SAMD51 Servo class (#14781)

2.0.x
Giuliano Zaro 5 years ago committed by Scott Lahteine
parent 8efa3455c2
commit 21993b75f4

@ -53,8 +53,8 @@
* -------------------- * --------------------
*/ */
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays #define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays
#define PRESCALER 8 // timer prescaler #define SERVO_TIMER_PRESCALER 8 // timer prescaler
// Say which 16 bit timers can be used and in what order // Say which 16 bit timers can be used and in what order
#if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__) #if defined(__AVR_ATmega1280__) || defined(__AVR_ATmega2560__)

@ -36,8 +36,8 @@
//!#define _useTimer4 //!#define _useTimer4
#define _useTimer5 #define _useTimer5
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays #define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays
#define PRESCALER 32 // timer prescaler #define SERVO_TIMER_PRESCALER 32 // timer prescaler
/* /*
TC0, chan 0 => TC0_Handler TC0, chan 0 => TC0_Handler

@ -193,8 +193,8 @@ uint16_t HAL_adc_result;
uint16_t HAL_adc_results[COUNT(adc_pins)]; uint16_t HAL_adc_results[COUNT(adc_pins)];
#if ADC0_IS_REQUIRED #if ADC0_IS_REQUIRED
Adafruit_ZeroDMA adc0ProgramDMA, Adafruit_ZeroDMA adc0DMAProgram,
adc0ReadDMA; adc0DMARead;
const HAL_DMA_DAC_Registers adc0_dma_regs_list[] = { const HAL_DMA_DAC_Registers adc0_dma_regs_list[] = {
#if GET_TEMP_0_ADC() == 0 #if GET_TEMP_0_ADC() == 0
@ -233,8 +233,8 @@ uint16_t HAL_adc_result;
#endif // ADC0_IS_REQUIRED #endif // ADC0_IS_REQUIRED
#if ADC1_IS_REQUIRED #if ADC1_IS_REQUIRED
Adafruit_ZeroDMA adc1ProgramDMA, Adafruit_ZeroDMA adc1DMAProgram,
adc1ReadDMA; adc1DMARead;
const HAL_DMA_DAC_Registers adc1_dma_regs_list[] = { const HAL_DMA_DAC_Registers adc1_dma_regs_list[] = {
#if GET_TEMP_0_ADC() == 1 #if GET_TEMP_0_ADC() == 1
@ -284,11 +284,11 @@ uint16_t HAL_adc_result;
DmacDescriptor *descriptor; DmacDescriptor *descriptor;
#if ADC0_IS_REQUIRED #if ADC0_IS_REQUIRED
adc0ProgramDMA.setTrigger(ADC0_DMAC_ID_SEQ); adc0DMAProgram.setTrigger(ADC0_DMAC_ID_SEQ);
adc0ProgramDMA.setAction(DMA_TRIGGER_ACTON_BEAT); adc0DMAProgram.setAction(DMA_TRIGGER_ACTON_BEAT);
adc0ProgramDMA.loop(true); adc0DMAProgram.loop(true);
if (adc0ProgramDMA.allocate() == DMA_STATUS_OK) { if (adc0DMAProgram.allocate() == DMA_STATUS_OK) {
descriptor = adc0ProgramDMA.addDescriptor( descriptor = adc0DMAProgram.addDescriptor(
(void *)adc0_dma_regs_list, // SRC (void *)adc0_dma_regs_list, // SRC
(void *)&ADC0->DSEQDATA.reg, // DEST (void *)&ADC0->DSEQDATA.reg, // DEST
sizeof(adc0_dma_regs_list) / 4, // CNT sizeof(adc0_dma_regs_list) / 4, // CNT
@ -300,14 +300,14 @@ uint16_t HAL_adc_result;
); );
if (descriptor != nullptr) if (descriptor != nullptr)
descriptor->BTCTRL.bit.EVOSEL = DMA_EVENT_OUTPUT_BEAT; descriptor->BTCTRL.bit.EVOSEL = DMA_EVENT_OUTPUT_BEAT;
