Improved STMicro L64XX stepper driver support (#16452)

2.0.x
Bob Kuhn 5 years ago committed by Scott Lahteine
parent 53f1e5ff5b
commit 1ad53cee1f

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'powerSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS 0 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS 0
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS 0
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS 0
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS 0
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS 0
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS 0
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS 0
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS 0
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS 0
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS 0
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS 0
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS 0
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -33,7 +33,6 @@
#define hal_timer_t uint32_t #define hal_timer_t uint32_t
#define HAL_TIMER_TYPE_MAX 0xFFFFFFFF // Timers can be 16 or 32 bit #define HAL_TIMER_TYPE_MAX 0xFFFFFFFF // Timers can be 16 or 32 bit
#ifdef STM32F0xx #ifdef STM32F0xx
#define HAL_TIMER_RATE (F_CPU) // frequency of timer peripherals #define HAL_TIMER_RATE (F_CPU) // frequency of timer peripherals
@ -63,7 +62,7 @@
#define HAL_TIMER_RATE (F_CPU/2) // frequency of timer peripherals #define HAL_TIMER_RATE (F_CPU/2) // frequency of timer peripherals
#ifndef STEP_TIMER #ifndef STEP_TIMER
#define STEP_TIMER 6 #define STEP_TIMER 9 // STM32F401 has no TIM6, TIM7, or TIM8
#endif #endif
#ifndef TEMP_TIMER #ifndef TEMP_TIMER

@ -27,12 +27,12 @@
#include "../../inc/MarlinConfig.h" #include "../../inc/MarlinConfig.h"
#if HAS_DRIVER(L6470) #if HAS_L64XX
#include "Delay.h" #include "Delay.h"
#include "../../core/serial.h" #include "../../core/serial.h"
#include "../../libs/L6470/L6470_Marlin.h" #include "../../libs/L64XX/L64XX_Marlin.h"
// Make sure GCC optimizes this file. // Make sure GCC optimizes this file.
// Note that this line triggers a bug in GCC which is fixed by casting. // Note that this line triggers a bug in GCC which is fixed by casting.
@ -40,7 +40,7 @@
#pragma GCC optimize (3) #pragma GCC optimize (3)
// run at ~4Mhz // run at ~4Mhz
uint8_t L6470_SpiTransfer_Mode_0(uint8_t b) { // using Mode 0 inline uint8_t L6470_SpiTransfer_Mode_0(uint8_t b) { // using Mode 0
for (uint8_t bits = 8; bits--;) { for (uint8_t bits = 8; bits--;) {
WRITE(L6470_CHAIN_MOSI_PIN, b & 0x80); WRITE(L6470_CHAIN_MOSI_PIN, b & 0x80);
b <<= 1; // little setup time b <<= 1; // little setup time
@ -56,39 +56,60 @@ uint8_t L6470_SpiTransfer_Mode_0(uint8_t b) { // using Mode 0
return b; return b;
} }
uint8_t L6470_SpiTransfer_Mode_3(uint8_t b) { // using Mode 3 inline uint8_t L6470_SpiTransfer_Mode_3(uint8_t b) { // using Mode 3
for (uint8_t bits = 8; bits--;) { for (uint8_t bits = 8; bits--;) {
WRITE(L6470_CHAIN_SCK_PIN, LOW); WRITE(L6470_CHAIN_SCK_PIN, LOW);
WRITE(L6470_CHAIN_MOSI_PIN, b & 0x80); WRITE(L6470_CHAIN_MOSI_PIN, b & 0x80);
DELAY_NS(125); // 10 cycles @ 84mhz DELAY_NS(125); // 10 cycles @ 84mhz
WRITE(L6470_CHAIN_SCK_PIN, HIGH); WRITE(L6470_CHAIN_SCK_PIN, HIGH);
DELAY_NS(125); // Need more delay for fast CPUs
b <<= 1; // little setup time b <<= 1; // little setup time
b |= (READ(L6470_CHAIN_MISO_PIN) != 0); b |= (READ(L6470_CHAIN_MISO_PIN) != 0);
} }
DELAY_NS(125); // 10 cycles @ 84mhz DELAY_NS(125); // 10 cycles @ 84mhz
return b; return b;
} }
/** /**
* The following are weak-linked and defined as do-nothing * L64XX methods for SPI init and transfer
* functions by the L6470-Arduino library. They must be
* defined by the client (Marlin) to provide an SPI interface.
*/ */
void L64XX_Marlin::spi_init() {
OUT_WRITE(L6470_CHAIN_SS_PIN, HIGH);
OUT_WRITE(L6470_CHAIN_SCK_PIN, HIGH);
OUT_WRITE(L6470_CHAIN_MOSI_PIN, HIGH);
SET_INPUT(L6470_CHAIN_MISO_PIN);
#if PIN_EXISTS(L6470_BUSY)
SET_INPUT(L6470_BUSY_PIN);
#endif
uint8_t L6470_transfer(uint8_t data, int16_t ss_pin, const uint8_t chain_position) { OUT_WRITE(L6470_CHAIN_MOSI_PIN, HIGH);
}
uint8_t L64XX_Marlin::transfer_single(uint8_t data, int16_t ss_pin) {
// First device in chain has data sent last
extDigitalWrite(ss_pin, LOW);
DISABLE_ISRS(); // Disable interrupts during SPI transfer (can't allow partial command to chips)
const uint8_t data_out = L6470_SpiTransfer_Mode_3(data);
ENABLE_ISRS(); // Enable interrupts
extDigitalWrite(ss_pin, HIGH);
return data_out;
}
uint8_t L64XX_Marlin::transfer_chain(uint8_t data, int16_t ss_pin, uint8_t chain_position) {
uint8_t data_out = 0; uint8_t data_out = 0;
// first device in chain has data sent last // first device in chain has data sent last
extDigitalWrite(ss_pin, LOW); extDigitalWrite(ss_pin, LOW);
for (uint8_t i = L6470::chain[0]; (i >= 1) && !spi_abort; i--) { // stop sending data if spi_abort is active for (uint8_t i = L64XX::chain[0]; !L64xxManager.spi_abort && i >= 1; i--) { // Send data unless aborted
DISABLE_ISRS(); // disable interrupts during SPI transfer (can't allow partial command to chips) DISABLE_ISRS(); // Disable interrupts during SPI transfer (can't allow partial command to chips)
uint8_t temp = L6470_SpiTransfer_Mode_3(uint8_t(i == chain_position ? data : dSPIN_NOP)); const uint8_t temp = L6470_SpiTransfer_Mode_3(uint8_t(i == chain_position ? data : dSPIN_NOP));
ENABLE_ISRS(); // enable interrupts ENABLE_ISRS(); // Enable interrupts
if (i == chain_position) data_out = temp; if (i == chain_position) data_out = temp;
} }
@ -96,11 +117,14 @@ uint8_t L6470_transfer(uint8_t data, int16_t ss_pin, const uint8_t chain_positio
return data_out; return data_out;
} }
void L6470_transfer(uint8_t L6470_buf[], const uint8_t length) { /**
// first device in chain has data sent last * Platform-supplied L6470 buffer transfer method
*/
void L64XX_Marlin::transfer(uint8_t L6470_buf[], const uint8_t length) {
// First device in chain has its data sent last
if (spi_active) { // interrupted SPI transfer so need to if (spi_active) { // Interrupted SPI transfer so need to
WRITE(L6470_CHAIN_SS_PIN, HIGH); // guarantee min high of 650nS WRITE(L6470_CHAIN_SS_PIN, HIGH); // guarantee min high of 650ns
DELAY_US(1); DELAY_US(1);
} }
@ -110,19 +134,6 @@ void L6470_transfer(uint8_t L6470_buf[], const uint8_t length) {
WRITE(L6470_CHAIN_SS_PIN, HIGH); WRITE(L6470_CHAIN_SS_PIN, HIGH);
} }
void L6470_spi_init() {
OUT_WRITE(L6470_CHAIN_SS_PIN, HIGH);
OUT_WRITE(L6470_CHAIN_SCK_PIN, HIGH);
OUT_WRITE(L6470_CHAIN_MOSI_PIN, HIGH);
SET_INPUT(L6470_CHAIN_MISO_PIN);
#if PIN_EXISTS(L6470_BUSY)
SET_INPUT(L6470_BUSY_PIN);
#endif
OUT_WRITE(L6470_CHAIN_MOSI_PIN, HIGH);
}
#pragma GCC reset_options #pragma GCC reset_options
#endif // HAS_DRIVER(L6470) #endif // HAS_L64XX

@ -177,8 +177,8 @@
#include "feature/prusa_MMU2/mmu2.h" #include "feature/prusa_MMU2/mmu2.h"
#endif #endif
#if HAS_DRIVER(L6470) #if HAS_L64XX
#include "libs/L6470/L6470_Marlin.h" #include "libs/L64XX/L64XX_Marlin.h"
#endif #endif
const char NUL_STR[] PROGMEM = "", const char NUL_STR[] PROGMEM = "",
@ -605,7 +605,7 @@ void manage_inactivity(const bool ignore_stepper_queue/*=false*/) {
#endif #endif
#if ENABLED(MONITOR_L6470_DRIVER_STATUS) #if ENABLED(MONITOR_L6470_DRIVER_STATUS)
L6470.monitor_driver(); L64xxManager.monitor_driver();
#endif #endif
// Limit check_axes_activity frequency to 10Hz // Limit check_axes_activity frequency to 10Hz
@ -822,8 +822,8 @@ void setup() {
HAL_init(); HAL_init();
#if HAS_DRIVER(L6470) #if HAS_L64XX
L6470.init(); // setup SPI and then init chips L64xxManager.init(); // Set up SPI, init drivers
#endif #endif
#if ENABLED(MAX7219_DEBUG) #if ENABLED(MAX7219_DEBUG)

@ -31,8 +31,8 @@
#include <stdio.h> #include <stdio.h>
#include <stdlib.h> #include <stdlib.h>
#if HAS_DRIVER(L6470) #if HAS_L64XX
#include "libs/L6470/L6470_Marlin.h" #include "libs/L64XX/L64XX_Marlin.h"
extern uint8_t axis_known_position; extern uint8_t axis_known_position;
#endif #endif
@ -49,8 +49,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
// //
// X, Y, Z Stepper enable / disable // X, Y, Z Stepper enable / disable
// //
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
extern L6470 stepperX;
#define X_enable() NOOP #define X_enable() NOOP
#define X_disable() stepperX.free() #define X_disable() stepperX.free()
#elif HAS_X_ENABLE #elif HAS_X_ENABLE
@ -61,8 +60,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define X_disable() NOOP #define X_disable() NOOP
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
extern L6470 stepperX2;
#define X2_enable() NOOP #define X2_enable() NOOP
#define X2_disable() stepperX2.free() #define X2_disable() stepperX2.free()
#elif HAS_X2_ENABLE #elif HAS_X2_ENABLE
@ -76,8 +74,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define enable_X() do{ X_enable(); X2_enable(); }while(0) #define enable_X() do{ X_enable(); X2_enable(); }while(0)
#define disable_X() do{ X_disable(); X2_disable(); CBI(axis_known_position, X_AXIS); }while(0) #define disable_X() do{ X_disable(); X2_disable(); CBI(axis_known_position, X_AXIS); }while(0)
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
extern L6470 stepperY;
#define Y_enable() NOOP #define Y_enable() NOOP
#define Y_disable() stepperY.free() #define Y_disable() stepperY.free()
#elif HAS_Y_ENABLE #elif HAS_Y_ENABLE
@ -88,8 +85,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define Y_disable() NOOP #define Y_disable() NOOP
