|
|
|
@ -740,17 +740,6 @@ float Temperature::get_pid_output(const int8_t e) {
|
|
|
|
|
* - Apply filament width to the extrusion rate (may move)
|
|
|
|
|
* - Update the heated bed PID output value
|
|
|
|
|
*/
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* The following line SOMETIMES results in the dreaded "unable to find a register to spill in class 'POINTER_REGS'"
|
|
|
|
|
* compile error.
|
|
|
|
|
* thermal_runaway_protection(&thermal_runaway_state_machine[e], &thermal_runaway_timer[e], current_temperature[e], target_temperature[e], e, THERMAL_PROTECTION_PERIOD, THERMAL_PROTECTION_HYSTERESIS);
|
|
|
|
|
*
|
|
|
|
|
* This is due to a bug in the C++ compiler used by the Arduino IDE from 1.6.10 to at least 1.8.1.
|
|
|
|
|
*
|
|
|
|
|
* The work around is to add the compiler flag "__attribute__((__optimize__("O2")))" to the declaration for manage_heater()
|
|
|
|
|
*/
|
|
|
|
|
//void Temperature::manage_heater() __attribute__((__optimize__("O2")));
|
|
|
|
|
void Temperature::manage_heater() {
|
|
|
|
|
|
|
|
|
|
if (!temp_meas_ready) return;
|
|
|
|
@ -805,18 +794,16 @@ void Temperature::manage_heater() {
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
// Control the extruder rate based on the width sensor
|
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
|
/**
|
|
|
|
|
* Filament Width Sensor dynamically sets the volumetric multiplier
|
|
|
|
|
* based on a delayed measurement of the filament diameter.
|
|
|
|
|
*/
|
|
|
|
|
if (filament_sensor) {
|
|
|
|
|
meas_shift_index = filwidth_delay_index[0] - meas_delay_cm;
|
|
|
|
|
if (meas_shift_index < 0) meas_shift_index += MAX_MEASUREMENT_DELAY + 1; //loop around buffer if needed
|
|
|
|
|
meas_shift_index = constrain(meas_shift_index, 0, MAX_MEASUREMENT_DELAY);
|
|
|
|
|
|
|
|
|
|
// Get the delayed info and add 100 to reconstitute to a percent of
|
|
|
|
|
// the nominal filament diameter then square it to get an area
|
|
|
|
|
const float vmroot = measurement_delay[meas_shift_index] * 0.01 + 1.0;
|
|
|
|
|
planner.volumetric_multiplier[FILAMENT_SENSOR_EXTRUDER_NUM] = vmroot <= 0.1 ? 0.01 : sq(vmroot);
|
|
|
|
|
planner.refresh_e_factor(FILAMENT_SENSOR_EXTRUDER_NUM);
|
|
|
|
|
calculate_volumetric_for_width_sensor(measurement_delay[meas_shift_index])
|
|
|
|
|
}
|
|
|
|
|
#endif // FILAMENT_WIDTH_SENSOR
|
|
|
|
|
|
|
|
|
@ -1004,12 +991,18 @@ void Temperature::updateTemperaturesFromRawValues() {
|
|
|
|
|
return current_raw_filwidth * 5.0 * (1.0 / 16383.0);
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
// Convert raw Filament Width to a ratio
|
|
|
|
|
int Temperature::widthFil_to_size_ratio() {
|
|
|
|
|
float temp = filament_width_meas;
|
|
|
|
|
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; // Assume a bad sensor reading
|
|
|
|
|
else NOMORE(temp, MEASURED_UPPER_LIMIT);
|
|
|
|
|
return filament_width_nominal / temp * 100;
|
|
|
|
|
/**
|
|
|
|
|
* Convert Filament Width (mm) to a simple ratio
|
|
|
|
|
* and reduce to an 8 bit value.
|
|
|
|
|
*
|
|
|
|
|
* A nominal width of 1.75 and measured width of 1.73
|
|
|
|
|
* gives (100 * 1.75 / 1.73) for a ratio of 101 and
|
|
|
|
|
* a return value of 1.
|
|
|
|
|
*/
|
|
|
|
|
int8_t Temperature::widthFil_to_size_ratio() {
|
|
|
|
|
if (WITHIN(filament_width_meas, MEASURED_LOWER_LIMIT, MEASURED_UPPER_LIMIT))
|
|
|
|
|
return int(100.0 * filament_width_nominal / filament_width_meas) - 100;
|
|
|
|
|
return 0;
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|