Merge pull request #8356 from tcm0116/2.0.x-M600

[2.0.x] Normalize load/unload length in M600
2.0.x
Scott Lahteine 7 years ago committed by GitHub
commit 36426af564
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -130,7 +130,7 @@ void FWRetract::retract(const bool retracting
set_destination_from_current(); set_destination_from_current();
stepper.synchronize(); // Wait for buffered moves to complete stepper.synchronize(); // Wait for buffered moves to complete
const float renormalize = 100.0 / planner.flow_percentage[active_extruder] / planner.volumetric_multiplier[active_extruder]; const float renormalize = 1.0 / planner.e_factor[active_extruder];
if (retracting) { if (retracting) {
// Retract by moving from a faux E position back to the current E position // Retract by moving from a faux E position back to the current E position

@ -94,7 +94,7 @@ static void ensure_safe_temperature() {
} }
void do_pause_e_move(const float &length, const float fr) { void do_pause_e_move(const float &length, const float fr) {
current_position[E_AXIS] += length; current_position[E_AXIS] += length / planner.e_factor[active_extruder];
set_destination_from_current(); set_destination_from_current();
#if IS_KINEMATIC #if IS_KINEMATIC
planner.buffer_line_kinematic(destination, fr, active_extruder); planner.buffer_line_kinematic(destination, fr, active_extruder);

@ -28,6 +28,8 @@
*/ */
void GcodeSuite::M221() { void GcodeSuite::M221() {
if (get_target_extruder_from_command()) return; if (get_target_extruder_from_command()) return;
if (parser.seenval('S')) if (parser.seenval('S')) {
planner.flow_percentage[target_extruder] = parser.value_int(); planner.flow_percentage[target_extruder] = parser.value_int();
planner.refresh_e_factor(target_extruder);
}
} }

@ -1249,6 +1249,22 @@ void kill_screen(const char* lcd_msg) {
#endif #endif
#endif #endif
// Refresh the E factor after changing flow
inline void _lcd_refresh_e_factor_0() { planner.refresh_e_factor(0); }
#if EXTRUDERS > 1
inline void _lcd_refresh_e_factor() { planner.refresh_e_factor(active_extruder); }
inline void _lcd_refresh_e_factor_1() { planner.refresh_e_factor(1); }
#if EXTRUDERS > 2
inline void _lcd_refresh_e_factor_2() { planner.refresh_e_factor(2); }
#if EXTRUDERS > 3
inline void _lcd_refresh_e_factor_3() { planner.refresh_e_factor(3); }
#if EXTRUDERS > 4
inline void _lcd_refresh_e_factor_4() { planner.refresh_e_factor(4); }
#endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2
#endif // EXTRUDERS > 1
/** /**
* *
* "Tune" submenu * "Tune" submenu
@ -1328,17 +1344,17 @@ void kill_screen(const char* lcd_msg) {
// Flow [1-5]: // Flow [1-5]:
// //
#if EXTRUDERS == 1 #if EXTRUDERS == 1
MENU_ITEM_EDIT(int3, MSG_FLOW, &planner.flow_percentage[0], 10, 999); MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW, &planner.flow_percentage[0], 10, 999, _lcd_refresh_e_factor_0);
#else // EXTRUDERS > 1 #else // EXTRUDERS > 1
MENU_ITEM_EDIT(int3, MSG_FLOW, &planner.flow_percentage[active_extruder], 10, 999); MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW, &planner.flow_percentage[active_extruder], 10, 999, _lcd_refresh_e_factor);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N1, &planner.flow_percentage[0], 10, 999); MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW MSG_N1, &planner.flow_percentage[0], 10, 999, _lcd_refresh_e_factor_0);
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N2, &planner.flow_percentage[1], 10, 999); MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW MSG_N2, &planner.flow_percentage[1], 10, 999, _lcd_refresh_e_factor_1);
#if EXTRUDERS > 2 #if EXTRUDERS > 2
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N3, &planner.flow_percentage[2], 10, 999); MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW MSG_N3, &planner.flow_percentage[2], 10, 999, _lcd_refresh_e_factor_2);
#if EXTRUDERS > 3 #if EXTRUDERS > 3
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N4, &planner.flow_percentage[3], 10, 999); MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW MSG_N4, &planner.flow_percentage[3], 10, 999, _lcd_refresh_e_factor_3);
#if EXTRUDERS > 4 #if EXTRUDERS > 4
MENU_ITEM_EDIT(int3, MSG_FLOW MSG_N5, &planner.flow_percentage[4], 10, 999); MENU_ITEM_EDIT_CALLBACK(int3, MSG_FLOW MSG_N5, &planner.flow_percentage[4], 10, 999, _lcd_refresh_e_factor_4);
#endif // EXTRUDERS > 4 #endif // EXTRUDERS > 4
#endif // EXTRUDERS > 3 #endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2 #endif // EXTRUDERS > 2

