Merge branch 'smallopt' into Marlin_v1

Conflicts:
	Marlin/temperature.h
2.0.x
Bernhard 13 years ago
commit 311627141b

@ -39,7 +39,7 @@ template <class T> int EEPROM_readAnything(int &ee, T& value)
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order. // ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#define EEPROM_VERSION "V04" #define EEPROM_VERSION "V04"
inline void StoreSettings() FORCE_INLINE void StoreSettings()
{ {
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
char ver[4]= "000"; char ver[4]= "000";
@ -72,7 +72,7 @@ inline void StoreSettings()
#endif //EEPROM_SETTINGS #endif //EEPROM_SETTINGS
} }
inline void RetrieveSettings(bool def=false) FORCE_INLINE void RetrieveSettings(bool def=false)
{ // if def=true, the default values will be used { // if def=true, the default values will be used
#ifdef EEPROM_SETTINGS #ifdef EEPROM_SETTINGS
int i=EEPROM_OFFSET; int i=EEPROM_OFFSET;

@ -10,6 +10,8 @@
#include "Configuration.h" #include "Configuration.h"
#include "MarlinSerial.h" #include "MarlinSerial.h"
#define FORCE_INLINE __attribute__((always_inline)) inline
//#define SERIAL_ECHO(x) Serial << "echo: " << x; //#define SERIAL_ECHO(x) Serial << "echo: " << x;
//#define SERIAL_ECHOLN(x) Serial << "echo: "<<x<<endl; //#define SERIAL_ECHOLN(x) Serial << "echo: "<<x<<endl;
//#define SERIAL_ERROR(x) Serial << "Error: " << x; //#define SERIAL_ERROR(x) Serial << "Error: " << x;
@ -43,7 +45,7 @@ const char echomagic[] PROGMEM ="echo:";
//things to write to serial from Programmemory. saves 400 to 2k of RAM. //things to write to serial from Programmemory. saves 400 to 2k of RAM.
#define SerialprintPGM(x) serialprintPGM(PSTR(x)) #define SerialprintPGM(x) serialprintPGM(PSTR(x))
inline void serialprintPGM(const char *str) FORCE_INLINE void serialprintPGM(const char *str)
{ {
char ch=pgm_read_byte(str); char ch=pgm_read_byte(str);
while(ch) while(ch)
@ -112,5 +114,6 @@ void prepare_arc_move(char isclockwise);
extern float homing_feedrate[]; extern float homing_feedrate[];
extern bool axis_relative_modes[]; extern bool axis_relative_modes[];
extern float current_position[NUM_AXIS] ; extern float current_position[NUM_AXIS] ;
extern float add_homeing[3];
#endif #endif

