)0)
#define NotifyStr(...) ((void)0)
#define Notifyc(...) ((void)0)
#define NotifyFailGetDevDescr(...) ((void)0)
#define NotifyFailSetDevTblEntry(...) ((void)0)
#define NotifyFailGetConfDescr(...) ((void)0)
#define NotifyFailGetDevDescr(...) ((void)0)
#define NotifyFailSetDevTblEntry(...) ((void)0)
#define NotifyFailGetConfDescr(...) ((void)0)
#define NotifyFailSetConfDescr(...) ((void)0)
#define NotifyFailUnknownDevice(...) ((void)0)
#define NotifyFail(...) ((void)0)
#endif
template <class ERROR_TYPE>
void ErrorMessage(uint8_t level, char const * msg, ERROR_TYPE rcode = 0) {
#ifdef DEBUG_USB_HOST
#ifdef DEBUG_USB_HOST
Notify(msg, level);
Notify(PSTR(": "), level);
D_PrintHex<ERROR_TYPE > (rcode, level);
Notify(PSTR("\r\n"), level);
#endif
#endif
}
template <class ERROR_TYPE>
void ErrorMessage(char const * msg __attribute__((unused)), ERROR_TYPE rcode __attribute__((unused)) = 0) {
#ifdef DEBUG_USB_HOST
#ifdef DEBUG_USB_HOST
Notify(msg, 0x80);
Notify(PSTR(": "), 0x80);
D_PrintHex<ERROR_TYPE > (rcode, 0x80);
Notify(PSTR("\r\n"), 0x80);
#endif
#endif
}
#endif // __MESSAGE_H__

@ -30,30 +30,28 @@
#include "Usb.h"
bool MultiByteValueParser::Parse(uint8_t **pp, uint16_t *pcntdn) {
if(!pBuf) {
if (!pBuf) {
Notify(PSTR("Buffer pointer is NULL!\r\n"), 0x80);
return false;
}
for(; countDown && (*pcntdn); countDown--, (*pcntdn)--, (*pp)++)
for (; countDown && (*pcntdn); countDown--, (*pcntdn)--, (*pp)++)
pBuf[valueSize - countDown] = (**pp);
if(countDown)
return false;
if (countDown) return false;
countDown = valueSize;
return true;
}
bool PTPListParser::Parse(uint8_t **pp, uint16_t *pcntdn, PTP_ARRAY_EL_FUNC pf, const void *me) {
switch(nStage) {
switch (nStage) {
case 0:
pBuf->valueSize = lenSize;
theParser.Initialize(pBuf);
nStage = 1;
case 1:
if(!theParser.Parse(pp, pcntdn))
return false;
if (!theParser.Parse(pp, pcntdn)) return false;
arLen = 0;
arLen = (pBuf->valueSize >= 4) ? *((uint32_t*)pBuf->pValue) : (uint32_t)(*((uint16_t*)pBuf->pValue));
@ -66,12 +64,9 @@ bool PTPListParser::Parse(uint8_t **pp, uint16_t *pcntdn, PTP_ARRAY_EL_FUNC pf,
nStage = 3;
case 3:
for(; arLenCntdn; arLenCntdn--) {
if(!theParser.Parse(pp, pcntdn))
return false;
if(pf)
pf(pBuf, (arLen - arLenCntdn), me);
for (; arLenCntdn; arLenCntdn--) {
if (!theParser.Parse(pp, pcntdn)) return false;
if (pf) pf(pBuf, (arLen - arLenCntdn), me);
}
nStage = 0;

@ -22,11 +22,11 @@
* Web : http://www.circuitsathome.com
* e-mail : support@circuitsathome.com
*/
#pragma once
#if !defined(_usb_h_) || defined(__PARSETOOLS_H__)
#error "Never include parsetools.h directly; include Usb.h instead"
#else
#define __PARSETOOLS_H__
#ifndef _usb_h_
#error "Never include parsetools.h directly; include Usb.h instead"
#endif
struct MultiValueBuffer {
uint8_t valueSize;
@ -43,14 +43,12 @@ public:
MultiByteValueParser() : pBuf(NULL), countDown(0), valueSize(0) {
};
const uint8_t* GetBuffer() {
return pBuf;
};
const uint8_t* GetBuffer() { return pBuf; }
void Initialize(MultiValueBuffer * const pbuf) {
pBuf = (uint8_t*)pbuf->pValue;
countDown = valueSize = pbuf->valueSize;
};
}
bool Parse(uint8_t **pp, uint16_t *pcntdn);
};
@ -63,26 +61,26 @@ class ByteSkipper {
public:
ByteSkipper() : pBuf(NULL), nStage(0), countDown(0) {
};
}
void Initialize(MultiValueBuffer *pbuf) {
pBuf = (uint8_t*)pbuf->pValue;
countDown = 0;
};
}
bool Skip(uint8_t **pp, uint16_t *pcntdn, uint16_t bytes_to_skip) {
switch(nStage) {
switch (nStage) {
case 0:
countDown = bytes_to_skip;
nStage++;
case 1:
for(; countDown && (*pcntdn); countDown--, (*pp)++, (*pcntdn)--);
for (; countDown && (*pcntdn); countDown--, (*pp)++, (*pcntdn)--);
if(!countDown)
if (!countDown)
nStage = 0;
};
}
return (!countDown);
};
}
};
// Pointer to a callback function triggered for each element of PTP array when used with PTPArrayParser
@ -122,8 +120,8 @@ public:
lenSize(0),
valSize(0),
pBuf(NULL),
prsMode(modeArray) {
};
prsMode(modeArray) { }
;
void Initialize(const uint8_t len_size, const uint8_t val_size, MultiValueBuffer * const p, const uint8_t mode = modeArray) {
pBuf = p;
@ -131,18 +129,17 @@ public:
valSize = val_size;
prsMode = mode;
if(prsMode == modeRange) {
if (prsMode == modeRange) {
arLenCntdn = arLen = 3;
nStage = 2;
} else {
}
else {
arLenCntdn = arLen = 0;
nStage = 0;
}
enStage = 0;
theParser.Initialize(p);
};
}
bool Parse(uint8_t **pp, uint16_t *pcntdn, PTP_ARRAY_EL_FUNC pf, const void *me = NULL);
};
#endif // __PARSETOOLS_H__