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
extern L6470 stepperY2;
#define Y2_enable() NOOP #define Y2_enable() NOOP
#define Y2_disable() stepperY2.free() #define Y2_disable() stepperY2.free()
#elif HAS_Y2_ENABLE #elif HAS_Y2_ENABLE
@ -103,8 +99,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define enable_Y() do{ Y_enable(); Y2_enable(); }while(0) #define enable_Y() do{ Y_enable(); Y2_enable(); }while(0)
#define disable_Y() do{ Y_disable(); Y2_disable(); CBI(axis_known_position, Y_AXIS); }while(0) #define disable_Y() do{ Y_disable(); Y2_disable(); CBI(axis_known_position, Y_AXIS); }while(0)
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
extern L6470 stepperZ;
#define Z_enable() NOOP #define Z_enable() NOOP
#define Z_disable() stepperZ.free() #define Z_disable() stepperZ.free()
#elif HAS_Z_ENABLE #elif HAS_Z_ENABLE
@ -115,8 +110,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define Z_disable() NOOP #define Z_disable() NOOP
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
extern L6470 stepperZ2;
#define Z2_enable() NOOP #define Z2_enable() NOOP
#define Z2_disable() stepperZ2.free() #define Z2_disable() stepperZ2.free()
#elif HAS_Z2_ENABLE #elif HAS_Z2_ENABLE
@ -127,8 +121,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define Z2_disable() NOOP #define Z2_disable() NOOP
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
extern L6470 stepperZ3;
#define Z3_enable() NOOP #define Z3_enable() NOOP
#define Z3_disable() stepperZ3.free() #define Z3_disable() stepperZ3.free()
#elif HAS_Z3_ENABLE #elif HAS_Z3_ENABLE
@ -147,8 +140,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
// //
// define the individual enables/disables // define the individual enables/disables
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
extern L6470 stepperE0;
#define E0_enable() NOOP #define E0_enable() NOOP
#define E0_disable() do{ stepperE0.free(); CBI(axis_known_position, E_AXIS); }while(0) #define E0_disable() do{ stepperE0.free(); CBI(axis_known_position, E_AXIS); }while(0)
#elif HAS_E0_ENABLE #elif HAS_E0_ENABLE
@ -159,8 +151,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define E0_disable() NOOP #define E0_disable() NOOP
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
extern L6470 stepperE1;
#define E1_enable() NOOP #define E1_enable() NOOP
#define E1_disable() do{ stepperE1.free(); CBI(axis_known_position, E_AXIS); }while(0) #define E1_disable() do{ stepperE1.free(); CBI(axis_known_position, E_AXIS); }while(0)
#elif E_STEPPERS > 1 && HAS_E1_ENABLE #elif E_STEPPERS > 1 && HAS_E1_ENABLE
@ -171,8 +162,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define E1_disable() NOOP #define E1_disable() NOOP
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
extern L6470 stepperE2;
#define E2_enable() NOOP #define E2_enable() NOOP
#define E2_disable() do{ stepperE2.free(); CBI(axis_known_position, E_AXIS); }while(0) #define E2_disable() do{ stepperE2.free(); CBI(axis_known_position, E_AXIS); }while(0)
#elif E_STEPPERS > 2 && HAS_E2_ENABLE #elif E_STEPPERS > 2 && HAS_E2_ENABLE
@ -183,8 +173,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define E2_disable() NOOP #define E2_disable() NOOP
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
extern L6470 stepperE3;
#define E3_enable() NOOP #define E3_enable() NOOP
#define E3_disable() do{ stepperE3.free(); CBI(axis_known_position, E_AXIS); }while(0) #define E3_disable() do{ stepperE3.free(); CBI(axis_known_position, E_AXIS); }while(0)
#elif E_STEPPERS > 3 && HAS_E3_ENABLE #elif E_STEPPERS > 3 && HAS_E3_ENABLE
@ -195,8 +184,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define E3_disable() NOOP #define E3_disable() NOOP
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
extern L6470 stepperE4;
#define E4_enable() NOOP #define E4_enable() NOOP
#define E4_disable() do{ stepperE4.free(); CBI(axis_known_position, E_AXIS); }while(0) #define E4_disable() do{ stepperE4.free(); CBI(axis_known_position, E_AXIS); }while(0)
#elif E_STEPPERS > 4 && HAS_E4_ENABLE #elif E_STEPPERS > 4 && HAS_E4_ENABLE
@ -207,8 +195,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define E4_disable() NOOP #define E4_disable() NOOP
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
extern L6470 stepperE5;
#define E5_enable() NOOP #define E5_enable() NOOP
#define E5_disable() do{ stepperE5.free(); CBI(axis_known_position, E_AXIS); }while(0) #define E5_disable() do{ stepperE5.free(); CBI(axis_known_position, E_AXIS); }while(0)
#elif E_STEPPERS > 5 && HAS_E5_ENABLE #elif E_STEPPERS > 5 && HAS_E5_ENABLE
@ -253,7 +240,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#else // !MIXING_EXTRUDER #else // !MIXING_EXTRUDER
#if HAS_E0_ENABLE #if (HAS_E0_ENABLE || AXIS_IS_L64XX(E0))
#define enable_E0() E0_enable() #define enable_E0() E0_enable()
#define disable_E0() E0_disable() #define disable_E0() E0_disable()
#else #else
@ -261,7 +248,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define disable_E0() NOOP #define disable_E0() NOOP
#endif #endif
#if E_STEPPERS > 1 && HAS_E1_ENABLE #if E_STEPPERS > 1 && (HAS_E1_ENABLE || AXIS_IS_L64XX(E1))
#define enable_E1() E1_enable() #define enable_E1() E1_enable()
#define disable_E1() E1_disable() #define disable_E1() E1_disable()
#else #else
@ -269,7 +256,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define disable_E1() NOOP #define disable_E1() NOOP
#endif #endif
#if E_STEPPERS > 2 && HAS_E2_ENABLE #if E_STEPPERS > 2 && (HAS_E2_ENABLE || AXIS_IS_L64XX(E2))
#define enable_E2() E2_enable() #define enable_E2() E2_enable()
#define disable_E2() E2_disable() #define disable_E2() E2_disable()
#else #else
@ -277,7 +264,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define disable_E2() NOOP #define disable_E2() NOOP
#endif #endif
#if E_STEPPERS > 3 && HAS_E3_ENABLE #if E_STEPPERS > 3 && (HAS_E3_ENABLE || AXIS_IS_L64XX(E3))
#define enable_E3() E3_enable() #define enable_E3() E3_enable()
#define disable_E3() E3_disable() #define disable_E3() E3_disable()
#else #else
@ -285,7 +272,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define disable_E3() NOOP #define disable_E3() NOOP
#endif #endif
#if E_STEPPERS > 4 && HAS_E4_ENABLE #if E_STEPPERS > 4 && (HAS_E4_ENABLE || AXIS_IS_L64XX(E4))
#define enable_E4() E4_enable() #define enable_E4() E4_enable()
#define disable_E4() E4_disable() #define disable_E4() E4_disable()
#else #else
@ -293,7 +280,7 @@ void manage_inactivity(const bool ignore_stepper_queue=false);
#define disable_E4() NOOP #define disable_E4() NOOP
#endif #endif
#if E_STEPPERS > 5 && HAS_E5_ENABLE #if E_STEPPERS > 5 && (HAS_E5_ENABLE || AXIS_IS_L64XX(E5))
#define enable_E5() E5_enable() #define enable_E5() E5_enable()
#define disable_E5() E5_disable() #define disable_E5() E5_disable()
#else #else

@ -28,6 +28,9 @@
#define _DRV8825 0x8825 #define _DRV8825 0x8825
#define _LV8729 0x8729 #define _LV8729 0x8729
#define _L6470 0x6470 #define _L6470 0x6470
#define _L6474 0x6474
#define _L6480 0x6480
#define _POWERSTEP01 0xF00D
#define _TB6560 0x6560 #define _TB6560 0x6560
#define _TB6600 0x6600 #define _TB6600 0x6600
#define _TMC2100 0x2100 #define _TMC2100 0x2100
@ -156,3 +159,8 @@
#define _SDCARD_CUSTOM_CABLE 3 #define _SDCARD_CUSTOM_CABLE 3
#define _SDCARD_ID(V) _CAT(_SDCARD_, V) #define _SDCARD_ID(V) _CAT(_SDCARD_, V)
#define SD_CONNECTION_IS(V) (_SDCARD_ID(SDCARD_CONNECTION) == _SDCARD_ID(V)) #define SD_CONNECTION_IS(V) (_SDCARD_ID(SDCARD_CONNECTION) == _SDCARD_ID(V))
#define HAS_L64XX (HAS_DRIVER(L6470) || HAS_DRIVER(L6474) || HAS_DRIVER(L6480) || HAS_DRIVER(POWERSTEP01))
#define HAS_L64XX_NOT_L6474 (HAS_L64XX && !HAS_DRIVER(L6474))
#define AXIS_IS_L64XX(A) (AXIS_DRIVER_TYPE_##A(L6470) || AXIS_DRIVER_TYPE_##A(L6474) || AXIS_DRIVER_TYPE_##A(L6480) || AXIS_DRIVER_TYPE_##A(POWERSTEP01))

@ -58,12 +58,10 @@ void serialprint_onoff(const bool onoff) { serialprintPGM(onoff ? PSTR(MSG_ON) :
void serialprintln_onoff(const bool onoff) { serialprint_onoff(onoff); SERIAL_EOL(); } void serialprintln_onoff(const bool onoff) { serialprint_onoff(onoff); SERIAL_EOL(); }
void serialprint_truefalse(const bool tf) { serialprintPGM(tf ? PSTR("true") : PSTR("false")); } void serialprint_truefalse(const bool tf) { serialprintPGM(tf ? PSTR("true") : PSTR("false")); }
void print_bin(const uint16_t val) { void print_bin(uint16_t val) {
uint16_t mask = 0x8000;
for (uint8_t i = 16; i--;) { for (uint8_t i = 16; i--;) {
if (i && !(i % 4)) SERIAL_CHAR(' '); SERIAL_CHAR('0' + TEST(val, i));
SERIAL_CHAR((val & mask) ? '1' : '0'); if (!(i & 0x3) && i) SERIAL_CHAR(' ');
mask >>= 1;
} }
} }

@ -47,8 +47,8 @@
#include "../../lcd/ultralcd.h" #include "../../lcd/ultralcd.h"
#if HAS_DRIVER(L6470) // set L6470 absolute position registers to counts #if HAS_L64XX // set L6470 absolute position registers to counts
#include "../../libs/L6470/L6470_Marlin.h" #include "../../libs/L64XX/L64XX_Marlin.h"
#endif #endif
#define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE) #define DEBUG_OUT ENABLED(DEBUG_LEVELING_FEATURE)
@ -526,11 +526,18 @@ void GcodeSuite::G28(const bool always_home_all) {
if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< G28"); if (DEBUGGING(LEVELING)) DEBUG_ECHOLNPGM("<<< G28");
#if HAS_DRIVER(L6470) #if HAS_L64XX
// Set L6470 absolute position registers to counts // Set L6470 absolute position registers to counts
for (uint8_t j = 1; j <= L6470::chain[0]; j++) { // constexpr *might* move this to PROGMEM.
const uint8_t cv = L6470::chain[j]; // If not, this will need a PROGMEM directive and an accessor.