adc0ProgramDMA.startJob(); adc0DMAProgram.startJob();
} }
adc0ReadDMA.setTrigger(ADC0_DMAC_ID_RESRDY); adc0DMARead.setTrigger(ADC0_DMAC_ID_RESRDY);
adc0ReadDMA.setAction(DMA_TRIGGER_ACTON_BEAT); adc0DMARead.setAction(DMA_TRIGGER_ACTON_BEAT);
adc0ReadDMA.loop(true); adc0DMARead.loop(true);
if (adc0ReadDMA.allocate() == DMA_STATUS_OK) { if (adc0DMARead.allocate() == DMA_STATUS_OK) {
adc0ReadDMA.addDescriptor( adc0DMARead.addDescriptor(
(void *)&ADC0->RESULT.reg, // SRC (void *)&ADC0->RESULT.reg, // SRC
&HAL_adc_results, // DEST &HAL_adc_results, // DEST
ADC0_AINCOUNT, // CNT ADC0_AINCOUNT, // CNT
@ -317,15 +317,15 @@ uint16_t HAL_adc_result;
DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE
DMA_STEPSEL_DST // STEPSEL DMA_STEPSEL_DST // STEPSEL
); );
adc0ReadDMA.startJob(); adc0DMARead.startJob();
} }
#endif #endif
#if ADC1_IS_REQUIRED #if ADC1_IS_REQUIRED
adc1ProgramDMA.setTrigger(ADC1_DMAC_ID_SEQ); adc1DMAProgram.setTrigger(ADC1_DMAC_ID_SEQ);
adc1ProgramDMA.setAction(DMA_TRIGGER_ACTON_BEAT); adc1DMAProgram.setAction(DMA_TRIGGER_ACTON_BEAT);
adc1ProgramDMA.loop(true); adc1DMAProgram.loop(true);
if (adc1ProgramDMA.allocate() == DMA_STATUS_OK) { if (adc1DMAProgram.allocate() == DMA_STATUS_OK) {
descriptor = adc1ProgramDMA.addDescriptor( descriptor = adc1DMAProgram.addDescriptor(
(void *)adc1_dma_regs_list, // SRC (void *)adc1_dma_regs_list, // SRC
(void *)&ADC1->DSEQDATA.reg, // DEST (void *)&ADC1->DSEQDATA.reg, // DEST
sizeof(adc1_dma_regs_list) / 4, // CNT sizeof(adc1_dma_regs_list) / 4, // CNT
@ -337,14 +337,14 @@ uint16_t HAL_adc_result;
); );
if (descriptor != nullptr) if (descriptor != nullptr)
descriptor->BTCTRL.bit.EVOSEL = DMA_EVENT_OUTPUT_BEAT; descriptor->BTCTRL.bit.EVOSEL = DMA_EVENT_OUTPUT_BEAT;
adc1ProgramDMA.startJob(); adc1DMAProgram.startJob();
} }
adc1ReadDMA.setTrigger(ADC1_DMAC_ID_RESRDY); adc1DMARead.setTrigger(ADC1_DMAC_ID_RESRDY);
adc1ReadDMA.setAction(DMA_TRIGGER_ACTON_BEAT); adc1DMARead.setAction(DMA_TRIGGER_ACTON_BEAT);
adc1ReadDMA.loop(true); adc1DMARead.loop(true);
if (adc1ReadDMA.allocate() == DMA_STATUS_OK) { if (adc1DMARead.allocate() == DMA_STATUS_OK) {
adc1ReadDMA.addDescriptor( adc1DMARead.addDescriptor(
(void *)&ADC1->RESULT.reg, // SRC (void *)&ADC1->RESULT.reg, // SRC
&HAL_adc_results[ADC0_AINCOUNT], // DEST &HAL_adc_results[ADC0_AINCOUNT], // DEST
ADC1_AINCOUNT, // CNT ADC1_AINCOUNT, // CNT
@ -354,11 +354,11 @@ uint16_t HAL_adc_result;
DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE DMA_ADDRESS_INCREMENT_STEP_SIZE_1, // STEPSIZE
DMA_STEPSEL_DST // STEPSEL DMA_STEPSEL_DST // STEPSEL
); );
adc1ReadDMA.startJob(); adc1DMARead.startJob();
} }
#endif #endif
DMAC->PRICTRL0.bit.RRLVLEN0 = true; // Activate round robin for DMA channels used by ADCs DMAC->PRICTRL0.bit.RRLVLEN0 = true; // Activate round robin for DMA channels required by ADCs
} }
#endif // DMA_IS_REQUIRED #endif // DMA_IS_REQUIRED