@ -22,71 +22,59 @@
* Web : http://www.circuitsathome.com
* e-mail : support@circuitsathome.com
*/
#pragma once
#if !defined(_usb_h_) || defined(__PRINTHEX_H__)
#error "Never include printhex.h directly; include Usb.h instead"
#else
#define __PRINTHEX_H__
#ifndef _usb_h_
#error "Never include printhex.h directly; include Usb.h instead"
#endif
void E_Notifyc(char c, int lvl);
template <class T>
void PrintHex(T val, int lvl) {
int num_nibbles = sizeof (T) * 2;
do {
char v = 48 + (((val >> (num_nibbles - 1) * 4)) & 0x0f);
if(v > 57) v += 7;
if (v > 57) v += 7;
E_Notifyc(v, lvl);
} while(--num_nibbles);
} while (--num_nibbles);
}
template <class T>
void PrintBin(T val, int lvl) {
for(T mask = (((T)1) << ((sizeof (T) << 3) - 1)); mask; mask >>= 1)
if(val & mask)
E_Notifyc('1', lvl);
else
E_Notifyc('0', lvl);
for (T mask = (((T)1) << ((sizeof (T) << 3) - 1)); mask; mask >>= 1)
E_Notifyc(val & mask ? '1' : '0', lvl);
}
template <class T>
void SerialPrintHex(T val) {
int num_nibbles = sizeof (T) * 2;
do {
char v = 48 + (((val >> (num_nibbles - 1) * 4)) & 0x0f);
if(v > 57) v += 7;
if (v > 57) v += 7;
USB_HOST_SERIAL.print(v);
} while(--num_nibbles);
} while (--num_nibbles);
}
template <class T>
void PrintHex2(Print *prn, T val) {
T mask = (((T)1) << (((sizeof (T) << 1) - 1) << 2));
while(mask > 1) {
if(val < mask)
prn->print("0");
while (mask > 1) {
if (val < mask) prn->print("0");
mask >>= 4;
}
prn->print((T)val, HEX);
}
template <class T> void D_PrintHex(T val __attribute__((unused)), int lvl __attribute__((unused))) {
#ifdef DEBUG_USB_HOST
#ifdef DEBUG_USB_HOST
PrintHex<T > (val, lvl);
#endif
#endif
}
template <class T>
void D_PrintBin(T val, int lvl) {
#ifdef DEBUG_USB_HOST
#ifdef DEBUG_USB_HOST
PrintBin<T > (val, lvl);
#endif
#endif
}
#endif // __PRINTHEX_H__

@ -35,7 +35,7 @@
* flash drives and simple USB hard drives.
* Disable this by defining DELAY(x) to be delay(x).
*/
#define delay(x) if((x) < 200) safe_delay(x)
#define delay(x) if ((x) < 200) safe_delay(x)
/* Almost all USB flash drives and simple USB hard drives fail the write
* protect test and add 20 - 30 seconds to USB init. Set SKIP_WRITE_PROTECT
* to nonzero to skip the test and assume the drive is writable.

@ -23,12 +23,11 @@
* e-mail : support@circuitsathome.com
*/
#if !defined(_usb_h_) || defined(_ch9_h_)
#error "Never include usb_ch9.h directly; include Usb.h instead"
#else
#ifndef _usb_h_
#error "Never include usb_ch9.h directly; include Usb.h instead"
#endif
/* USB chapter 9 structures */
#define _ch9_h_
/* Misc.USB constants */
#define DEV_DESCR_LEN 18 //device descriptor length
@ -81,7 +80,6 @@
#define HID_DESCRIPTOR_HID 0x21
/* OTG SET FEATURE Constants */
#define OTG_FEATURE_B_HNP_ENABLE 3 // SET FEATURE OTG - Enable B device to perform HNP
#define OTG_FEATURE_A_HNP_SUPPORT 4 // SET FEATURE OTG - A device supports HNP
@ -170,5 +168,3 @@ typedef struct {
uint8_t bDescrType; // Type of class descriptor
uint16_t wDescriptorLength; // Total size of the Report descriptor
} __attribute__((packed)) HID_CLASS_DESCRIPTOR_LEN_AND_TYPE;
#endif // _ch9_h_

Loading…
Cancel
Save