L6470.set_param(cv, L6470_ABS_POS, stepper.position((AxisEnum)L6470.axis_xref[cv])); static constexpr AxisEnum L6470_axis_xref[MAX_L6470] = {
X_AXIS, Y_AXIS, Z_AXIS,
X_AXIS, Y_AXIS, Z_AXIS, Z_AXIS,
E_AXIS, E_AXIS, E_AXIS, E_AXIS, E_AXIS, E_AXIS
};
for (uint8_t j = 1; j <= L64XX::chain[0]; j++) {
const uint8_t cv = L64XX::chain[j];
L64xxManager.set_param((L64XX_axis_t)cv, L6470_ABS_POS, stepper.position(L6470_axis_xref[cv]));
} }
#endif #endif
} }

@ -22,36 +22,64 @@
#include "../../../inc/MarlinConfig.h" #include "../../../inc/MarlinConfig.h"
#if HAS_DRIVER(L6470) #if HAS_L64XX
#include "../../gcode.h" #include "../../gcode.h"
#include "../../../libs/L6470/L6470_Marlin.h" #include "../../../libs/L64XX/L64XX_Marlin.h"
#include "../../../module/stepper/indirection.h" #include "../../../module/stepper/indirection.h"
inline void echo_yes_no(const bool yes) { serialprintPGM(yes ? PSTR(" YES") : PSTR(" NO ")); } void echo_yes_no(const bool yes);
void L6470_status_decode(const uint16_t status, const uint8_t axis) { inline void L6470_say_status(const L64XX_axis_t axis) {
if (L6470.spi_abort) return; // don't do anything if set_directions() has occurred if (L64xxManager.spi_abort) return;
L6470.say_axis(axis); const L64XX_Marlin::L64XX_shadow_t &sh = L64xxManager.shadow;
L64xxManager.get_status(axis);
L64xxManager.say_axis(axis);
#if ENABLED(L6470_CHITCHAT) #if ENABLED(L6470_CHITCHAT)
char temp_buf[20]; char temp_buf[20];
sprintf_P(temp_buf, PSTR(" status: %4x "), status); sprintf_P(temp_buf, PSTR(" status: %4x "), sh.STATUS_AXIS_RAW);
SERIAL_ECHO(temp_buf); SERIAL_ECHO(temp_buf);
print_bin(status); print_bin(sh.STATUS_AXIS_RAW);
switch (sh.STATUS_AXIS_LAYOUT) {
case L6470_STATUS_LAYOUT: serialprintPGM(PSTR(" L6470")); break;
case L6474_STATUS_LAYOUT: serialprintPGM(PSTR(" L6474")); break;
case L6480_STATUS_LAYOUT: serialprintPGM(PSTR(" L6480/powerSTEP01")); break;
}
#endif #endif
SERIAL_ECHOPGM("\n...OUTPUT: "); SERIAL_ECHOPGM("\n...OUTPUT: ");
serialprintPGM(status & STATUS_HIZ ? PSTR("OFF") : PSTR("ON ")); serialprintPGM(sh.STATUS_AXIS & STATUS_HIZ ? PSTR("OFF") : PSTR("ON "));
SERIAL_ECHOPGM(" BUSY: "); echo_yes_no(!(status & STATUS_BUSY)); SERIAL_ECHOPGM(" BUSY: "); echo_yes_no((sh.STATUS_AXIS & STATUS_BUSY) == 0);
SERIAL_ECHOPGM(" DIR: "); SERIAL_ECHOPGM(" DIR: ");
serialprintPGM((((status & STATUS_DIR) >> 4) ^ L6470.index_to_dir[axis]) ? PSTR("FORWARD") : PSTR("REVERSE")); serialprintPGM((((sh.STATUS_AXIS & STATUS_DIR) >> 4) ^ L64xxManager.index_to_dir[axis]) ? PSTR("FORWARD") : PSTR("REVERSE"));
if (sh.STATUS_AXIS_LAYOUT == L6480_STATUS_LAYOUT) {
SERIAL_ECHOPGM(" Last Command: "); SERIAL_ECHOPGM(" Last Command: ");
if (status & STATUS_WRONG_CMD) SERIAL_ECHOPGM("IN"); if (sh.STATUS_AXIS & sh.STATUS_AXIS_WRONG_CMD) SERIAL_ECHOPGM("VALID");
else SERIAL_ECHOPGM("ERROR");
SERIAL_ECHOPGM("\n...THERMAL: ");
switch ((sh.STATUS_AXIS & (sh.STATUS_AXIS_TH_SD | sh.STATUS_AXIS_TH_WRN)) >> 11) {
case 0: SERIAL_ECHOPGM("DEVICE SHUTDOWN"); break;
case 1: SERIAL_ECHOPGM("BRIDGE SHUTDOWN"); break;
case 2: SERIAL_ECHOPGM("WARNING "); break;
case 3: SERIAL_ECHOPGM("OK "); break;
}
}
else {
SERIAL_ECHOPGM(" Last Command: ");
if (!(sh.STATUS_AXIS & sh.STATUS_AXIS_WRONG_CMD)) SERIAL_ECHOPGM("IN");
SERIAL_ECHOPGM("VALID "); SERIAL_ECHOPGM("VALID ");
serialprintPGM(status & STATUS_NOTPERF_CMD ? PSTR("Not PERFORMED") : PSTR("COMPLETED ")); serialprintPGM(sh.STATUS_AXIS & sh.STATUS_AXIS_NOTPERF_CMD ? PSTR("COMPLETED ") : PSTR("Not PERFORMED"));
SERIAL_ECHOPAIR("\n...THERMAL: ", !(status & STATUS_TH_SD) ? "SHUTDOWN" : !(status & STATUS_TH_WRN) ? "WARNING " : "OK "); SERIAL_ECHOPAIR("\n...THERMAL: ", !(sh.STATUS_AXIS & sh.STATUS_AXIS_TH_SD) ? "SHUTDOWN " : !(sh.STATUS_AXIS & sh.STATUS_AXIS_TH_WRN) ? "WARNING " : "OK ");
SERIAL_ECHOPGM(" OVERCURRENT:"); echo_yes_no(!(status & STATUS_OCD)); }
SERIAL_ECHOPGM(" STALL:"); echo_yes_no(!(status & STATUS_STEP_LOSS_A) || !(status & STATUS_STEP_LOSS_B)); SERIAL_ECHOPGM(" OVERCURRENT:"); echo_yes_no((sh.STATUS_AXIS & sh.STATUS_AXIS_OCD) == 0);
SERIAL_ECHOPGM(" STEP-CLOCK MODE:"); echo_yes_no(status & STATUS_SCK_MOD); if (sh.STATUS_AXIS_LAYOUT != L6474_STATUS_LAYOUT) {
SERIAL_ECHOPGM(" STALL:"); echo_yes_no((sh.STATUS_AXIS & sh.STATUS_AXIS_STEP_LOSS_A) == 0 || (sh.STATUS_AXIS & sh.STATUS_AXIS_STEP_LOSS_B) == 0);
SERIAL_ECHOPGM(" STEP-CLOCK MODE:"); echo_yes_no((sh.STATUS_AXIS & sh.STATUS_AXIS_SCK_MOD) != 0);
}
else {
SERIAL_ECHOPGM(" STALL: NA "
" STEP-CLOCK MODE: NA"
" UNDER VOLTAGE LOCKOUT: "); echo_yes_no((sh.STATUS_AXIS & sh.STATUS_AXIS_UVLO) == 0);
}
SERIAL_EOL(); SERIAL_EOL();
} }
@ -59,57 +87,56 @@ void L6470_status_decode(const uint16_t status, const uint8_t axis) {
* M122: Debug L6470 drivers * M122: Debug L6470 drivers
*/ */
void GcodeSuite::M122() { void GcodeSuite::M122() {
L64xxManager.pause_monitor(true); // Keep monitor_driver() from stealing status
L6470.spi_active = true; // let set_directions() know we're in the middle of a series of SPI transfers L64xxManager.spi_active = true; // Tell set_directions() a series of SPI transfers is underway
#define L6470_SAY_STATUS(Q) L6470_status_decode(stepper##Q.getStatus(), Q)
//if (parser.seen('S')) //if (parser.seen('S'))
// tmc_set_report_interval(parser.value_bool()); // tmc_set_report_interval(parser.value_bool());
//else //else
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
L6470_SAY_STATUS(X); L6470_say_status(X);
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
L6470_SAY_STATUS(X2); L6470_say_status(X2);
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
L6470_SAY_STATUS(Y); L6470_say_status(Y);
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
L6470_SAY_STATUS(Y2); L6470_say_status(Y2);
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
L6470_SAY_STATUS(Z); L6470_say_status(Z);
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
L6470_SAY_STATUS(Z2); L6470_say_status(Z2);
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
L6470_SAY_STATUS(Z3); L6470_say_status(Z3);
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
L6470_SAY_STATUS(E0); L6470_say_status(E0);
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
L6470_SAY_STATUS(E1); L6470_say_status(E1);
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
L6470_SAY_STATUS(E2); L6470_say_status(E2);
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
L6470_SAY_STATUS(E3); L6470_say_status(E3);
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
L6470_SAY_STATUS(E4); L6470_say_status(E4);
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
L6470_SAY_STATUS(E5); L6470_say_status(E5);
#endif #endif
L6470.spi_active = false; // done with all SPI transfers - clear handshake flags L64xxManager.spi_active = false; // done with all SPI transfers - clear handshake flags
L6470.spi_abort = false; L64xxManager.spi_abort = false;
L64xxManager.pause_monitor(false);
} }
#endif // HAS_DRIVER(L6470) #endif // HAS_L64XX

@ -22,10 +22,10 @@
#include "../../../inc/MarlinConfig.h" #include "../../../inc/MarlinConfig.h"
#if HAS_DRIVER(L6470) #if HAS_L64XX
#include "../../gcode.h" #include "../../gcode.h"
#include "../../../libs/L6470/L6470_Marlin.h" #include "../../../libs/L64XX/L64XX_Marlin.h"
#include "../../../module/stepper/indirection.h" #include "../../../module/stepper/indirection.h"
#include "../../../module/planner.h" #include "../../../module/planner.h"
@ -37,6 +37,8 @@
* M906: report or set KVAL_HOLD which sets the maximum effective voltage provided by the * M906: report or set KVAL_HOLD which sets the maximum effective voltage provided by the
* PWMs to the steppers * PWMs to the steppers
* *
* On L6474 this sets the TVAL register (same address).