@ -76,7 +76,8 @@
typedef int8_t pin_t; typedef int8_t pin_t;
//#define HAL_SERVO_LIB Servo #define SHARED_SERVOS HAS_SERVOS
#define HAL_SERVO_LIB Servo
// //
// Interrupts // Interrupts

@ -40,8 +40,8 @@
const tTimerConfig TimerConfig[NUM_HARDWARE_TIMERS] = { const tTimerConfig TimerConfig[NUM_HARDWARE_TIMERS] = {
{ TC0, TC0_IRQn, TC_PRIORITY(0) }, { TC0, TC0_IRQn, TC_PRIORITY(0) },
{ TC1, TC1_IRQn, TC_PRIORITY(1) }, { TC1, TC1_IRQn, TC_PRIORITY(1) },
{ TC2, TC2_IRQn, TC_PRIORITY(2) }, { TC2, TC2_IRQn, TC_PRIORITY(2) }, // Reserved by framework tone function
{ TC3, TC3_IRQn, TC_PRIORITY(3) }, { TC3, TC3_IRQn, TC_PRIORITY(3) }, // Reserved by servo library
{ TC4, TC4_IRQn, TC_PRIORITY(4) }, { TC4, TC4_IRQn, TC_PRIORITY(4) },
{ TC5, TC5_IRQn, TC_PRIORITY(5) }, { TC5, TC5_IRQn, TC_PRIORITY(5) },
{ TC6, TC6_IRQn, TC_PRIORITY(6) }, { TC6, TC6_IRQn, TC_PRIORITY(6) },

@ -33,7 +33,6 @@ typedef uint32_t hal_timer_t;
#define STEP_TIMER_NUM 0 // index of timer to use for stepper (also +1 for 32bits counter) #define STEP_TIMER_NUM 0 // index of timer to use for stepper (also +1 for 32bits counter)
#define PULSE_TIMER_NUM STEP_TIMER_NUM #define PULSE_TIMER_NUM STEP_TIMER_NUM
#define TONE_TIMER_NUM 2 // index of timer to use for beeper tones (also +1 for 32bits counter)
#define TEMP_TIMER_NUM 4 // index of timer to use for temperature (also +1 for 32bits counter) #define TEMP_TIMER_NUM 4 // index of timer to use for temperature (also +1 for 32bits counter)
#define TEMP_TIMER_FREQUENCY 1000 // temperature interrupt frequency #define TEMP_TIMER_FREQUENCY 1000 // temperature interrupt frequency
@ -53,9 +52,10 @@ typedef uint32_t hal_timer_t;
#define ENABLE_TEMPERATURE_INTERRUPT() HAL_timer_enable_interrupt(TEMP_TIMER_NUM) #define ENABLE_TEMPERATURE_INTERRUPT() HAL_timer_enable_interrupt(TEMP_TIMER_NUM)
#define DISABLE_TEMPERATURE_INTERRUPT() HAL_timer_disable_interrupt(TEMP_TIMER_NUM) #define DISABLE_TEMPERATURE_INTERRUPT() HAL_timer_disable_interrupt(TEMP_TIMER_NUM)
#define TC_PRIORITY(t) (t == STEP_TIMER_NUM || t == PULSE_TIMER_NUM) ? 2 \ #define TC_PRIORITY(t) (t == STEP_TIMER_NUM || t == PULSE_TIMER_NUM) ? 2 \
: (t == TEMP_TIMER_NUM) ? 6 \ : (t == TEMP_TIMER_NUM) ? 6 \
: (t == TONE_TIMER_NUM) ? 5 : 7 : 7
#define _TC_HANDLER(t) void TC##t##_Handler() #define _TC_HANDLER(t) void TC##t##_Handler()
#define TC_HANDLER(t) _TC_HANDLER(t) #define TC_HANDLER(t) _TC_HANDLER(t)
#define HAL_STEP_TIMER_ISR() TC_HANDLER(STEP_TIMER_NUM) #define HAL_STEP_TIMER_ISR() TC_HANDLER(STEP_TIMER_NUM)
@ -63,7 +63,6 @@ typedef uint32_t hal_timer_t;
#define HAL_PULSE_TIMER_ISR() TC_HANDLER(PULSE_TIMER_NUM) #define HAL_PULSE_TIMER_ISR() TC_HANDLER(PULSE_TIMER_NUM)
#endif #endif
#define HAL_TEMP_TIMER_ISR() TC_HANDLER(TEMP_TIMER_NUM) #define HAL_TEMP_TIMER_ISR() TC_HANDLER(TEMP_TIMER_NUM)
#define HAL_TONE_TIMER_ISR() TC_HANDLER(TONE_TIMER_NUM)
// -------------------------------------------------------------------------- // --------------------------------------------------------------------------
// Types // Types

