|
|
|
@ -155,38 +155,38 @@ float delta_safe_distance_from_top() {
|
|
|
|
|
*
|
|
|
|
|
* The result is stored in the cartes[] array.
|
|
|
|
|
*/
|
|
|
|
|
void forward_kinematics_DELTA(float z1, float z2, float z3) {
|
|
|
|
|
void forward_kinematics_DELTA(const float &z1, const float &z2, const float &z3) {
|
|
|
|
|
// Create a vector in old coordinates along x axis of new coordinate
|
|
|
|
|
float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
|
|
|
|
|
const float p12[3] = { delta_tower[B_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[B_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z2 - z1 };
|
|
|
|
|
|
|
|
|
|
// Get the Magnitude of vector.
|
|
|
|
|
float d = SQRT( sq(p12[0]) + sq(p12[1]) + sq(p12[2]) );
|
|
|
|
|
// Get the reciprocal of Magnitude of vector.
|
|
|
|
|
const float d2 = sq(p12[0]) + sq(p12[1]) + sq(p12[2]), inv_d = RSQRT(d2);
|
|
|
|
|
|
|
|
|
|
// Create unit vector by dividing by magnitude.
|
|
|
|
|
float ex[3] = { p12[0] / d, p12[1] / d, p12[2] / d };
|
|
|
|
|
// Create unit vector by multiplying by the inverse of the magnitude.
|
|
|
|
|
const float ex[3] = { p12[0] * inv_d, p12[1] * inv_d, p12[2] * inv_d };
|
|
|
|
|
|
|
|
|
|
// Get the vector from the origin of the new system to the third point.
|
|
|
|
|
float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
|
|
|
|
|
const float p13[3] = { delta_tower[C_AXIS][X_AXIS] - delta_tower[A_AXIS][X_AXIS], delta_tower[C_AXIS][Y_AXIS] - delta_tower[A_AXIS][Y_AXIS], z3 - z1 };
|
|
|
|
|
|
|
|
|
|
// Use the dot product to find the component of this vector on the X axis.
|
|
|
|
|
float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
|
|
|
|
|
const float i = ex[0] * p13[0] + ex[1] * p13[1] + ex[2] * p13[2];
|
|
|
|
|
|
|
|
|
|
// Create a vector along the x axis that represents the x component of p13.
|
|
|
|
|
float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
|
|
|
|
|
const float iex[3] = { ex[0] * i, ex[1] * i, ex[2] * i };
|
|
|
|
|
|
|
|
|
|
// Subtract the X component from the original vector leaving only Y. We use the
|
|
|
|
|
// variable that will be the unit vector after we scale it.
|
|
|
|
|
float ey[3] = { p13[0] - iex[0], p13[1] - iex[1], p13[2] - iex[2] };
|
|
|
|
|
|
|
|
|
|
// The magnitude of Y component
|
|
|
|
|
float j = SQRT( sq(ey[0]) + sq(ey[1]) + sq(ey[2]) );
|
|
|
|
|
// The magnitude and the inverse of the magnitude of Y component
|
|
|
|
|
const float j2 = sq(ey[0]) + sq(ey[1]) + sq(ey[2]), inv_j = RSQRT(j2);
|
|
|
|
|
|
|
|
|
|
// Convert to a unit vector
|
|
|
|
|
ey[0] /= j; ey[1] /= j; ey[2] /= j;
|
|
|
|
|
ey[0] *= inv_j; ey[1] *= inv_j; ey[2] *= inv_j;
|
|
|
|
|
|
|
|
|
|
// The cross product of the unit x and y is the unit z
|
|
|
|
|
// float[] ez = vectorCrossProd(ex, ey);
|
|
|
|
|
float ez[3] = {
|
|
|
|
|
const float ez[3] = {
|
|
|
|
|
ex[1] * ey[2] - ex[2] * ey[1],
|
|
|
|
|
ex[2] * ey[0] - ex[0] * ey[2],
|
|
|
|
|
ex[0] * ey[1] - ex[1] * ey[0]
|
|
|
|
@ -194,8 +194,8 @@ void forward_kinematics_DELTA(float z1, float z2, float z3) {
|
|
|
|
|
|
|
|
|
|
// We now have the d, i and j values defined in Wikipedia.
|
|
|
|
|
// Plug them into the equations defined in Wikipedia for Xnew, Ynew and Znew
|
|
|
|
|
float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + sq(d)) / (d * 2),
|
|
|
|
|
Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + HYPOT2(i, j)) / 2 - i * Xnew) / j,
|
|
|
|
|
const float Xnew = (delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[B_AXIS] + d2) * inv_d * 0.5,
|
|
|
|
|
Ynew = ((delta_diagonal_rod_2_tower[A_AXIS] - delta_diagonal_rod_2_tower[C_AXIS] + sq(i) + j2) * 0.5 - i * Xnew) * inv_j,
|
|
|
|
|
Znew = SQRT(delta_diagonal_rod_2_tower[A_AXIS] - HYPOT2(Xnew, Ynew));
|
|
|
|
|
|
|
|
|
|
// Start from the origin of the old coordinates and add vectors in the
|
|
|
|
|