*
* J - select which driver(s) to monitor on multi-driver axis * J - select which driver(s) to monitor on multi-driver axis
* 0 - (default) monitor all drivers on the axis or E0 * 0 - (default) monitor all drivers on the axis or E0
* 1 - monitor only X, Y, Z or E1 * 1 - monitor only X, Y, Z or E1
@ -81,89 +83,162 @@
* KVAL_DEC * KVAL_DEC
* Vs compensation (if enabled) * Vs compensation (if enabled)
*/ */
void L6470_report_current(L64XX &motor, const L64XX_axis_t axis) {
if (L64xxManager.spi_abort) return; // don't do anything if set_directions() has occurred
const L64XX_Marlin::L64XX_shadow_t &sh = L64xxManager.shadow;
const uint16_t status = L64xxManager.get_status(axis); //also populates shadow structure
const uint8_t OverCurrent_Threshold = uint8_t(motor.GetParam(L6470_OCD_TH));
void L6470_report_current(L6470 &motor, const uint8_t axis) { auto say_axis_status = [](const L64XX_axis_t axis, const uint16_t status) {
if (L6470.spi_abort) return; // don't do anything if set_directions() has occurred L64xxManager.say_axis(axis);
const uint16_t status = motor.getStatus() ;
const uint8_t overcurrent_threshold = (uint8_t)motor.GetParam(L6470_OCD_TH),
stall_threshold = (uint8_t)motor.GetParam(L6470_STALL_TH),
motor_status = (status & (STATUS_MOT_STATUS)) >> 13,
adc_out = motor.GetParam(L6470_ADC_OUT),
adc_out_limited = constrain(adc_out, 8, 24);
const float comp_coef = 1600.0f / adc_out_limited;
const int microsteps = _BV(motor.GetParam(L6470_STEP_MODE) & 0x07);
char temp_buf[80];
L6470.say_axis(axis);
#if ENABLED(L6470_CHITCHAT) #if ENABLED(L6470_CHITCHAT)
sprintf_P(temp_buf, PSTR(" status: %4x "), status); char tmp[10];
DEBUG_ECHO(temp_buf); sprintf_P(tmp, PSTR("%4x "), status);
DEBUG_ECHOPAIR(" status: ", tmp);
print_bin(status); print_bin(status);
#else
UNUSED(status);
#endif #endif
sprintf_P(temp_buf, PSTR("\n...OverCurrent Threshold: %2d (%4d mA)"), overcurrent_threshold, (overcurrent_threshold + 1) * 375); SERIAL_EOL();
SERIAL_ECHO(temp_buf); };
char numstr[11]; char temp_buf[10];
dtostrf((stall_threshold + 1) * 31.25, 1, 2, numstr);
sprintf_P(temp_buf, PSTR(" Stall Threshold: %2d (%s mA)"), stall_threshold, numstr);
SERIAL_ECHO(temp_buf);
switch (sh.STATUS_AXIS_LAYOUT) {
case L6470_STATUS_LAYOUT: // L6470
case L6480_STATUS_LAYOUT: { // L6480 & powerstep01
const uint16_t Stall_Threshold = (uint8_t)motor.GetParam(L6470_STALL_TH),
motor_status = (status & (STATUS_MOT_STATUS)) >> 5,
L6470_ADC_out = motor.GetParam(L6470_ADC_OUT),
L6470_ADC_out_limited = constrain(L6470_ADC_out, 8, 24);
const float comp_coef = 1600.0f / L6470_ADC_out_limited;
const uint16_t MicroSteps = _BV(motor.GetParam(L6470_STEP_MODE) & 0x07);
say_axis_status(axis, status);
SERIAL_ECHOPGM("...OverCurrent Threshold: ");
sprintf_P(temp_buf, PSTR("%2d ("), OverCurrent_Threshold);
SERIAL_ECHO(temp_buf);
SERIAL_ECHO((OverCurrent_Threshold + 1) * motor.OCD_CURRENT_CONSTANT_INV);
SERIAL_ECHOPGM(" mA)");
SERIAL_ECHOPGM(" Stall Threshold: ");
sprintf_P(temp_buf, PSTR("%2d ("), Stall_Threshold);
SERIAL_ECHO(temp_buf);
SERIAL_ECHO((Stall_Threshold + 1) * motor.STALL_CURRENT_CONSTANT_INV);
SERIAL_ECHOPGM(" mA)");
SERIAL_ECHOPGM(" Motor Status: "); SERIAL_ECHOPGM(" Motor Status: ");
const char *stat_str;
switch (motor_status) { switch (motor_status) {
default: case 0: SERIAL_ECHOPGM("stopped"); break;
case 0: stat_str = PSTR("stopped"); break; case 1: SERIAL_ECHOPGM("accelerating"); break;
case 1: stat_str = PSTR("accelerating"); break; case 2: SERIAL_ECHOPGM("decelerating"); break;
case 2: stat_str = PSTR("decelerating"); break; case 3: SERIAL_ECHOPGM("at constant speed"); break;
case 3: stat_str = PSTR("at constant speed"); break;
} }
serialprintPGM(stat_str);
SERIAL_EOL(); SERIAL_EOL();
SERIAL_ECHOPAIR("...microsteps: ", microsteps); SERIAL_ECHOPAIR("...MicroSteps: ", MicroSteps,
SERIAL_ECHOPAIR(" ADC_OUT: ", adc_out); " ADC_OUT: ", L6470_ADC_out);
SERIAL_ECHOPGM(" Vs_compensation: "); SERIAL_ECHOPGM(" Vs_compensation: ");
serialprintPGM((motor.GetParam(L6470_CONFIG) & CONFIG_EN_VSCOMP) ? PSTR("ENABLED ") : PSTR("DISABLED")); serialprintPGM((motor.GetParam(sh.L6470_AXIS_CONFIG) & CONFIG_EN_VSCOMP) ? PSTR("ENABLED ") : PSTR("DISABLED"));
SERIAL_ECHOLNPAIR(" Compensation coefficient: ~", comp_coef * 0.01f);
SERIAL_ECHOLNPAIR(" Compensation coefficient: ", dtostrf(comp_coef * 0.01f, 7, 2, numstr));
SERIAL_ECHOPAIR("...KVAL_HOLD: ", motor.GetParam(L6470_KVAL_HOLD)); SERIAL_ECHOPAIR("...KVAL_HOLD: ", motor.GetParam(L6470_KVAL_HOLD),
SERIAL_ECHOPAIR(" KVAL_RUN : ", motor.GetParam(L6470_KVAL_RUN)); " KVAL_RUN : ", motor.GetParam(L6470_KVAL_RUN),
SERIAL_ECHOPAIR(" KVAL_ACC: ", motor.GetParam(L6470_KVAL_ACC)); " KVAL_ACC: ", motor.GetParam(L6470_KVAL_ACC),
SERIAL_ECHOPAIR(" KVAL_DEC: ", motor.GetParam(L6470_KVAL_DEC)); " KVAL_DEC: ", motor.GetParam(L6470_KVAL_DEC),
SERIAL_ECHOPGM(" V motor max = "); " V motor max = ");
float val;
PGM_P suf;
switch (motor_status) { switch (motor_status) {
case 0: case 0: SERIAL_ECHO(motor.GetParam(L6470_KVAL_HOLD) * 100 / 256); SERIAL_ECHOPGM("% (KVAL_HOLD)"); break;
val = motor.GetParam(L6470_KVAL_HOLD); case 1: SERIAL_ECHO(motor.GetParam(L6470_KVAL_RUN) * 100 / 256); SERIAL_ECHOPGM("% (KVAL_RUN)"); break;
suf = PSTR("(KVAL_HOLD)"); case 2: SERIAL_ECHO(motor.GetParam(L6470_KVAL_ACC) * 100 / 256); SERIAL_ECHOPGM("% (KVAL_ACC)"); break;
break; case 3: SERIAL_ECHO(motor.GetParam(L6470_KVAL_DEC) * 100 / 256); SERIAL_ECHOPGM("% (KVAL_HOLD)"); break;
case 1: }
val = motor.GetParam(L6470_KVAL_RUN); SERIAL_EOL();
suf = PSTR("(KVAL_RUN)");
break; #if ENABLED(L6470_CHITCHAT)
case 2: DEBUG_ECHOPGM("...SLEW RATE: ");
val = motor.GetParam(L6470_KVAL_ACC); switch (sh.STATUS_AXIS_LAYOUT) {
suf = PSTR("(KVAL_ACC)"); case L6470_STATUS_LAYOUT: {
switch ((motor.GetParam(sh.L6470_AXIS_CONFIG) & CONFIG_POW_SR) >> CONFIG_POW_SR_BIT) {
case 0: { DEBUG_ECHOLNPGM("320V/uS") ; break; }
case 1: { DEBUG_ECHOLNPGM("75V/uS") ; break; }
case 2: { DEBUG_ECHOLNPGM("110V/uS") ; break; }
case 3: { DEBUG_ECHOLNPGM("260V/uS") ; break; }
}
break; break;
case 3: }
val = motor.GetParam(L6470_KVAL_DEC); case L6480_STATUS_LAYOUT: {
suf = PSTR("(KVAL_DEC)"); switch (motor.GetParam(L6470_GATECFG1) & CONFIG1_SR ) {
case CONFIG1_SR_220V_us: { DEBUG_ECHOLNPGM("220V/uS") ; break; }
case CONFIG1_SR_400V_us: { DEBUG_ECHOLNPGM("400V/uS") ; break; }
case CONFIG1_SR_520V_us: { DEBUG_ECHOLNPGM("520V/uS") ; break; }
case CONFIG1_SR_980V_us: { DEBUG_ECHOLNPGM("980V/uS") ; break; }
default: { DEBUG_ECHOLNPGM("unknown") ; break; }
}
}
}
#endif
SERIAL_EOL();
break; break;
} }
SERIAL_ECHO(dtostrf(val * 100 / 256, 10, 2, numstr));
SERIAL_ECHOPGM("%% "); case L6474_STATUS_LAYOUT: { // L6474
serialprintPGM(suf); const uint16_t L6470_ADC_out = motor.GetParam(L6470_ADC_OUT) & 0x1F,
L6474_TVAL_val = motor.GetParam(L6474_TVAL) & 0x7F;
say_axis_status(axis, status);
SERIAL_ECHOPGM("...OverCurrent Threshold: ");
sprintf_P(temp_buf, PSTR("%2d ("), OverCurrent_Threshold);
SERIAL_ECHO(temp_buf);
SERIAL_ECHO((OverCurrent_Threshold + 1) * motor.OCD_CURRENT_CONSTANT_INV);
SERIAL_ECHOPGM(" mA)");
SERIAL_ECHOPGM(" TVAL: ");
sprintf_P(temp_buf, PSTR("%2d ("), L6474_TVAL_val);
SERIAL_ECHO(temp_buf);
SERIAL_ECHO((L6474_TVAL_val + 1) * motor.STALL_CURRENT_CONSTANT_INV);
SERIAL_ECHOLNPGM(" mA Motor Status: NA)");
const uint16_t MicroSteps = _BV(motor.GetParam(L6470_STEP_MODE) & 0x07); //NOMORE(MicroSteps, 16);
SERIAL_ECHOLNPAIR("...MicroSteps: ", MicroSteps,
" ADC_OUT: ", L6470_ADC_out);
SERIAL_ECHOLNPGM(" Vs_compensation: NA\n"
"...KVAL_HOLD: NA"
" KVAL_RUN : NA"
" KVAL_ACC: NA"
" KVAL_DEC: NA"
" V motor max = NA");
#if ENABLED(L6470_CHITCHAT)
DEBUG_ECHOPGM("...SLEW RATE: ");
switch ((motor.GetParam(sh.L6470_AXIS_CONFIG) & CONFIG_POW_SR) >> CONFIG_POW_SR_BIT) {
case 0: DEBUG_ECHOLNPGM("320V/uS") ; break;
case 1: DEBUG_ECHOLNPGM("75V/uS") ; break;
case 2: DEBUG_ECHOLNPGM("110V/uS") ; break;
case 3: DEBUG_ECHOLNPGM("260V/uS") ; break;
default: DEBUG_ECHOLNPAIR("slew rate: ", (motor.GetParam(sh.L6470_AXIS_CONFIG) & CONFIG_POW_SR) >> CONFIG_POW_SR_BIT); break;
}
#endif
SERIAL_EOL();
SERIAL_EOL(); SERIAL_EOL();
break;
}
}
} }
void GcodeSuite::M906() { void GcodeSuite::M906() {
L64xxManager.pause_monitor(true); // Keep monitor_driver() from stealing status
#define L6470_SET_KVAL_HOLD(Q) stepper##Q.SetParam(L6470_KVAL_HOLD, value) #define L6470_SET_KVAL_HOLD(Q) stepper##Q.SetParam(L6470_KVAL_HOLD, value)
DEBUG_ECHOLNPGM("M906"); DEBUG_ECHOLNPGM("M906");
bool report_current = true; uint8_t report_current = true;
#if HAS_DRIVER(L6470) #if HAS_L64XX
const uint8_t index = parser.byteval('I'); const uint8_t index = parser.byteval('I');
#endif #endif
@ -172,35 +247,35 @@ void GcodeSuite::M906() {
report_current = false; report_current = false;
if (planner.has_blocks_queued() || planner.cleaning_buffer_counter) { if (planner.has_blocks_queued() || planner.cleaning_buffer_counter) {
SERIAL_ECHOLNPGM("!Can't set KVAL_HOLD with steppers moving"); SERIAL_ECHOLNPGM("Test aborted. Can't set KVAL_HOLD while steppers are moving.");
return; return;
} }
switch (i) { switch (i) {
case X_AXIS: case X_AXIS:
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
if (index == 0) L6470_SET_KVAL_HOLD(X); if (index == 0) L6470_SET_KVAL_HOLD(X);
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
if (index == 1) L6470_SET_KVAL_HOLD(X2); if (index == 1) L6470_SET_KVAL_HOLD(X2);
#endif #endif
break; break;
case Y_AXIS: case Y_AXIS:
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
if (index == 0) L6470_SET_KVAL_HOLD(Y); if (index == 0) L6470_SET_KVAL_HOLD(Y);
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
if (index == 1) L6470_SET_KVAL_HOLD(Y2); if (index == 1) L6470_SET_KVAL_HOLD(Y2);
#endif #endif
break; break;
case Z_AXIS: case Z_AXIS:
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
if (index == 0) L6470_SET_KVAL_HOLD(Z); if (index == 0) L6470_SET_KVAL_HOLD(Z);
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
if (index == 1) L6470_SET_KVAL_HOLD(Z2); if (index == 1) L6470_SET_KVAL_HOLD(Z2);
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
if (index == 2) L6470_SET_KVAL_HOLD(Z3); if (index == 2) L6470_SET_KVAL_HOLD(Z3);
#endif #endif
break; break;
@ -208,22 +283,22 @@ void GcodeSuite::M906() {
const int8_t target_extruder = get_target_extruder_from_command(); const int8_t target_extruder = get_target_extruder_from_command();
if (target_extruder < 0) return; if (target_extruder < 0) return;
switch (target_extruder) { switch (target_extruder) {
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
case 0: L6470_SET_KVAL_HOLD(E0); break; case 0: L6470_SET_KVAL_HOLD(E0); break;
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
case 1: L6470_SET_KVAL_HOLD(E1); break; case 1: L6470_SET_KVAL_HOLD(E1); break;
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
case 2: L6470_SET_KVAL_HOLD(E2); break; case 2: L6470_SET_KVAL_HOLD(E2); break;
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
case 3: L6470_SET_KVAL_HOLD(E3); break; case 3: L6470_SET_KVAL_HOLD(E3); break;
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
case 4: L6470_SET_KVAL_HOLD(E4); break; case 4: L6470_SET_KVAL_HOLD(E4); break;
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
case 5: L6470_SET_KVAL_HOLD(E5); break; case 5: L6470_SET_KVAL_HOLD(E5); break;
#endif #endif
} }
@ -234,51 +309,52 @@ void GcodeSuite::M906() {
if (report_current) { if (report_current) {
#define L6470_REPORT_CURRENT(Q) L6470_report_current(stepper##Q, Q) #define L6470_REPORT_CURRENT(Q) L6470_report_current(stepper##Q, Q)
L6470.spi_active = true; // let set_directions() know we're in the middle of a series of SPI transfers L64xxManager.spi_active = true; // Tell set_directions() a series of SPI transfers is underway
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
L6470_REPORT_CURRENT(X); L6470_REPORT_CURRENT(X);
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
L6470_REPORT_CURRENT(X2); L6470_REPORT_CURRENT(X2);
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
L6470_REPORT_CURRENT(Y); L6470_REPORT_CURRENT(Y);
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
L6470_REPORT_CURRENT(Y2); L6470_REPORT_CURRENT(Y2);
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
L6470_REPORT_CURRENT(Z); L6470_REPORT_CURRENT(Z);
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
L6470_REPORT_CURRENT(Z2); L6470_REPORT_CURRENT(Z2);
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
L6470_REPORT_CURRENT(Z3); L6470_REPORT_CURRENT(Z3);
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
L6470_REPORT_CURRENT(E0); L6470_REPORT_CURRENT(E0);
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
L6470_REPORT_CURRENT(E1); L6470_REPORT_CURRENT(E1);
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
L6470_REPORT_CURRENT(E2); L6470_REPORT_CURRENT(E2);
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
L6470_REPORT_CURRENT(E3); L6470_REPORT_CURRENT(E3);
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
L6470_REPORT_CURRENT(E4); L6470_REPORT_CURRENT(E4);
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
L6470_REPORT_CURRENT(E5); L6470_REPORT_CURRENT(E5);
#endif #endif
L6470.spi_active = false; // done with all SPI transfers - clear handshake flags L64xxManager.spi_active = false; // done with all SPI transfers - clear handshake flags
L6470.spi_abort = false; L64xxManager.spi_abort = false;
L64xxManager.pause_monitor(false);
} }
} }
#endif // HAS_DRIVER(L6470) #endif // HAS_L64XX

@ -20,35 +20,26 @@
* *
*/ */
//
// NOTE: All tests assume each axis uses matching driver chips.