@ -20,8 +20,8 @@
*/ */
#pragma once #pragma once
#define SYNC(sc) while (sc) { \ #define SYNC(sc) while (sc) { \
asm(""); \ asm(""); \
} }
// Get SAMD port/pin from specified arduino pin // Get SAMD port/pin from specified arduino pin

@ -0,0 +1,39 @@
/**
* Marlin 3D Printer Firmware
*
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* SAMD51 HAL developed by Giuliano Zaro (AKA GMagician)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
#define _useTimer1
#define _useTimer2
#define TRIM_DURATION 5 // compensation ticks to trim adjust for digitalWrite delays
#define SERVO_TIMER_PRESCALER 64 // timer prescaler factor to 64 (avoid overflowing 16-bit clock counter, at 120MHz this is 1831 ticks per millisecond
#define SERVO_TC 3
typedef enum {
#ifdef _useTimer1
_timer1,
#endif
#ifdef _useTimer2
_timer2,
#endif
_Nbr_16timers
} timer16_Sequence_t;

@ -0,0 +1,226 @@
/**
* Marlin 3D Printer Firmware
*
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* SAMD51 HAL developed by Giuliano Zaro (AKA GMagician)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* This comes from Arduino library which at the moment is buggy and uncompilable
*/
#ifdef __SAMD51__
#include "../../inc/MarlinConfig.h"
#if HAS_SERVOS
#include "../shared/Marduino.h"
#include "../shared/servo.h"
#include "../shared/servo_private.h"
#include "SAMD51.h"
#include "HAL_timers_SAMD51.h"
#define __TC_GCLK_ID(t) TC##t##_GCLK_ID
#define _TC_GCLK_ID(t) __TC_GCLK_ID(t)
#define TC_GCLK_ID _TC_GCLK_ID(SERVO_TC)
#define _TC_PRESCALER(d) TC_CTRLA_PRESCALER_DIV##d##_Val
#define TC_PRESCALER(d) _TC_PRESCALER(d)
#define __SERVO_IRQn(t) TC##t##_IRQn
#define _SERVO_IRQn(t) __SERVO_IRQn(t)
#define SERVO_IRQn _SERVO_IRQn(SERVO_TC)
#define HAL_SERVO_TIMER_ISR() TC_HANDLER(SERVO_TC)
#define TIMER_TCCHANNEL(t) ((t) & 1)
#define TC_COUNTER_START_VAL 0xFFFF
static volatile int8_t currentServoIndex[_Nbr_16timers]; // index for the servo being pulsed for each timer (or -1 if refresh interval)
FORCE_INLINE static uint16_t getTimerCount() {
Tc * const tc = TimerConfig[SERVO_TC].pTimer;
tc->COUNT16.CTRLBSET.reg = TC_CTRLBCLR_CMD_READSYNC;
SYNC(tc->COUNT16.SYNCBUSY.bit.CTRLB || tc->COUNT16.SYNCBUSY.bit.COUNT);
return tc->COUNT16.COUNT.reg;
}
// ----------------------------
// Interrupt handler for the TC
// ----------------------------
HAL_SERVO_TIMER_ISR() {
Tc * const tc = TimerConfig[SERVO_TC].pTimer;
const timer16_Sequence_t timer =
#ifndef _useTimer1
_timer2
#elif !defined(_useTimer2)
_timer1
#else
(tc->COUNT16.INTFLAG.reg & tc->COUNT16.INTENSET.reg & TC_INTFLAG_MC0) ? _timer1 : _timer2
#endif
;
const uint8_t tcChannel = TIMER_TCCHANNEL(timer);
if (currentServoIndex[timer] < 0) {
#if defined(_useTimer1) && defined(_useTimer2)
if (currentServoIndex[timer ^ 1] >= 0) {
// Wait for both channels
// Clear the interrupt
tc->COUNT16.INTFLAG.reg = (tcChannel == 0) ? TC_INTFLAG_MC0 : TC_INTFLAG_MC1;
return;
}
#endif
tc->COUNT16.COUNT.reg = TC_COUNTER_START_VAL;
SYNC(tc->COUNT16.SYNCBUSY.bit.COUNT);
}
else if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && SERVO(timer, currentServoIndex[timer]).Pin.isActive)
digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, LOW); // pulse this channel low if activated
// Select the next servo controlled by this timer
currentServoIndex[timer]++;
if (SERVO_INDEX(timer, currentServoIndex[timer]) < ServoCount && currentServoIndex[timer] < SERVOS_PER_TIMER) {
if (SERVO(timer, currentServoIndex[timer]).Pin.isActive) // check if activated
digitalWrite(SERVO(timer, currentServoIndex[timer]).Pin.nbr, HIGH); // it's an active channel so pulse it high