@ -94,6 +94,7 @@
// M92 - Set axis_steps_per_unit - same syntax as G92 // M92 - Set axis_steps_per_unit - same syntax as G92
// M114 - Output current position to serial port // M114 - Output current position to serial port
// M115 - Capabilities string // M115 - Capabilities string
// M117 - display message
// M119 - Output Endstop status to serial port // M119 - Output Endstop status to serial port
// M140 - Set bed target temp // M140 - Set bed target temp
// M190 - Wait for bed current temp to reach target temp. // M190 - Wait for bed current temp to reach target temp.
@ -103,6 +104,7 @@
// M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec // M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
// M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate // M204 - Set default acceleration: S normal moves T filament only moves (M204 S3000 T7000) im mm/sec^2 also sets minimum segment time in ms (B20000) to prevent buffer underruns and M20 minimum feedrate
// M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk // M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
// M206 - set additional homeing offset
// M220 - set speed factor override percentage S:factor in percent // M220 - set speed factor override percentage S:factor in percent
// M301 - Set PID parameters P I and D // M301 - Set PID parameters P I and D
// M400 - Finish all moves // M400 - Finish all moves
@ -130,7 +132,7 @@ volatile int feedmultiply=100; //100->1 200->2
int saved_feedmultiply; int saved_feedmultiply;
volatile bool feedmultiplychanged=false; volatile bool feedmultiplychanged=false;
float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0}; float current_position[NUM_AXIS] = { 0.0, 0.0, 0.0, 0.0};
float add_homeing[3]={0,0,0};
//=========================================================================== //===========================================================================
//=============================private variables============================= //=============================private variables=============================
@ -528,19 +530,23 @@ inline void process_commands()
} }
feedrate = 0.0; feedrate = 0.0;
home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2]))); home_all_axis = !((code_seen(axis_codes[0])) || (code_seen(axis_codes[1])) || (code_seen(axis_codes[2])));
if((home_all_axis) || (code_seen(axis_codes[X_AXIS]))) if((home_all_axis) || (code_seen(axis_codes[X_AXIS])))
{ {
HOMEAXIS(X); HOMEAXIS(X);
current_position[0]=code_value()+add_homeing[0];
} }
if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) { if((home_all_axis) || (code_seen(axis_codes[Y_AXIS]))) {
HOMEAXIS(Y); HOMEAXIS(Y);
current_position[1]=code_value()+add_homeing[1];
} }
if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) { if((home_all_axis) || (code_seen(axis_codes[Z_AXIS]))) {
HOMEAXIS(Z); HOMEAXIS(Z);
current_position[2]=code_value()+add_homeing[2];
} }
feedrate = saved_feedrate; feedrate = saved_feedrate;
feedmultiply = saved_feedmultiply; feedmultiply = saved_feedmultiply;
previous_millis_cmd = millis(); previous_millis_cmd = millis();
@ -557,7 +563,7 @@ inline void process_commands()
st_synchronize(); st_synchronize();
for(int8_t i=0; i < NUM_AXIS; i++) { for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) { if(code_seen(axis_codes[i])) {
current_position[i] = code_value(); current_position[i] = code_value()+add_homeing[i];
if(i == E_AXIS) { if(i == E_AXIS) {
plan_set_e_position(current_position[E_AXIS]); plan_set_e_position(current_position[E_AXIS]);
} }
@ -869,6 +875,9 @@ inline void process_commands()
case 115: // M115 case 115: // M115
SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1"); SerialprintPGM("FIRMWARE_NAME:Marlin; Sprinter/grbl mashup for gen6 FIRMWARE_URL:http://www.mendel-parts.com PROTOCOL_VERSION:1.0 MACHINE_TYPE:Mendel EXTRUDER_COUNT:1");
break; break;
case 117: // M117 display message
LCD_MESSAGE(cmdbuffer[bufindr]+5);
break;
case 114: // M114 case 114: // M114
SERIAL_PROTOCOLPGM("X:"); SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]); SERIAL_PROTOCOL(current_position[X_AXIS]);
@ -949,6 +958,12 @@ inline void process_commands()
if(code_seen('Z')) max_z_jerk = code_value() ; if(code_seen('Z')) max_z_jerk = code_value() ;
} }
break; break;
case 206: // M206 additional homeing offset
for(int8_t i=0; i < 3; i++)
{
if(code_seen(axis_codes[i])) add_homeing[i] = code_value();
}
break;
case 220: // M220 S<factor in percent>- set speed factor override percentage case 220: // M220 S<factor in percent>- set speed factor override percentage
{ {
if(code_seen('S')) if(code_seen('S'))