//
#include "../../../inc/MarlinConfig.h" #include "../../../inc/MarlinConfig.h"
#if HAS_DRIVER(L6470) #if HAS_L64XX
#include "../../gcode.h" #include "../../gcode.h"
#include "../../../module/stepper/indirection.h" #include "../../../module/stepper/indirection.h"
#include "../../../module/planner.h" #include "../../../module/planner.h"
#include "../../../libs/L6470/L6470_Marlin.h" #include "../../../libs/L64XX/L64XX_Marlin.h"
#define DEBUG_OUT ENABLED(L6470_CHITCHAT) #define DEBUG_OUT ENABLED(L6470_CHITCHAT)
#include "../../../core/debug_out.h" #include "../../../core/debug_out.h"
static void jiggle_axis(const char axis_char, const float &min, const float &max, const feedRate_t &fr_mm_m) {
char gcode_string[30], str1[11], str2[11];
// Turn the motor(s) both directions
sprintf_P(gcode_string, PSTR("G0 %c%s F%s"), axis_char, dtostrf(min, 1, 3, str1), dtostrf(fr_mm_m, 1, 3, str2));
gcode.process_subcommands_now(gcode_string);
sprintf_P(gcode_string, PSTR("G0 %c%s F%s"), axis_char, dtostrf(max, 1, 3, str1), str2);
gcode.process_subcommands_now(gcode_string);
planner.synchronize();
}
/** /**
* *
* M916: Increase KVAL_HOLD until thermal warning * M916: increase KVAL_HOLD until get thermal warning
* * NOTE - on L6474 it is TVAL that is used
* *
* J - select which driver(s) to monitor on multi-driver axis * J - select which driver(s) to monitor on multi-driver axis
* 0 - (default) monitor all drivers on the axis or E0 * 0 - (default) monitor all drivers on the axis or E0
@ -62,8 +53,14 @@ static void jiggle_axis(const char axis_char, const float &min, const float &max
* F - feedrate * F - feedrate
* optional - will use default max feedrate from configuration.h if not specified * optional - will use default max feedrate from configuration.h if not specified
* *
* K - starting value for KVAL_HOLD (0 - 255) * T - current (mA) setting for TVAL (0 - 4A in 31.25mA increments, rounds down) - L6474 only
* optional - will use & report current value from driver if not specified * optional - will report current value from driver if not specified
*
* K - value for KVAL_HOLD (0 - 255) (ignored for L6474)
* optional - will report current value from driver if not specified
*
* D - time (in seconds) to run each setting of KVAL_HOLD/TVAL
* optional - defaults to zero (runs each setting once)
* *
*/ */
@ -77,80 +74,115 @@ void GcodeSuite::M916() {
DEBUG_ECHOLNPGM("M916"); DEBUG_ECHOLNPGM("M916");
// Variables used by L6470_get_user_input function - some may not be used L64xxManager.pause_monitor(true); // Keep monitor_driver() from stealing status
char axis_mon[3][3] = { " ", " ", " " }; // list of Axes to be monitored
uint8_t axis_index[3]; // Variables used by L64xxManager.get_user_input function - some may not be used
char axis_mon[3][3] = { {" "}, {" "}, {" "} }; // list of Axes to be monitored
L64XX_axis_t axis_index[3];
uint16_t axis_status[3]; uint16_t axis_status[3];
uint8_t driver_count = 1; uint8_t driver_count = 1;
float position_max; float position_max;
float position_min; float position_min;
feedRate_t final_fr_mm_m; float final_feedrate;
uint8_t kval_hold; uint8_t kval_hold;
uint8_t ocd_th_val = 0; uint8_t OCD_TH_val = 0;
uint8_t stall_th_val = 0; uint8_t STALL_TH_val = 0;
uint16_t over_current_threshold; uint16_t over_current_threshold;
constexpr bool over_current_flag = false; // M916 doesn't play with the overcurrent thresholds constexpr uint8_t over_current_flag = false; // M916 doesn't play with the overcurrent thresholds
#define DRIVER_TYPE_L6474(Q) AXIS_DRIVER_TYPE_##Q(L6474)
uint8_t j; // general purpose counter uint8_t j; // general purpose counter
if (L6470.get_user_input(driver_count, axis_index, axis_mon, position_max, position_min, final_fr_mm_m, kval_hold, over_current_flag, ocd_th_val, stall_th_val, over_current_threshold)) if (L64xxManager.get_user_input(driver_count, axis_index, axis_mon, position_max, position_min, final_feedrate, kval_hold, over_current_flag, OCD_TH_val, STALL_TH_val, over_current_threshold))
return; // quit if invalid user input return; // quit if invalid user input
DEBUG_ECHOLNPAIR("feedrate = ", final_fr_mm_m); DEBUG_ECHOLNPAIR("feedrate = ", final_feedrate);
planner.synchronize(); // Wait for moves to finish planner.synchronize(); // wait for all current movement commands to complete
const L64XX_Marlin::L64XX_shadow_t &sh = L64xxManager.shadow;
for (j = 0; j < driver_count; j++) for (j = 0; j < driver_count; j++)
L6470.get_status(axis_index[j]); // Clear out error flags L64xxManager.get_status(axis_index[j]); // clear out any pre-existing error flags
char temp_axis_string[] = " ";
temp_axis_string[0] = axis_mon[0][0]; // need to have a string for use within sprintf format section
char gcode_string[80];
uint16_t status_composite = 0; uint16_t status_composite = 0;
uint16_t M91x_counter = kval_hold;
uint16_t M91x_counter_max;
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) {
M91x_counter_max = 128; // TVAL is 7 bits
LIMIT(M91x_counter, 0U, 127U);
}
else
M91x_counter_max = 256; // KVAL_HOLD is 8 bits
uint8_t M91x_delay_s = parser.byteval('D'); // get delay in seconds
millis_t M91x_delay_ms = M91x_delay_s * 60 * 1000;
millis_t M91x_delay_end;
DEBUG_ECHOLNPGM(".\n."); DEBUG_ECHOLNPGM(".\n.");
do { do {
DEBUG_ECHOLNPAIR("kval_hold = ", kval_hold); // set & report KVAL_HOLD for this run if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT)
DEBUG_ECHOLNPAIR("TVAL current (mA) = ", (M91x_counter + 1) * sh.AXIS_STALL_CURRENT_CONSTANT_INV); // report TVAL current for this run
else
DEBUG_ECHOLNPAIR("kval_hold = ", M91x_counter); // report KVAL_HOLD for this run
for (j = 0; j < driver_count; j++) for (j = 0; j < driver_count; j++)
L6470.set_param(axis_index[j], L6470_KVAL_HOLD, kval_hold); L64xxManager.set_param(axis_index[j], L6470_KVAL_HOLD, M91x_counter); //set KVAL_HOLD or TVAL (same register address)
M91x_delay_end = millis() + M91x_delay_ms;
do {
// turn the motor(s) both directions
sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_min), uint16_t(final_feedrate));
gcode.process_subcommands_now_P(gcode_string);
// Turn the motor(s) both directions sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_max), uint16_t(final_feedrate));
jiggle_axis(axis_mon[0][0], position_min, position_max, final_fr_mm_m); gcode.process_subcommands_now_P(gcode_string);
// get the status after the motors have stopped
planner.synchronize();
status_composite = 0; // clear out the old bits status_composite = 0; // clear out the old bits
for (j = 0; j < driver_count; j++) { for (j = 0; j < driver_count; j++) {
axis_status[j] = (~L6470.get_status(axis_index[j])) & L6470_ERROR_MASK; // bits of interest are all active low axis_status[j] = (~L64xxManager.get_status(axis_index[j])) & sh.L6470_ERROR_MASK; // bits of interest are all active low
status_composite |= axis_status[j] ; status_composite |= axis_status[j] ;
} }
if (status_composite && (status_composite & STATUS_UVLO)) { if (status_composite) break;
DEBUG_ECHOLNPGM("Test aborted (Undervoltage lockout active)"); } while (millis() < M91x_delay_end);
for (j = 0; j < driver_count; j++) {
DEBUG_ECHOPGM("...");
L6470.error_status_decode(axis_status[j], axis_index[j]);
}
return;
}
// increment KVAL_HOLD if not yet at thermal warning/shutdown if (status_composite) break;
if (!(status_composite & (STATUS_TH_WRN | STATUS_TH_SD)))
kval_hold++;
} while (!(status_composite & (STATUS_TH_WRN | STATUS_TH_SD)) && kval_hold); // exit when kval_hold == 0 (rolls over) M91x_counter++;
DEBUG_ECHOPGM(".\n.\nThermal warning/shutdown "); } while (!(status_composite & (sh.STATUS_AXIS_TH_WRN | sh.STATUS_AXIS_TH_SD)) && (M91x_counter < M91x_counter_max));
if ((status_composite & (STATUS_TH_WRN | STATUS_TH_SD))) {
DEBUG_ECHOLNPGM("has occurred"); DEBUG_ECHOLNPGM(".");
for (j = 0; j < driver_count; j++) {
DEBUG_ECHOPGM("..."); #if ENABLED(L6470_CHITCHAT)
L6470.error_status_decode(axis_status[j], axis_index[j]); if (status_composite) {
} L64xxManager.error_status_decode(status_composite, axis_index[0],
sh.STATUS_AXIS_TH_SD, sh.STATUS_AXIS_TH_WRN,
sh.STATUS_AXIS_STEP_LOSS_A, sh.STATUS_AXIS_STEP_LOSS_B,
sh.STATUS_AXIS_OCD, sh.STATUS_AXIS_LAYOUT);
DEBUG_ECHOLNPGM(".");
} }
#endif
if ((status_composite & (sh.STATUS_AXIS_TH_WRN | sh.STATUS_AXIS_TH_SD)))
DEBUG_ECHOLNPGM(".\n.\nTest completed normally - Thermal warning/shutdown has occurred");
else if (status_composite)
DEBUG_ECHOLNPGM(".\n.\nTest completed abnormally - non-thermal error has occured");
else else
DEBUG_ECHOLNPGM("(Unable to get)"); DEBUG_ECHOLNPGM(".\n.\nTest completed normally - Unable to get to thermal warning/shutdown");
DEBUG_ECHOLNPGM("."); L64xxManager.pause_monitor(false);
} }
/** /**
@ -159,8 +191,8 @@ void GcodeSuite::M916() {
* *
* Decrease OCD current until overcurrent error * Decrease OCD current until overcurrent error
* Increase OCD until overcurrent error goes away * Increase OCD until overcurrent error goes away
* Decrease stall threshold until stall * Decrease stall threshold until stall (not done on L6474)
* Increase stall until stall error goes away * Increase stall until stall error goes away (not done on L6474)
* *
* J - select which driver(s) to monitor on multi-driver axis * J - select which driver(s) to monitor on multi-driver axis
* 0 - (default) monitor all drivers on the axis or E0 * 0 - (default) monitor all drivers on the axis or E0