@ -138,8 +138,8 @@
* 533 M208 R swap_retract_recover_feedrate_mm_s (float) * 533 M208 R swap_retract_recover_feedrate_mm_s (float)
* *
* Volumetric Extrusion: 21 bytes * Volumetric Extrusion: 21 bytes
* 537 M200 D volumetric_enabled (bool) * 537 M200 D parser.volumetric_enabled (bool)
* 538 M200 T D filament_size (float x5) (T0..3) * 538 M200 T D planner.filament_size (float x5) (T0..3)
* *
* HAVE_TMC2130: 22 bytes * HAVE_TMC2130: 22 bytes
* 558 M906 X Stepper X current (uint16_t) * 558 M906 X Stepper X current (uint16_t)

@ -790,26 +790,28 @@ void prepare_move_to_destination() {
clamp_to_software_endstops(destination); clamp_to_software_endstops(destination);
gcode.refresh_cmd_timeout(); gcode.refresh_cmd_timeout();
#if ENABLED(PREVENT_COLD_EXTRUSION) #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (!DEBUGGING(DRYRUN)) { if (!DEBUGGING(DRYRUN)) {
if (destination[E_AXIS] != current_position[E_AXIS]) { if (destination[E_AXIS] != current_position[E_AXIS]) {
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (thermalManager.tooColdToExtrude(active_extruder)) { if (thermalManager.tooColdToExtrude(active_extruder)) {
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
} }
#endif // PREVENT_COLD_EXTRUSION
#if ENABLED(PREVENT_LENGTHY_EXTRUDE) #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (destination[E_AXIS] - current_position[E_AXIS] > EXTRUDE_MAXLENGTH) { if (FABS(destination[E_AXIS] - current_position[E_AXIS]) * planner.e_factor[active_extruder] > (EXTRUDE_MAXLENGTH)) {
current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part current_position[E_AXIS] = destination[E_AXIS]; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
} }
#endif #endif // PREVENT_LENGTHY_EXTRUDE
} }
} }
#endif #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
if ( if (
#if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely) #if UBL_DELTA // Also works for CARTESIAN (smaller segments follow mesh more closely)