@ -32,11 +32,11 @@ public:
void chdir(const char * relpath); void chdir(const char * relpath);
void updir(); void updir();
inline bool eof() { return sdpos>=filesize ;}; FORCE_INLINE bool eof() { return sdpos>=filesize ;};
inline int16_t get() { sdpos = file.curPosition();return (int16_t)file.read();}; FORCE_INLINE int16_t get() { sdpos = file.curPosition();return (int16_t)file.read();};
inline void setIndex(long index) {sdpos = index;file.seekSet(index);}; FORCE_INLINE void setIndex(long index) {sdpos = index;file.seekSet(index);};
inline uint8_t percentDone(){if(!sdprinting) return 0; if(filesize) return sdpos*100/filesize; else return 0;}; FORCE_INLINE uint8_t percentDone(){if(!sdprinting) return 0; if(filesize) return sdpos*100/filesize; else return 0;};
inline char* getWorkDirName(){workDir.getFilename(filename);return filename;}; FORCE_INLINE char* getWorkDirName(){workDir.getFilename(filename);return filename;};
public: public:
bool saving; bool saving;
@ -69,31 +69,31 @@ private:
class CardReader class CardReader
{ {
public: public:
inline CardReader(){}; FORCE_INLINE CardReader(){};
inline static void initsd(){}; FORCE_INLINE static void initsd(){};
inline static void write_command(char *buf){}; FORCE_INLINE static void write_command(char *buf){};
inline static void checkautostart(bool x) {}; FORCE_INLINE static void checkautostart(bool x) {};
inline static void openFile(char* name,bool read){}; FORCE_INLINE static void openFile(char* name,bool read){};
inline static void closefile() {}; FORCE_INLINE static void closefile() {};
inline static void release(){}; FORCE_INLINE static void release(){};
inline static void startFileprint(){}; FORCE_INLINE static void startFileprint(){};
inline static void startFilewrite(char *name){}; FORCE_INLINE static void startFilewrite(char *name){};
inline static void pauseSDPrint(){}; FORCE_INLINE static void pauseSDPrint(){};
inline static void getStatus(){}; FORCE_INLINE static void getStatus(){};
inline static void selectFile(char* name){}; FORCE_INLINE static void selectFile(char* name){};
inline static void getfilename(const uint8_t nr){}; FORCE_INLINE static void getfilename(const uint8_t nr){};
inline static uint8_t getnrfilenames(){return 0;}; FORCE_INLINE static uint8_t getnrfilenames(){return 0;};
inline static void ls() {}; FORCE_INLINE static void ls() {};
inline static bool eof() {return true;}; FORCE_INLINE static bool eof() {return true;};
inline static char get() {return 0;}; FORCE_INLINE static char get() {return 0;};
inline static void setIndex(){}; FORCE_INLINE static void setIndex(){};
inline uint8_t percentDone(){return 0;}; FORCE_INLINE uint8_t percentDone(){return 0;};
}; };
#endif //SDSUPPORT #endif //SDSUPPORT
#endif #endif

@ -95,13 +95,17 @@ static float previous_nominal_speed; // Nominal speed of previous path line segm
bool autotemp_enabled=false; bool autotemp_enabled=false;
#endif #endif
//===========================================================================
//=================semi-private variables, used in inline functions =====
//===========================================================================
block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
volatile unsigned char block_buffer_head; // Index of the next block to be pushed
volatile unsigned char block_buffer_tail; // Index of the block to process now
//=========================================================================== //===========================================================================
//=============================private variables ============================ //=============================private variables ============================
//=========================================================================== //===========================================================================
static block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
static volatile unsigned char block_buffer_head; // Index of the next block to be pushed
static volatile unsigned char block_buffer_tail; // Index of the block to process now
// Used for the frequency limit // Used for the frequency limit
static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations static unsigned char old_direction_bits = 0; // Old direction bits. Used for speed calculations
@ -130,7 +134,8 @@ static int8_t prev_block_index(int8_t block_index) {
// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
// given acceleration: // given acceleration:
inline float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration)
{
if (acceleration!=0) { if (acceleration!=0) {
return((target_rate*target_rate-initial_rate*initial_rate)/ return((target_rate*target_rate-initial_rate*initial_rate)/
(2.0*acceleration)); (2.0*acceleration));
@ -145,7 +150,8 @@ inline float estimate_acceleration_distance(float initial_rate, float target_rat
// a total travel of distance. This can be used to compute the intersection point between acceleration and // a total travel of distance. This can be used to compute the intersection point between acceleration and
// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
inline float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) { FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance)
{
if (acceleration!=0) { if (acceleration!=0) {
return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/ return((2.0*acceleration*distance-initial_rate*initial_rate+final_rate*final_rate)/
(4.0*acceleration) ); (4.0*acceleration) );
@ -209,7 +215,7 @@ void calculate_trapezoid_for_block(block_t *block, float entry_factor, float exi
// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
// acceleration within the allotted distance. // acceleration within the allotted distance.
inline float max_allowable_speed(float acceleration, float target_velocity, float distance) { FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) {
return sqrt(target_velocity*target_velocity-2*acceleration*distance); return sqrt(target_velocity*target_velocity-2*acceleration*distance);
} }
@ -366,20 +372,7 @@ void plan_init() {
} }
void plan_discard_current_block() {
if (block_buffer_head != block_buffer_tail) {
block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
}
}
block_t *plan_get_current_block() {
if (block_buffer_head == block_buffer_tail) {
return(NULL);
}
block_t *block = &block_buffer[block_buffer_tail];
block->busy = true;
return(block);
}
#ifdef AUTOTEMP #ifdef AUTOTEMP
void getHighESpeed() void getHighESpeed()