@ -176,7 +208,10 @@ void GcodeSuite::M916() {
* optional - will report current value from driver if not specified * optional - will report current value from driver if not specified
* if there are multiple drivers on the axis then all will be set the same * if there are multiple drivers on the axis then all will be set the same
* *
* K - value for KVAL_HOLD (0 - 255) * T - current (mA) setting for TVAL (0 - 4A in 31.25mA increments, rounds down) - L6474 only
* optional - will report current value from driver if not specified
*
* K - value for KVAL_HOLD (0 - 255) (ignored for L6474)
* optional - will report current value from driver if not specified * optional - will report current value from driver if not specified
* *
*/ */
@ -184,66 +219,85 @@ void GcodeSuite::M917() {
DEBUG_ECHOLNPGM("M917"); DEBUG_ECHOLNPGM("M917");
char axis_mon[3][3] = { " ", " ", " " }; // list of axes to be monitored L64xxManager.pause_monitor(true); // Keep monitor_driver() from stealing status
uint8_t axis_index[3];
char axis_mon[3][3] = { {" "}, {" "}, {" "} }; // list of Axes to be monitored
L64XX_axis_t axis_index[3];
uint16_t axis_status[3]; uint16_t axis_status[3];
uint8_t driver_count = 1; uint8_t driver_count = 1;
float position_max; float position_max;
float position_min; float position_min;
feedRate_t final_fr_mm_m; float final_feedrate;
uint8_t kval_hold; uint8_t kval_hold;
uint8_t ocd_th_val = 0; uint8_t OCD_TH_val = 0;
uint8_t stall_th_val = 0; uint8_t STALL_TH_val = 0;
uint16_t over_current_threshold; uint16_t over_current_threshold;
constexpr bool over_current_flag = true; constexpr uint8_t over_current_flag = true;
uint8_t j; // general purpose counter uint8_t j; // general purpose counter
if (L6470.get_user_input(driver_count, axis_index, axis_mon, position_max, position_min, final_fr_mm_m, kval_hold, over_current_flag, ocd_th_val, stall_th_val, over_current_threshold)) if (L64xxManager.get_user_input(driver_count, axis_index, axis_mon, position_max, position_min, final_feedrate, kval_hold, over_current_flag, OCD_TH_val, STALL_TH_val, over_current_threshold))
return; // quit if invalid user input return; // quit if invalid user input
DEBUG_ECHOLNPAIR("feedrate = ", final_fr_mm_m); DEBUG_ECHOLNPAIR("feedrate = ", final_feedrate);
planner.synchronize(); // Wait for moves to finish planner.synchronize(); // wait for all current movement commands to complete
const L64XX_Marlin::L64XX_shadow_t &sh = L64xxManager.shadow;
for (j = 0; j < driver_count; j++) for (j = 0; j < driver_count; j++)
L6470.get_status(axis_index[j]); // Clear out error flags L64xxManager.get_status(axis_index[j]); // clear error flags
char temp_axis_string[] = " ";
temp_axis_string[0] = axis_mon[0][0]; // need a sprintf format string
char gcode_string[80];
uint16_t status_composite = 0; uint16_t status_composite = 0;
uint8_t test_phase = 0; uint8_t test_phase = 0; // 0 - decreasing OCD - exit when OCD warning occurs (ignore STALL)
// 0 - decreasing OCD - exit when OCD warning occurs (ignore STALL) // 1 - increasing OCD - exit when OCD warning stops (ignore STALL)
// 1 - increasing OCD - exit when OCD warning stops (ignore STALL) -
// 2 - OCD finalized - decreasing STALL - exit when STALL warning happens // 2 - OCD finalized - decreasing STALL - exit when STALL warning happens
// 3 - OCD finalized - increasing STALL - exit when STALL warning stop // 3 - OCD finalized - increasing STALL - exit when STALL warning stop
// 4 - all testing completed // 4 - all testing completed
DEBUG_ECHOPAIR(".\n.\n.\nover_current threshold : ", (ocd_th_val + 1) * 375); // first status display DEBUG_ECHOPAIR(".\n.\n.\nover_current threshold : ", (OCD_TH_val + 1) * 375); // first status display
DEBUG_ECHOPAIR(" (OCD_TH: : ", ocd_th_val); DEBUG_ECHOPAIR(" (OCD_TH: : ", OCD_TH_val);
DEBUG_ECHOPAIR(") Stall threshold: ", (stall_th_val + 1) * 31.25); if (sh.STATUS_AXIS_LAYOUT != L6474_STATUS_LAYOUT) {
DEBUG_ECHOPAIR(" (STALL_TH: ", stall_th_val); DEBUG_ECHOPAIR(") Stall threshold: ", (STALL_TH_val + 1) * 31.25);
DEBUG_ECHOPAIR(" (STALL_TH: ", STALL_TH_val);
}
DEBUG_ECHOLNPGM(")"); DEBUG_ECHOLNPGM(")");
do { do {
DEBUG_ECHOPAIR("STALL threshold : ", (stall_th_val + 1) * 31.25); if (sh.STATUS_AXIS_LAYOUT != L6474_STATUS_LAYOUT) DEBUG_ECHOPAIR("STALL threshold : ", (STALL_TH_val + 1) * 31.25);
DEBUG_ECHOLNPAIR(" OCD threshold : ", (ocd_th_val + 1) * 375); DEBUG_ECHOLNPAIR(" OCD threshold : ", (OCD_TH_val + 1) * 375);
jiggle_axis(axis_mon[0][0], position_min, position_max, final_fr_mm_m); sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_min), uint16_t(final_feedrate));
gcode.process_subcommands_now_P(gcode_string);
sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_max), uint16_t(final_feedrate));
gcode.process_subcommands_now_P(gcode_string);
planner.synchronize();
status_composite = 0; // clear out the old bits status_composite = 0; // clear out the old bits
for (j = 0; j < driver_count; j++) { for (j = 0; j < driver_count; j++) {
axis_status[j] = (~L6470.get_status(axis_index[j])) & L6470_ERROR_MASK; // bits of interest are all active low axis_status[j] = (~L64xxManager.get_status(axis_index[j])) & sh.L6470_ERROR_MASK; // bits of interest are all active low
status_composite |= axis_status[j]; status_composite |= axis_status[j];
} }
if (status_composite && (status_composite & STATUS_UVLO)) { if (status_composite && (status_composite & sh.STATUS_AXIS_UVLO)) {
DEBUG_ECHOLNPGM("Test aborted (Undervoltage lockout active)"); DEBUG_ECHOLNPGM("Test aborted (Undervoltage lockout active)");
#if ENABLED(L6470_CHITCHAT)
for (j = 0; j < driver_count; j++) { for (j = 0; j < driver_count; j++) {
DEBUG_ECHOPGM("..."); if (j) DEBUG_ECHOPGM("...");
L6470.error_status_decode(axis_status[j], axis_index[j]); L64xxManager.error_status_decode(axis_status[j], axis_index[j],
sh.STATUS_AXIS_TH_SD, sh.STATUS_AXIS_TH_WRN,
sh.STATUS_AXIS_STEP_LOSS_A, sh.STATUS_AXIS_STEP_LOSS_B,
sh.STATUS_AXIS_OCD, sh.STATUS_AXIS_LAYOUT);
} }
#endif
return; return;
} }
if (status_composite & (STATUS_TH_WRN | STATUS_TH_SD)) { if (status_composite & (sh.STATUS_AXIS_TH_WRN | sh.STATUS_AXIS_TH_SD)) {
DEBUG_ECHOLNPGM("thermal problem - waiting for chip(s) to cool down "); DEBUG_ECHOLNPGM("thermal problem - waiting for chip(s) to cool down ");
uint16_t status_composite_temp = 0; uint16_t status_composite_temp = 0;
uint8_t k = 0; uint8_t k = 0;
@ -251,118 +305,136 @@ void GcodeSuite::M917() {
k++; k++;
if (!(k % 4)) { if (!(k % 4)) {
kval_hold *= 0.95; kval_hold *= 0.95;
L6470_EOL(); DEBUG_EOL();
DEBUG_ECHOLNPAIR("Lowering KVAL_HOLD by about 5% to ", kval_hold); DEBUG_ECHOLNPAIR("Lowering KVAL_HOLD by about 5% to ", kval_hold);
for (j = 0; j < driver_count; j++) for (j = 0; j < driver_count; j++)
L6470.set_param(axis_index[j], L6470_KVAL_HOLD, kval_hold); L64xxManager.set_param(axis_index[j], L6470_KVAL_HOLD, kval_hold);
} }
DEBUG_ECHOLNPGM("."); DEBUG_ECHOLNPGM(".");
reset_stepper_timeout(); // reset_stepper_timeout to keep steppers powered gcode.reset_stepper_timeout(); // reset_stepper_timeout to keep steppers powered
watchdog_refresh(); watchdog_refresh();; // beat the dog
safe_delay(5000); safe_delay(5000);
status_composite_temp = 0; status_composite_temp = 0;
for (j = 0; j < driver_count; j++) { for (j = 0; j < driver_count; j++) {
axis_status[j] = (~L6470.get_status(axis_index[j])) & L6470_ERROR_MASK; // bits of interest are all active low axis_status[j] = (~L64xxManager.get_status(axis_index[j])) & sh.L6470_ERROR_MASK; // bits of interest are all active low
status_composite_temp |= axis_status[j]; status_composite_temp |= axis_status[j];
} }
} }
while (status_composite_temp & (STATUS_TH_WRN | STATUS_TH_SD)); while (status_composite_temp & (sh.STATUS_AXIS_TH_WRN | sh.STATUS_AXIS_TH_SD));
L6470_EOL(); DEBUG_EOL();
} }
if (status_composite & (STATUS_STEP_LOSS_A | STATUS_STEP_LOSS_B | STATUS_OCD)) { if (status_composite & (sh.STATUS_AXIS_STEP_LOSS_A | sh.STATUS_AXIS_STEP_LOSS_B | sh.STATUS_AXIS_OCD)) {
switch (test_phase) { switch (test_phase) {
case 0: { case 0: {
if (status_composite & STATUS_OCD) { if (status_composite & sh.STATUS_AXIS_OCD) {
// phase 0 with OCD warning - time to go to next phase // phase 0 with OCD warning - time to go to next phase
if (ocd_th_val >=15) { if (OCD_TH_val >= sh.AXIS_OCD_TH_MAX) {
ocd_th_val = 15; // limit to max OCD_TH_val = sh.AXIS_OCD_TH_MAX; // limit to max
test_phase = 2; // at highest value so skip phase 1 test_phase = 2; // at highest value so skip phase 1
DEBUG_ECHOLNPGM("LOGIC E0A OCD at highest - skip to 2"); //DEBUG_ECHOLNPGM("LOGIC E0A OCD at highest - skip to 2");
DEBUG_ECHOLNPGM("OCD at highest - OCD finalized");
} }
else { else {
ocd_th_val++; // normal exit to next phase OCD_TH_val++; // normal exit to next phase
test_phase = 1; // setup for first pass of phase 1 test_phase = 1; // setup for first pass of phase 1
DEBUG_ECHOLNPGM("LOGIC E0B - inc OCD & go to 1"); //DEBUG_ECHOLNPGM("LOGIC E0B - inc OCD & go to 1");
DEBUG_ECHOLNPGM("inc OCD");
} }
} }
else { // phase 0 without OCD warning - keep on decrementing if can else { // phase 0 without OCD warning - keep on decrementing if can
if (ocd_th_val) { if (OCD_TH_val) {
ocd_th_val--; // try lower value OCD_TH_val--; // try lower value