@ -106,7 +106,8 @@ float Planner::max_feedrate_mm_s[XYZE_N], // Max speeds in mm per second
int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder int16_t Planner::flow_percentage[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); // Extrusion factor for each extruder
// Initialized by settings.load() // Initialized by settings.load()
float Planner::filament_size[EXTRUDERS], // As a baseline for the multiplier, filament diameter float Planner::e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
Planner::filament_size[EXTRUDERS], // As a baseline for the multiplier, filament diameter
Planner::volumetric_multiplier[EXTRUDERS]; // May be auto-adjusted by a filament width sensor Planner::volumetric_multiplier[EXTRUDERS]; // May be auto-adjusted by a filament width sensor
uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N], uint32_t Planner::max_acceleration_steps_per_s2[XYZE_N],
@ -546,8 +547,10 @@ inline float calculate_volumetric_multiplier(const float &diameter) {
} }
void Planner::calculate_volumetric_multipliers() { void Planner::calculate_volumetric_multipliers() {
for (uint8_t i = 0; i < COUNT(filament_size); i++) for (uint8_t i = 0; i < COUNT(filament_size); i++) {
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
refresh_e_factor(i);
}
} }
#if PLANNER_LEVELING #if PLANNER_LEVELING
@ -741,11 +744,12 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
long de = target[E_AXIS] - position[E_AXIS]; long de = target[E_AXIS] - position[E_AXIS];
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
float de_float = e - position_float[E_AXIS]; float de_float = e - position_float[E_AXIS]; // Should this include e_factor?
#endif #endif
#if ENABLED(PREVENT_COLD_EXTRUSION) #if ENABLED(PREVENT_COLD_EXTRUSION) || ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (de) { if (de) {
#if ENABLED(PREVENT_COLD_EXTRUSION)
if (thermalManager.tooColdToExtrude(extruder)) { if (thermalManager.tooColdToExtrude(extruder)) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
@ -756,8 +760,9 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
} }
#endif // PREVENT_COLD_EXTRUSION
#if ENABLED(PREVENT_LENGTHY_EXTRUDE) #if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (labs(de) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int if (labs(de * e_factor[extruder]) > (int32_t)axis_steps_per_mm[E_AXIS_N] * (EXTRUDE_MAXLENGTH)) { // It's not important to get max. extrusion length in a precision < 1mm, so save some cycles and cast to int
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
@ -767,9 +772,9 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
SERIAL_ECHO_START(); SERIAL_ECHO_START();
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
} }
#endif #endif // PREVENT_LENGTHY_EXTRUDE
} }
#endif #endif // PREVENT_COLD_EXTRUSION || PREVENT_LENGTHY_EXTRUDE
// Compute direction bit-mask for this block // Compute direction bit-mask for this block
uint8_t dm = 0; uint8_t dm = 0;
@ -798,7 +803,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
#endif #endif
if (de < 0) SBI(dm, E_AXIS); if (de < 0) SBI(dm, E_AXIS);
const float esteps_float = de * volumetric_multiplier[extruder] * flow_percentage[extruder] * 0.01; const float esteps_float = de * e_factor[extruder];
const int32_t esteps = abs(esteps_float) + 0.5; const int32_t esteps = abs(esteps_float) + 0.5;
// Calculate the buffer head after we push this byte // Calculate the buffer head after we push this byte

@ -146,7 +146,8 @@ class Planner {
static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder static int16_t flow_percentage[EXTRUDERS]; // Extrusion factor for each extruder
static float filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder static float e_factor[EXTRUDERS], // The flow percentage and volumetric multiplier combine to scale E movement
filament_size[EXTRUDERS], // diameter of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder
volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner volumetric_multiplier[EXTRUDERS]; // Reciprocal of cross-sectional area of filament (in mm^2). Pre-calculated to reduce computation in the planner
// May be auto-adjusted by a filament width sensor // May be auto-adjusted by a filament width sensor
@ -246,6 +247,10 @@ class Planner {
static void reset_acceleration_rates(); static void reset_acceleration_rates();
static void refresh_positioning(); static void refresh_positioning();
FORCE_INLINE static void refresh_e_factor(const uint8_t e) {
e_factor[e] = volumetric_multiplier[e] * flow_percentage[e] * 0.01;
}
// Manage fans, paste pressure, etc. // Manage fans, paste pressure, etc.
static void check_axes_activity(); static void check_axes_activity();

@ -816,6 +816,7 @@ void Temperature::manage_heater() {
// the nominal filament diameter then square it to get an area // the nominal filament diameter then square it to get an area
const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0; const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0;
planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot); planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot);
planner.refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
} }
#endif // FILAMENT_WIDTH_SENSOR #endif // FILAMENT_WIDTH_SENSOR

Loading…
Cancel
Save