@ -25,6 +25,7 @@
#define planner_h #define planner_h
#include "Configuration.h" #include "Configuration.h"
#include "Marlin.h"
// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in // This struct is used when buffering the setup for each linear movement "nominal" values are as specified in
// the source g-code and may never actually be reached if acceleration management is active. // the source g-code and may never actually be reached if acceleration management is active.
@ -72,12 +73,7 @@ void plan_buffer_line(const float &x, const float &y, const float &z, const floa
void plan_set_position(const float &x, const float &y, const float &z, const float &e); void plan_set_position(const float &x, const float &y, const float &z, const float &e);
void plan_set_e_position(const float &e); void plan_set_e_position(const float &e);
// Called when the current block is no longer needed. Discards the block and makes the memory
// availible for new blocks.
void plan_discard_current_block();
// Gets the current block. Returns NULL if buffer empty
block_t *plan_get_current_block();
void check_axes_activity(); void check_axes_activity();
uint8_t movesplanned(); //return the nr of buffered moves uint8_t movesplanned(); //return the nr of buffered moves
@ -103,4 +99,30 @@ extern uint8_t active_extruder;
extern float autotemp_factor; extern float autotemp_factor;
#endif #endif
/////semi-private stuff
#include <WProgram.h>
extern block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions
extern volatile unsigned char block_buffer_head; // Index of the next block to be pushed
extern volatile unsigned char block_buffer_tail;
// Called when the current block is no longer needed. Discards the block and makes the memory
// availible for new blocks.
FORCE_INLINE void plan_discard_current_block()
{
if (block_buffer_head != block_buffer_tail) {
block_buffer_tail = (block_buffer_tail + 1) & (BLOCK_BUFFER_SIZE - 1);
}
}
// Gets the current block. Returns NULL if buffer empty
FORCE_INLINE block_t *plan_get_current_block()
{
if (block_buffer_head == block_buffer_tail) {
return(NULL);
}
block_t *block = &block_buffer[block_buffer_tail];
block->busy = true;
return(block);
}
#endif #endif

@ -212,7 +212,7 @@ void st_wake_up() {
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
} }
inline unsigned short calc_timer(unsigned short step_rate) { FORCE_INLINE unsigned short calc_timer(unsigned short step_rate) {
unsigned short timer; unsigned short timer;
if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY; if(step_rate > MAX_STEP_FREQUENCY) step_rate = MAX_STEP_FREQUENCY;
@ -249,7 +249,7 @@ inline unsigned short calc_timer(unsigned short step_rate) {
// Initializes the trapezoid generator from the current block. Called whenever a new // Initializes the trapezoid generator from the current block. Called whenever a new
// block begins. // block begins.
inline void trapezoid_generator_reset() { FORCE_INLINE void trapezoid_generator_reset() {
#ifdef ADVANCE #ifdef ADVANCE
advance = current_block->initial_advance; advance = current_block->initial_advance;
final_advance = current_block->final_advance; final_advance = current_block->final_advance;