tc->COUNT16.CC[tcChannel].reg = getTimerCount() - (uint16_t)SERVO(timer, currentServoIndex[timer]).ticks;
}
else {
// finished all channels so wait for the refresh period to expire before starting over
currentServoIndex[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
const uint16_t tcCounterValue = getTimerCount();
if ((TC_COUNTER_START_VAL - tcCounterValue) + 4UL < usToTicks(REFRESH_INTERVAL)) // allow a few ticks to ensure the next OCR1A not missed
tc->COUNT16.CC[tcChannel].reg = TC_COUNTER_START_VAL - (uint16_t)usToTicks(REFRESH_INTERVAL);
else
tc->COUNT16.CC[tcChannel].reg = (uint16_t)(tcCounterValue - 4UL); // at least REFRESH_INTERVAL has elapsed
}
if (tcChannel == 0) {
SYNC(tc->COUNT16.SYNCBUSY.bit.CC0);
// Clear the interrupt
tc->COUNT16.INTFLAG.reg = TC_INTFLAG_MC0;
}
else {
SYNC(tc->COUNT16.SYNCBUSY.bit.CC1);
// Clear the interrupt
tc->COUNT16.INTFLAG.reg = TC_INTFLAG_MC1;
}
}
void initISR(timer16_Sequence_t timer) {
Tc * const tc = TimerConfig[SERVO_TC].pTimer;
const uint8_t tcChannel = TIMER_TCCHANNEL(timer);
static bool initialized = false; // Servo TC has been initialized
if (!initialized) {
NVIC_DisableIRQ(SERVO_IRQn);
// Disable the timer
tc->COUNT16.CTRLA.bit.ENABLE = false;
SYNC(tc->COUNT16.SYNCBUSY.bit.ENABLE);
// Select GCLK0 as timer/counter input clock source
GCLK->PCHCTRL[TC_GCLK_ID].bit.CHEN = false;
SYNC(GCLK->PCHCTRL[TC_GCLK_ID].bit.CHEN);
GCLK->PCHCTRL[TC_GCLK_ID].reg = GCLK_PCHCTRL_GEN_GCLK0 | GCLK_PCHCTRL_CHEN; // 120MHz startup code programmed
SYNC(!GCLK->PCHCTRL[TC_GCLK_ID].bit.CHEN);
// Reset the timer
tc->COUNT16.CTRLA.bit.SWRST = true;
SYNC(tc->COUNT16.SYNCBUSY.bit.SWRST);
SYNC(tc->COUNT16.CTRLA.bit.SWRST);
// Set timer counter mode to 16 bits
tc->COUNT16.CTRLA.reg = TC_CTRLA_MODE_COUNT16;
// Set timer counter mode as normal PWM
tc->COUNT16.WAVE.bit.WAVEGEN = TCC_WAVE_WAVEGEN_NPWM_Val;
// Set the prescaler factor
tc->COUNT16.CTRLA.bit.PRESCALER = TC_PRESCALER(SERVO_TIMER_PRESCALER);
// Count down
tc->COUNT16.CTRLBSET.reg = TC_CTRLBCLR_DIR;
SYNC(tc->COUNT16.SYNCBUSY.bit.CTRLB);
// Reset all servo indexes
memset(currentServoIndex, 0xFF, sizeof(currentServoIndex));
// Configure interrupt request
NVIC_ClearPendingIRQ(SERVO_IRQn);
NVIC_SetPriority(SERVO_IRQn, 5);
NVIC_EnableIRQ(SERVO_IRQn);
initialized = true;
}
if (!tc->COUNT16.CTRLA.bit.ENABLE) {
// Reset the timer counter
tc->COUNT16.COUNT.reg = TC_COUNTER_START_VAL;
SYNC(tc->COUNT16.SYNCBUSY.bit.COUNT);
// Enable the timer and start it
tc->COUNT16.CTRLA.bit.ENABLE = true;
SYNC(tc->COUNT16.SYNCBUSY.bit.ENABLE);
}
// First interrupt request after 1 ms
tc->COUNT16.CC[tcChannel].reg = getTimerCount() - (uint16_t)usToTicks(1000UL);
if (tcChannel == 0 ) {
SYNC(tc->COUNT16.SYNCBUSY.bit.CC0);
// Clear pending match interrupt
tc->COUNT16.INTFLAG.reg = TC_INTENSET_MC0;
// Enable the match channel interrupt request
tc->COUNT16.INTENSET.reg = TC_INTENSET_MC0;
}
else {
SYNC(tc->COUNT16.SYNCBUSY.bit.CC1);
// Clear pending match interrupt
tc->COUNT16.INTFLAG.reg = TC_INTENSET_MC1;
// Enable the match channel interrupt request
tc->COUNT16.INTENSET.reg = TC_INTENSET_MC1;
}
}
void finISR(timer16_Sequence_t timer) {
Tc * const tc = TimerConfig[SERVO_TC].pTimer;
const uint8_t tcChannel = TIMER_TCCHANNEL(timer);
// Disable the match channel interrupt request
tc->COUNT16.INTENCLR.reg = (tcChannel == 0) ? TC_INTENCLR_MC0 : TC_INTENCLR_MC1;
if (true
#if defined(_useTimer1) && defined(_useTimer2)
&& (tc->COUNT16.INTENCLR.reg & (TC_INTENCLR_MC0|TC_INTENCLR_MC1)) == 0
#endif
) {
// Disable the timer if not used
tc->COUNT16.CTRLA.bit.ENABLE = false;
SYNC(tc->COUNT16.SYNCBUSY.bit.ENABLE);
}
}
#endif // HAS_SERVOS
#endif // __SAMD51__

