Merge pull request #4450 from thinkyhead/rc_fix_delta_optimization

Fix DELTA speed calculation
2.0.x
Scott Lahteine 9 years ago committed by GitHub
commit 256b03598d

@ -804,15 +804,9 @@ void Planner::check_axes_activity() {
#endif #endif
#else #else
float delta_mm[4]; float delta_mm[4];
#if ENABLED(DELTA) delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
// On delta all axes (should!) have the same steps-per-mm delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
// so calculate distance in steps first, then do one division delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
// at the end to get millimeters
#else
delta_mm[X_AXIS] = dx * steps_to_mm[X_AXIS];
delta_mm[Y_AXIS] = dy * steps_to_mm[Y_AXIS];
delta_mm[Z_AXIS] = dz * steps_to_mm[Z_AXIS];
#endif
#endif #endif
delta_mm[E_AXIS] = 0.01 * (de * steps_to_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder]; delta_mm[E_AXIS] = 0.01 * (de * steps_to_mm[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder];
@ -827,21 +821,15 @@ void Planner::check_axes_activity() {
sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD]) sq(delta_mm[X_HEAD]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_HEAD])
#elif ENABLED(COREYZ) #elif ENABLED(COREYZ)
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD]) sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_HEAD]) + sq(delta_mm[Z_HEAD])
#elif ENABLED(DELTA)
sq(dx) + sq(dy) + sq(dz)
#else #else
sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS]) sq(delta_mm[X_AXIS]) + sq(delta_mm[Y_AXIS]) + sq(delta_mm[Z_AXIS])
#endif #endif
) );
#if ENABLED(DELTA)
* steps_to_mm[X_AXIS]
#endif
;
} }
float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides
// Calculate moves/second for this move. No divide by zero due to previous checks. // Calculate moves/second for this move. No divide by zero due to previous checks.
float inverse_second = fr_mm_s * inverse_millimeters; float inverse_mm_s = fr_mm_s * inverse_millimeters;
int moves_queued = movesplanned(); int moves_queued = movesplanned();
@ -853,21 +841,21 @@ void Planner::check_axes_activity() {
#endif #endif
#if ENABLED(SLOWDOWN) #if ENABLED(SLOWDOWN)
// segment time im micro seconds // segment time im micro seconds
unsigned long segment_time = lround(1000000.0/inverse_second); unsigned long segment_time = lround(1000000.0/inverse_mm_s);
if (mq) { if (mq) {
if (segment_time < min_segment_time) { if (segment_time < min_segment_time) {
// buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more.
inverse_second = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued)); inverse_mm_s = 1000000.0 / (segment_time + lround(2 * (min_segment_time - segment_time) / moves_queued));
#ifdef XY_FREQUENCY_LIMIT #ifdef XY_FREQUENCY_LIMIT
segment_time = lround(1000000.0 / inverse_second); segment_time = lround(1000000.0 / inverse_mm_s);
#endif #endif
} }
} }
#endif #endif
#endif #endif
block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0 block->nominal_speed = block->millimeters * inverse_mm_s; // (mm/sec) Always > 0
block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0 block->nominal_rate = ceil(block->step_event_count * inverse_mm_s); // (step/sec) Always > 0
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
static float filwidth_e_count = 0, filwidth_delay_dist = 0; static float filwidth_e_count = 0, filwidth_delay_dist = 0;
@ -907,7 +895,7 @@ void Planner::check_axes_activity() {
float current_speed[NUM_AXIS]; float current_speed[NUM_AXIS];
float speed_factor = 1.0; //factor <=1 do decrease speed float speed_factor = 1.0; //factor <=1 do decrease speed
LOOP_XYZE(i) { LOOP_XYZE(i) {
current_speed[i] = delta_mm[i] * inverse_second; current_speed[i] = delta_mm[i] * inverse_mm_s;
float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i]; float cs = fabs(current_speed[i]), mf = max_feedrate_mm_s[i];
if (cs > mf) speed_factor = min(speed_factor, mf / cs); if (cs > mf) speed_factor = min(speed_factor, mf / cs);
} }

Loading…
Cancel
Save