@ -59,16 +59,16 @@ extern float Kp,Ki,Kd,Kc;
//inline so that there is no performance decrease. //inline so that there is no performance decrease.
//deg=degreeCelsius //deg=degreeCelsius
inline float degHotend0(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);}; FORCE_INLINE float degHotend0(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);};
inline float degHotend1(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);}; FORCE_INLINE float degHotend1(){ return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);};
inline float degBed() { return analog2tempBed(current_raw[TEMPSENSOR_BED]);}; FORCE_INLINE float degBed() { return analog2tempBed(current_raw[TEMPSENSOR_BED]);};
inline float degHotend(uint8_t extruder){ inline float degHotend(uint8_t extruder){
if(extruder == 0) return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]); if(extruder == 0) return analog2temp(current_raw[TEMPSENSOR_HOTEND_0]);
if(extruder == 1) return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]); if(extruder == 1) return analog2temp(current_raw[TEMPSENSOR_HOTEND_1]);
}; };
inline float degTargetHotend0() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);}; FORCE_INLINE float degTargetHotend0() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);};
inline float degTargetHotend1() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);}; FORCE_INLINE float degTargetHotend1() { return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);};
inline float degTargetHotend(uint8_t extruder){ inline float degTargetHotend(uint8_t extruder){
if(extruder == 0) return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]); if(extruder == 0) return analog2temp(target_raw[TEMPSENSOR_HOTEND_0]);
if(extruder == 1) return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]); if(extruder == 1) return analog2temp(target_raw[TEMPSENSOR_HOTEND_1]);
@ -76,30 +76,30 @@ inline float degTargetHotend(uint8_t extruder){
inline float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);}; inline float degTargetBed() { return analog2tempBed(target_raw[TEMPSENSOR_BED]);};
inline void setTargetHotend0(const float &celsius) FORCE_INLINE void setTargetHotend0(const float &celsius)
{ {
target_raw[TEMPSENSOR_HOTEND_0]=temp2analog(celsius); target_raw[TEMPSENSOR_HOTEND_0]=temp2analog(celsius);
#ifdef PIDTEMP #ifdef PIDTEMP
pid_setpoint = celsius; pid_setpoint = celsius;
#endif //PIDTEMP #endif //PIDTEMP
}; };
inline void setTargetHotend1(const float &celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);}; FORCE_INLINE void setTargetHotend1(const float &celsius) { target_raw[TEMPSENSOR_HOTEND_1]=temp2analog(celsius);};
inline float setTargetHotend(const float &celcius, uint8_t extruder){ inline float setTargetHotend(const float &celcius, uint8_t extruder){
if(extruder == 0) setTargetHotend0(celcius); if(extruder == 0) setTargetHotend0(celcius);
if(extruder == 1) setTargetHotend1(celcius); if(extruder == 1) setTargetHotend1(celcius);
}; };
inline void setTargetBed(const float &celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);}; inline void setTargetBed(const float &celsius) { target_raw[TEMPSENSOR_BED ]=temp2analogBed(celsius);};
inline bool isHeatingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];}; FORCE_INLINE bool isHeatingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];};
inline bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];}; FORCE_INLINE bool isHeatingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];};
inline float isHeatingHotend(uint8_t extruder){ inline float isHeatingHotend(uint8_t extruder){
if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0]; if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] > current_raw[TEMPSENSOR_HOTEND_0];
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1]; if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] > current_raw[TEMPSENSOR_HOTEND_1];
}; };
inline bool isHeatingBed() {return target_raw[TEMPSENSOR_BED] > current_raw[TEMPSENSOR_BED];}; inline bool isHeatingBed() {return target_raw[TEMPSENSOR_BED] > current_raw[TEMPSENSOR_BED];};
inline bool isCoolingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];}; FORCE_INLINE bool isCoolingHotend0() {return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];};
inline bool isCoolingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];}; FORCE_INLINE bool isCoolingHotend1() {return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];};
inline float isCoolingHotend(uint8_t extruder){ inline float isCoolingHotend(uint8_t extruder){
if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0]; if(extruder == 0) return target_raw[TEMPSENSOR_HOTEND_0] < current_raw[TEMPSENSOR_HOTEND_0];
if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1]; if(extruder == 1) return target_raw[TEMPSENSOR_HOTEND_1] < current_raw[TEMPSENSOR_HOTEND_1];

@ -79,7 +79,7 @@
bool tune; bool tune;
private: private:
inline void updateActiveLines(const uint8_t &maxlines,volatile int &encoderpos) FORCE_INLINE void updateActiveLines(const uint8_t &maxlines,volatile int &encoderpos)
{ {
if(linechanging) return; // an item is changint its value, do not switch lines hence if(linechanging) return; // an item is changint its value, do not switch lines hence
lastlineoffset=lineoffset; lastlineoffset=lineoffset;
@ -119,7 +119,7 @@
} }
} }
inline void clearIfNecessary() FORCE_INLINE void clearIfNecessary()
{ {
if(lastlineoffset!=lineoffset ||force_lcd_update) if(lastlineoffset!=lineoffset ||force_lcd_update)
{ {
@ -143,7 +143,7 @@
#define LCD_STATUS #define LCD_STATUS
#define LCD_MESSAGE(x) #define LCD_MESSAGE(x)
#define LCD_MESSAGEPGM(x) #define LCD_MESSAGEPGM(x)
inline void lcd_status() {}; FORCE_INLINE void lcd_status() {};
#endif #endif
#ifndef ULTIPANEL #ifndef ULTIPANEL