@ -1,59 +0,0 @@
/**
* Marlin 3D Printer Firmware
*
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
* SAMD51 HAL developed by Giuliano Zaro (AKA GMagician)
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* Description: Tone function for Arduino Due and compatible (SAM3X8E)
* Derived from http://forum.arduino.cc/index.php?topic=136500.msg2903012#msg2903012
*/
#ifdef __SAMD51__
#include "../../inc/MarlinConfig.h"
#include "HAL_timers_SAMD51.h"
static pin_t tone_pin;
volatile static int32_t toggles;
void tone(const pin_t _pin, const unsigned int frequency, const unsigned long duration) {
tone_pin = _pin;
toggles = 2 * frequency * duration / 1000;
HAL_timer_start(TONE_TIMER_NUM, 2 * frequency);
}
void noTone(const pin_t _pin) {
HAL_timer_disable_interrupt(TONE_TIMER_NUM);
extDigitalWrite(_pin, LOW);
}
HAL_TONE_TIMER_ISR() {
static bool pin_state = false;
HAL_timer_isr_prologue(TONE_TIMER_NUM);
if (toggles) {
toggles--;
extDigitalWrite(tone_pin, (pin_state = !pin_state));
}
else noTone(tone_pin); // turn off interrupt
HAL_timer_isr_epilogue(TONE_TIMER_NUM);
}
#endif // __SAMD51__

@ -32,8 +32,6 @@
#define NUM_HARDWARE_TIMERS 2 #define NUM_HARDWARE_TIMERS 2
//#define PRESCALER 1
// ------------------------ // ------------------------
// Private Variables // Private Variables
// ------------------------ // ------------------------