DEBUG_ECHOLNPGM("LOGIC E0C - dec OCD"); //DEBUG_ECHOLNPGM("LOGIC E0C - dec OCD");
DEBUG_ECHOLNPGM("dec OCD");
} }
else { else {
test_phase = 2; // at lowest value without warning so skip phase 1 test_phase = 2; // at lowest value without warning so skip phase 1
DEBUG_ECHOLNPGM("LOGIC E0D - OCD at latest - go to 2"); //DEBUG_ECHOLNPGM("LOGIC E0D - OCD at latest - go to 2");
DEBUG_ECHOLNPGM("OCD finalized");
} }
} }
} break; } break;
case 1: { case 1: {
if (status_composite & STATUS_OCD) { if (status_composite & sh.STATUS_AXIS_OCD) {
// phase 1 with OCD warning - increment if can // phase 1 with OCD warning - increment if can
if (ocd_th_val >= 15) { if (OCD_TH_val >= sh.AXIS_OCD_TH_MAX) {
ocd_th_val = 15; // limit to max OCD_TH_val = sh.AXIS_OCD_TH_MAX; // limit to max
test_phase = 2; // at highest value so go to next phase test_phase = 2; // at highest value so go to next phase
DEBUG_ECHOLNPGM("LOGIC E1A - OCD at max - go to 2"); //DEBUG_ECHOLNPGM("LOGIC E1A - OCD at max - go to 2");
DEBUG_ECHOLNPGM("OCD finalized");
} }
else { else {
ocd_th_val++; // try a higher value OCD_TH_val++; // try a higher value
DEBUG_ECHOLNPGM("LOGIC E1B - inc OCD"); //DEBUG_ECHOLNPGM("LOGIC E1B - inc OCD");
DEBUG_ECHOLNPGM("inc OCD");
} }
} }
else { // phase 1 without OCD warning - normal exit to phase 2 else { // phase 1 without OCD warning - normal exit to phase 2
test_phase = 2; test_phase = 2;
DEBUG_ECHOLNPGM("LOGIC E1C - no OCD warning - go to 1"); //DEBUG_ECHOLNPGM("LOGIC E1C - no OCD warning - go to 1");
DEBUG_ECHOLNPGM("OCD finalized");
} }
} break; } break;
case 2: { case 2: {
if (status_composite & (STATUS_STEP_LOSS_A | STATUS_STEP_LOSS_B)) { if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // skip all STALL_TH steps if L6474
test_phase = 4;
break;
}
if (status_composite & (sh.STATUS_AXIS_STEP_LOSS_A | sh.STATUS_AXIS_STEP_LOSS_B)) {
// phase 2 with stall warning - time to go to next phase // phase 2 with stall warning - time to go to next phase
if (stall_th_val >= 127) { if (STALL_TH_val >= 127) {
stall_th_val = 127; // limit to max STALL_TH_val = 127; // limit to max
DEBUG_ECHOLNPGM("LOGIC E2A - STALL warning, STALL at max, quit"); //DEBUG_ECHOLNPGM("LOGIC E2A - STALL warning, STALL at max, quit");
DEBUG_ECHOLNPGM("finished - STALL at maximum value but still have stall warning"); DEBUG_ECHOLNPGM("finished - STALL at maximum value but still have stall warning");
test_phase = 4; test_phase = 4;
} }
else { else {
test_phase = 3; // normal exit to next phase (found failing value of STALL) test_phase = 3; // normal exit to next phase (found failing value of STALL)
stall_th_val++; // setup for first pass of phase 3 STALL_TH_val++; // setup for first pass of phase 3
DEBUG_ECHOLNPGM("LOGIC E2B - INC - STALL warning, inc Stall, go to 3"); //DEBUG_ECHOLNPGM("LOGIC E2B - INC - STALL warning, inc Stall, go to 3");
DEBUG_ECHOLNPGM("inc Stall");
} }
} }
else { // phase 2 without stall warning - decrement if can else { // phase 2 without stall warning - decrement if can
if (stall_th_val) { if (STALL_TH_val) {
stall_th_val--; // try a lower value STALL_TH_val--; // try a lower value
DEBUG_ECHOLNPGM("LOGIC E2C - no STALL, dec STALL"); //DEBUG_ECHOLNPGM("LOGIC E2C - no STALL, dec STALL");
DEBUG_ECHOLNPGM("dec STALL");
} }
else { else {
DEBUG_ECHOLNPGM("finished - STALL at lowest value but still do NOT have stall warning"); DEBUG_ECHOLNPGM("finished - STALL at lowest value but still do NOT have stall warning");
test_phase = 4; test_phase = 4;
DEBUG_ECHOLNPGM("LOGIC E2D - no STALL, at lowest so quit"); //DEBUG_ECHOLNPGM("LOGIC E2D - no STALL, at lowest so quit");
} }
} }
} break; } break;
case 3: { case 3: {
if (status_composite & (STATUS_STEP_LOSS_A | STATUS_STEP_LOSS_B)) { if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // skip all STALL_TH steps if L6474
test_phase = 4;
break;
}
if (status_composite & (sh.STATUS_AXIS_STEP_LOSS_A | sh.STATUS_AXIS_STEP_LOSS_B)) {
// phase 3 with stall warning - increment if can // phase 3 with stall warning - increment if can
if (stall_th_val >= 127) { if (STALL_TH_val >= 127) {
stall_th_val = 127; // limit to max STALL_TH_val = 127; // limit to max
DEBUG_ECHOLNPGM("finished - STALL at maximum value but still have stall warning"); DEBUG_ECHOLNPGM("finished - STALL at maximum value but still have stall warning");
test_phase = 4; test_phase = 4;
DEBUG_ECHOLNPGM("LOGIC E3A - STALL, at max so quit"); //DEBUG_ECHOLNPGM("LOGIC E3A - STALL, at max so quit");
} }
else { else {
stall_th_val++; // still looking for passing value STALL_TH_val++; // still looking for passing value
DEBUG_ECHOLNPGM("LOGIC E3B - STALL, inc stall"); //DEBUG_ECHOLNPGM("LOGIC E3B - STALL, inc stall");
DEBUG_ECHOLNPGM("inc stall");
} }
} }
else { //phase 3 without stall warning but have OCD warning else { //phase 3 without stall warning but have OCD warning
DEBUG_ECHOLNPGM("Hardware problem - OCD warning without STALL warning"); DEBUG_ECHOLNPGM("Hardware problem - OCD warning without STALL warning");
test_phase = 4; test_phase = 4;
DEBUG_ECHOLNPGM("LOGIC E3C - not STALLED, hardware problem (quit)"); //DEBUG_ECHOLNPGM("LOGIC E3C - not STALLED, hardware problem (quit)");
} }
} break; } break;
@ -372,58 +444,81 @@ void GcodeSuite::M917() {
else { else {
switch (test_phase) { switch (test_phase) {
case 0: { // phase 0 without OCD warning - keep on decrementing if can case 0: { // phase 0 without OCD warning - keep on decrementing if can
if (ocd_th_val) { if (OCD_TH_val) {
ocd_th_val--; // try lower value OCD_TH_val--; // try lower value
DEBUG_ECHOLNPGM("LOGIC N0A - DEC OCD"); //DEBUG_ECHOLNPGM("LOGIC N0A - DEC OCD");
DEBUG_ECHOLNPGM("DEC OCD");
} }
else { else {
test_phase = 2; // at lowest value without warning so skip phase 1 test_phase = 2; // at lowest value without warning so skip phase 1
DEBUG_ECHOLNPGM("LOGIC N0B - OCD at lowest (go to phase 2)"); //DEBUG_ECHOLNPGM("LOGIC N0B - OCD at lowest (go to phase 2)");
DEBUG_ECHOLNPGM("OCD finalized");
} }
} break; } break;
case 1: DEBUG_ECHOLNPGM("LOGIC N1 (go directly to 2)"); // phase 1 without OCD warning - drop directly to phase 2 case 1: //DEBUG_ECHOLNPGM("LOGIC N1 (go directly to 2)"); // phase 1 without OCD warning - drop directly to phase 2
DEBUG_ECHOLNPGM("OCD finalized");
case 2: { // phase 2 without stall warning - keep on decrementing if can case 2: { // phase 2 without stall warning - keep on decrementing if can
if (stall_th_val) { if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // skip all STALL_TH steps if L6474
stall_th_val--; // try a lower value (stay in phase 2) test_phase = 4;
DEBUG_ECHOLNPGM("LOGIC N2B - dec STALL"); break;
}
if (STALL_TH_val) {
STALL_TH_val--; // try a lower value (stay in phase 2)
//DEBUG_ECHOLNPGM("LOGIC N2B - dec STALL");
DEBUG_ECHOLNPGM("dec STALL");
} }
else { else {
DEBUG_ECHOLNPGM("finished - STALL at lowest value but still no stall warning"); DEBUG_ECHOLNPGM("finished - STALL at lowest value but still no stall warning");
test_phase = 4; test_phase = 4;
DEBUG_ECHOLNPGM("LOGIC N2C - STALL at lowest (quit)"); //DEBUG_ECHOLNPGM("LOGIC N2C - STALL at lowest (quit)");
} }
} break; } break;
case 3: { test_phase = 4; case 3: {
DEBUG_ECHOLNPGM("LOGIC N3 - finished!"); if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // skip all STALL_TH steps if L6474
test_phase = 4;
break;
}
test_phase = 4;
//DEBUG_ECHOLNPGM("LOGIC N3 - finished!");
DEBUG_ECHOLNPGM("finished!");
} break; // phase 3 without any warnings - desired exit } break; // phase 3 without any warnings - desired exit
} // } //
} // end of status checks } // end of status checks
if (test_phase != 4) { if (test_phase != 4) {
for (j = 0; j < driver_count; j++) { // update threshold(s) for (j = 0; j < driver_count; j++) { // update threshold(s)
L6470.set_param(axis_index[j], L6470_OCD_TH, ocd_th_val); L64xxManager.set_param(axis_index[j], L6470_OCD_TH, OCD_TH_val);
L6470.set_param(axis_index[j], L6470_STALL_TH, stall_th_val); if (sh.STATUS_AXIS_LAYOUT != L6474_STATUS_LAYOUT) L64xxManager.set_param(axis_index[j], L6470_STALL_TH, STALL_TH_val);
if (L6470.get_param(axis_index[j], L6470_OCD_TH) != ocd_th_val) DEBUG_ECHOLNPGM("OCD mismatch"); if (L64xxManager.get_param(axis_index[j], L6470_OCD_TH) != OCD_TH_val) DEBUG_ECHOLNPGM("OCD mismatch");
if (L6470.get_param(axis_index[j], L6470_STALL_TH) != stall_th_val) DEBUG_ECHOLNPGM("STALL mismatch"); if ((L64xxManager.get_param(axis_index[j], L6470_STALL_TH) != STALL_TH_val) && (sh.STATUS_AXIS_LAYOUT != L6474_STATUS_LAYOUT)) DEBUG_ECHOLNPGM("STALL mismatch");
} }
} }
} while (test_phase != 4); } while (test_phase != 4);
DEBUG_ECHOLNPGM(".");
if (status_composite) { if (status_composite) {
DEBUG_ECHOLNPGM("Completed with errors"); #if ENABLED(L6470_CHITCHAT)
for (j = 0; j < driver_count; j++) { for (j = 0; j < driver_count; j++) {
DEBUG_ECHOPGM("..."); if (j) DEBUG_ECHOPGM("...");
L6470.error_status_decode(axis_status[j], axis_index[j]); L64xxManager.error_status_decode(axis_status[j], axis_index[j],
sh.STATUS_AXIS_TH_SD, sh.STATUS_AXIS_TH_WRN,
sh.STATUS_AXIS_STEP_LOSS_A, sh.STATUS_AXIS_STEP_LOSS_B,
sh.STATUS_AXIS_OCD, sh.STATUS_AXIS_LAYOUT);
} }
DEBUG_ECHOLNPGM(".");
#endif
DEBUG_ECHOLNPGM("Completed with errors");
} }
else else
DEBUG_ECHOLNPGM("Completed with no errors"); DEBUG_ECHOLNPGM("Completed with no errors");
DEBUG_ECHOLNPGM(".");
} // M917 L64xxManager.pause_monitor(false);