@ -660,7 +660,12 @@ void MainMenu::showTune()
// //
enum { enum {
ItemCT_exit, ItemCT_nozzle, ItemCT_fan, ItemCT_exit,ItemCT_nozzle,
#ifdef AUTOTEMP
ItemCT_autotempactive,
ItemCT_autotempmin,ItemCT_autotempmax,ItemCT_autotempfact,
#endif
ItemCT_fan,
ItemCT_PID_P,ItemCT_PID_I,ItemCT_PID_D,ItemCT_PID_C ItemCT_PID_P,ItemCT_PID_I,ItemCT_PID_D,ItemCT_PID_C
}; };
@ -708,7 +713,128 @@ void MainMenu::showControlTemp()
} }
} }
}break; }break;
#ifdef AUTOTEMP
case ItemCT_autotempmin:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcdprintPGM(" \002 Min:");
lcd.setCursor(13,line);lcd.print(ftostr3(autotemp_max));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=intround(autotemp_max);
}
else
{
autotemp_max=encoderpos;
encoderpos=activeline*lcdslow;
beepshort();
}
BLOCK;
}
if(linechanging)
{
if(encoderpos<0) encoderpos=0;
if(encoderpos>260) encoderpos=260;
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
}
}
}break;
case ItemCT_autotempmax:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcdprintPGM(" \002 Max:");
lcd.setCursor(13,line);lcd.print(ftostr3(autotemp_max));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=intround(autotemp_max);
}
else
{
autotemp_max=encoderpos;
encoderpos=activeline*lcdslow;
beepshort();
}
BLOCK;
}
if(linechanging)
{
if(encoderpos<0) encoderpos=0;
if(encoderpos>260) encoderpos=260;
lcd.setCursor(13,line);lcd.print(itostr3(encoderpos));
}
}
}break;
case ItemCT_autotempfact:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcdprintPGM(" \002 Fact:");
lcd.setCursor(13,line);lcd.print(ftostr32(autotemp_factor));
}
if((activeline==line) )
{
if(CLICKED)
{
linechanging=!linechanging;
if(linechanging)
{
encoderpos=intround(autotemp_factor*100);
}
else
{
autotemp_max=encoderpos;
encoderpos=activeline*lcdslow;
beepshort();
}
BLOCK;
}
if(linechanging)
{
if(encoderpos<0) encoderpos=0;
if(encoderpos>99) encoderpos=99;
lcd.setCursor(13,line);lcd.print(ftostr32(encoderpos/100.));
}
}
}break;
case ItemCT_autotempactive:
{
if(force_lcd_update)
{
lcd.setCursor(0,line);lcdprintPGM(" Autotemp:");
lcd.setCursor(13,line);
if(autotemp_enabled)
lcdprintPGM("On");
else
lcdprintPGM("Off");
}
if((activeline==line) )
{
if(CLICKED)
{
autotemp_enabled=!autotemp_enabled;
BLOCK;
}
}
}break;
#endif //autotemp
case ItemCT_fan: case ItemCT_fan:
{ {
if(force_lcd_update) if(force_lcd_update)
@ -1620,6 +1746,19 @@ char *ftostr31(const float &x)
return conv; return conv;
} }
char *ftostr32(const float &x)
{
int xx=x*100;
conv[0]=(xx>=0)?'+':'-';
xx=abs(xx);
conv[1]=(xx/100)%10+'0';
conv[2]='.';
conv[3]=(xx/10)%10+'0';
conv[4]=(xx)%10+'0';
conv[6]=0;
return conv;
}
char *itostr31(const int &xx) char *itostr31(const int &xx)
{ {
conv[0]=(xx>=0)?'+':'-'; conv[0]=(xx>=0)?'+':'-';

@ -9,8 +9,8 @@
void wd_reset(); void wd_reset();
#else #else
inline void wd_init() {}; FORCE_INLINE void wd_init() {};
inline void wd_reset() {}; FORCE_INLINE void wd_reset() {};
#endif #endif
#endif #endif

Loading…
Cancel
Save