@ -33,8 +33,6 @@
#define STEP_TIMER_IRQ_ID TIM5_IRQn #define STEP_TIMER_IRQ_ID TIM5_IRQn
#define TEMP_TIMER_IRQ_ID TIM7_IRQn #define TEMP_TIMER_IRQ_ID TIM7_IRQn
//#define PRESCALER 1
// ------------------------ // ------------------------
// Private Variables // Private Variables
// ------------------------ // ------------------------

@ -116,9 +116,8 @@ void Servo::detach() {
} }
void Servo::write(int value) { void Servo::write(int value) {
if (value < MIN_PULSE_WIDTH) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds) if (value < MIN_PULSE_WIDTH) // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(), SERVO_MAX()); value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(), SERVO_MAX());
}
this->writeMicroseconds(value); this->writeMicroseconds(value);
} }
@ -140,7 +139,7 @@ void Servo::writeMicroseconds(int value) {
int Servo::read() { return map(this->readMicroseconds() + 1, SERVO_MIN(), SERVO_MAX(), 0, 180); } int Servo::read() { return map(this->readMicroseconds() + 1, SERVO_MIN(), SERVO_MAX(), 0, 180); }
int Servo::readMicroseconds() { int Servo::readMicroseconds() {
return (this->servoIndex == INVALID_SERVO) ? 0 : ticksToUs(servo_info[this->servoIndex].ticks) + TRIM_DURATION; return (this->servoIndex == INVALID_SERVO) ? 0 : ticksToUs(servo_info[this->servoIndex].ticks) + (TRIM_DURATION);
} }
bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; } bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; }

@ -84,10 +84,10 @@
#else #else
#include <stdint.h> #include <stdint.h>
#if defined(__AVR__) || defined(ARDUINO_ARCH_SAM) #if defined(__AVR__) || defined(ARDUINO_ARCH_SAM) || defined (__SAMD51__)
// we're good to go // we're good to go
#else #else
#error "This library only supports boards with an AVR or SAM3X processor." #error "This library only supports boards with an AVR, SAM3X or SAMD51 processor."
#endif #endif
#define Servo_VERSION 2 // software version of this library #define Servo_VERSION 2 // software version of this library

@ -47,8 +47,10 @@
#include "../HAL_AVR/ServoTimers.h" #include "../HAL_AVR/ServoTimers.h"
#elif defined(ARDUINO_ARCH_SAM) #elif defined(ARDUINO_ARCH_SAM)
#include "../HAL_DUE/ServoTimers.h" #include "../HAL_DUE/ServoTimers.h"
#elif defined(__SAMD51__)
#include "../HAL_SAMD51/ServoTimers.h"
#else #else
#error "This library only supports boards with an AVR or SAM3X processor." #error "This library only supports boards with an AVR, SAM3X or SAMD51 processor."
#endif #endif
// Macros // Macros
@ -64,10 +66,8 @@
#define INVALID_SERVO 255 // flag indicating an invalid servo index #define INVALID_SERVO 255 // flag indicating an invalid servo index
// Convert microseconds to ticks and back (PRESCALER depends on architecture) // Convert microseconds to ticks and back (PRESCALER depends on architecture)
#define usToTicks(_us) (clockCyclesPerMicrosecond() * (_us) / (PRESCALER)) #define usToTicks(_us) (clockCyclesPerMicrosecond() * (_us) / (SERVO_TIMER_PRESCALER))
#define ticksToUs(_ticks) (unsigned(_ticks) * (PRESCALER) / clockCyclesPerMicrosecond()) #define ticksToUs(_ticks) (unsigned(_ticks) * (SERVO_TIMER_PRESCALER) / clockCyclesPerMicrosecond())
//#define NBR_TIMERS ((MAX_SERVOS) / (SERVOS_PER_TIMER))
// convenience macros // convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / (SERVOS_PER_TIMER))) // returns the timer controlling this servo #define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / (SERVOS_PER_TIMER))) // returns the timer controlling this servo
@ -78,7 +78,7 @@
// Types // Types
typedef struct { typedef struct {
uint8_t nbr : 6 ; // a pin number from 0 to 63 uint8_t nbr : 7 ; // a pin number from 0 to 127
uint8_t isActive : 1 ; // true if this channel is enabled, pin not pulsed if false uint8_t isActive : 1 ; // true if this channel is enabled, pin not pulsed if false
} ServoPin_t; } ServoPin_t;

Loading…
Cancel
Save