}
/** /**
* *
@ -439,7 +534,13 @@ void GcodeSuite::M917() {
* I - over current threshold * I - over current threshold
* optional - will report current value from driver if not specified * optional - will report current value from driver if not specified
* *
* K - value for KVAL_HOLD (0 - 255) (optional) * T - current (mA) setting for TVAL (0 - 4A in 31.25mA increments, rounds down) - L6474 only
* optional - will report current value from driver if not specified
*
* K - value for KVAL_HOLD (0 - 255) (ignored for L6474)
* optional - will report current value from driver if not specified
*
* M - value for microsteps (1 - 128) (optional)
* optional - will report current value from driver if not specified * optional - will report current value from driver if not specified
* *
*/ */
@ -447,83 +548,109 @@ void GcodeSuite::M918() {
DEBUG_ECHOLNPGM("M918"); DEBUG_ECHOLNPGM("M918");
char axis_mon[3][3] = { " ", " ", " " }; // List of axes to monitor L64xxManager.pause_monitor(true); // Keep monitor_driver() from stealing status
uint8_t axis_index[3];
char axis_mon[3][3] = { {" "}, {" "}, {" "} }; // list of Axes to be monitored
L64XX_axis_t axis_index[3];
uint16_t axis_status[3]; uint16_t axis_status[3];
uint8_t driver_count = 1; uint8_t driver_count = 1;
float position_max, position_min; float position_max, position_min;
feedRate_t final_fr_mm_m; float final_feedrate;
uint8_t kval_hold; uint8_t kval_hold;
uint8_t ocd_th_val = 0; uint8_t OCD_TH_val = 0;
uint8_t stall_th_val = 0; uint8_t STALL_TH_val = 0;
uint16_t over_current_threshold; uint16_t over_current_threshold;
constexpr bool over_current_flag = true; constexpr uint8_t over_current_flag = true;
const L64XX_Marlin::L64XX_shadow_t &sh = L64xxManager.shadow;
uint8_t j; // general purpose counter uint8_t j; // general purpose counter
if (L6470.get_user_input(driver_count, axis_index, axis_mon, position_max, position_min, final_fr_mm_m, kval_hold, over_current_flag, ocd_th_val, stall_th_val, over_current_threshold)) if (L64xxManager.get_user_input(driver_count, axis_index, axis_mon, position_max, position_min, final_feedrate, kval_hold, over_current_flag, OCD_TH_val, STALL_TH_val, over_current_threshold))
return; // quit if invalid user input return; // quit if invalid user input
L64xxManager.get_status(axis_index[0]); // populate shadow array
uint8_t m_steps = parser.byteval('M'); uint8_t m_steps = parser.byteval('M');
LIMIT(m_steps, 0, 128);
DEBUG_ECHOLNPAIR("M = ", m_steps); if (m_steps != 0) {
LIMIT(m_steps, 1, sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT ? 16 : 128); // L6474
int8_t m_bits = -1;
if (m_steps > 85) m_bits = 7; // 128 (no synch output) uint8_t stepVal;
else if (m_steps > 42) m_bits = 6; // 64 (no synch output) for (stepVal = 0; stepVal < 8; stepVal++) { // convert to L64xx register value
else if (m_steps > 22) m_bits = 5; // 32 (no synch output) if (m_steps == 1) break;
else if (m_steps > 12) m_bits = 4; // 16 (no synch output) m_steps >>= 1;
else if (m_steps > 5) m_bits = 3; // 8 (no synch output)
else if (m_steps > 2) m_bits = 2; // 4 (no synch output)
else if (m_steps == 2) m_bits = 1; // 2 (no synch output)
else if (m_steps == 1) m_bits = 0; // 1 (no synch output)
else if (m_steps == 0) m_bits = 7; // 128 (no synch output)
if (m_bits >= 0) {
const int micros = _BV(m_bits);
if (micros < 100) { DEBUG_CHAR(' '); if (micros < 10) DEBUG_CHAR(' '); }
DEBUG_ECHO(micros);
DEBUG_ECHOPGM(" uSTEPS");
} }
for (j = 0; j < driver_count; j++) if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT)
L6470.set_param(axis_index[j], L6470_STEP_MODE, m_bits); // set microsteps stepVal |= 0x98; // NO SYNC
else
stepVal |= (!SYNC_EN) | SYNC_SEL_1 | stepVal;
DEBUG_ECHOLNPAIR("target (maximum) feedrate = ", final_fr_mm_m); for (j = 0; j < driver_count; j++) {
L64xxManager.set_param(axis_index[j], dSPIN_HARD_HIZ, 0); // can't write STEP register if stepper being powered
// results in an extra NOOP being sent (data 00)
L64xxManager.set_param(axis_index[j], L6470_STEP_MODE, stepVal); // set microsteps
}
}
m_steps = L64xxManager.get_param(axis_index[0], L6470_STEP_MODE) & 0x07; // get microsteps
DEBUG_ECHOLNPAIR("Microsteps = ", _BV(m_steps));
DEBUG_ECHOLNPAIR("target (maximum) feedrate = ", final_feedrate);
const float feedrate_inc = final_feedrate / 10, // Start at 1/10 of max & go up by 1/10 per step
fr_limit = final_feedrate * 0.99f; // Rounding-safe comparison value
float current_feedrate = 0;
planner.synchronize(); // Wait for moves to finish planner.synchronize(); // Wait for moves to complete
for (j = 0; j < driver_count; j++) for (j = 0; j < driver_count; j++)
L6470.get_status(axis_index[j]); // Clear all error flags L64xxManager.get_status(axis_index[j]); // Clear error flags
char temp_axis_string[2] = " ";
temp_axis_string[0] = axis_mon[0][0]; // Need a sprintf format string
//temp_axis_string[1] = '\n';
char gcode_string[80];
uint16_t status_composite = 0; uint16_t status_composite = 0;
DEBUG_ECHOLNPGM(".\n.\n."); // Make the feedrate prints easier to see DEBUG_ECHOLNPGM(".\n.\n."); // Make feedrate outputs easier to read
do {
current_feedrate += feedrate_inc;
DEBUG_ECHOLNPAIR("...feedrate = ", current_feedrate);
sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_min), uint16_t(current_feedrate));
gcode.process_subcommands_now_P(gcode_string);
constexpr uint8_t iterations = 10; sprintf_P(gcode_string, PSTR("G0 %s%03d F%03d"), temp_axis_string, uint16_t(position_max), uint16_t(current_feedrate));
for (uint8_t i = 1; i <= iterations; i++) { gcode.process_subcommands_now_P(gcode_string);
const feedRate_t fr_mm_m = i * final_fr_mm_m / iterations;
DEBUG_ECHOLNPAIR("...feedrate = ", fr_mm_m);
jiggle_axis(axis_mon[0][0], position_min, position_max, fr_mm_m); planner.synchronize();
for (j = 0; j < driver_count; j++) { for (j = 0; j < driver_count; j++) {
axis_status[j] = (~L6470.get_status(axis_index[j])) & 0x0800; // bits of interest are all active low axis_status[j] = (~L64xxManager.get_status(axis_index[j])) & 0x0800; // Bits of interest are all active LOW
status_composite |= axis_status[j]; status_composite |= axis_status[j];
} }
if (status_composite) break; // quit if any errors flags are raised if (status_composite) break; // Break on any error
} } while (current_feedrate < fr_limit);
DEBUG_ECHOPGM("Completed with errors"); DEBUG_ECHOPGM("Completed with ");
if (status_composite) { if (status_composite) {
DEBUG_ECHOLNPGM("errors"); DEBUG_ECHOLNPGM("errors");
#if ENABLED(L6470_CHITCHAT)
for (j = 0; j < driver_count; j++) { for (j = 0; j < driver_count; j++) {
DEBUG_ECHOPGM("..."); if (j) DEBUG_ECHOPGM("...");
L6470.error_status_decode(axis_status[j], axis_index[j]); L64xxManager.error_status_decode(axis_status[j], axis_index[j],
sh.STATUS_AXIS_TH_SD, sh.STATUS_AXIS_TH_WRN,
sh.STATUS_AXIS_STEP_LOSS_A, sh.STATUS_AXIS_STEP_LOSS_B,
sh.STATUS_AXIS_OCD, sh.STATUS_AXIS_LAYOUT);
} }
#endif
} }
else else
DEBUG_ECHOLNPGM("no errors"); DEBUG_ECHOLNPGM("no errors");
} // M918 L64xxManager.pause_monitor(false);
}
#endif // HAS_DRIVER(L6470) #endif // HAS_L64XX

@ -786,7 +786,7 @@ void GcodeSuite::process_parsed_command(const bool no_ok/*=false*/) {
#endif #endif
#endif #endif
#if HAS_DRIVER(L6470) #if HAS_L64XX
case 122: M122(); break; // M122: Report status case 122: M122(); break; // M122: Report status
case 906: M906(); break; // M906: Set or get motor drive level case 906: M906(); break; // M906: Set or get motor drive level
case 916: M916(); break; // M916: L6470 tuning: Increase drive level until thermal warning case 916: M916(); break; // M916: L6470 tuning: Increase drive level until thermal warning

@ -896,7 +896,7 @@ private:
#endif #endif
#endif #endif
#if HAS_DRIVER(L6470) #if HAS_L64XX
static void M122(); static void M122();
static void M906(); static void M906();
static void M916(); static void M916();

@ -28,10 +28,8 @@
#if ENABLED(M114_DETAIL) #if ENABLED(M114_DETAIL)
#if HAS_DRIVER(L6470) #if HAS_L64XX
//C:\Users\bobku\Documents\GitHub\Marlin-Bob-2\Marlin\src\gcode\host\M114.cpp #include "../../libs/L64XX/L64XX_Marlin.h"
//C:\Users\bobku\Documents\GitHub\Marlin-Bob-2\Marlin\src\module\bob_L6470.cpp
#include "../../libs/L6470/L6470_Marlin.h"
#define DEBUG_OUT ENABLED(L6470_CHITCHAT) #define DEBUG_OUT ENABLED(L6470_CHITCHAT)
#include "../../core/debug_out.h" #include "../../core/debug_out.h"
#endif #endif
@ -88,13 +86,13 @@
planner.synchronize(); planner.synchronize();
#if HAS_DRIVER(L6470) #if HAS_L64XX
char temp_buf[80]; char temp_buf[80];
int32_t temp; int32_t temp;
//#define ABS_POS_SIGN_MASK 0b1111 1111 1110 0000 0000 0000 0000 0000 //#define ABS_POS_SIGN_MASK 0b1111 1111 1110 0000 0000 0000 0000 0000
#define ABS_POS_SIGN_MASK 0b11111111111000000000000000000000 #define ABS_POS_SIGN_MASK 0b11111111111000000000000000000000
#define REPORT_ABSOLUTE_POS(Q) do{ \ #define REPORT_ABSOLUTE_POS(Q) do{ \
L6470.say_axis(Q, false); \ L64xxManager.say_axis(Q, false); \
temp = L6470_GETPARAM(L6470_ABS_POS,Q); \ temp = L6470_GETPARAM(L6470_ABS_POS,Q); \
if (temp & ABS_POS_SIGN_MASK) temp |= ABS_POS_SIGN_MASK; \ if (temp & ABS_POS_SIGN_MASK) temp |= ABS_POS_SIGN_MASK; \
sprintf_P(temp_buf, PSTR(":%8ld "), temp); \ sprintf_P(temp_buf, PSTR(":%8ld "), temp); \
@ -102,47 +100,47 @@
}while(0) }while(0)
DEBUG_ECHOPGM("\nL6470:"); DEBUG_ECHOPGM("\nL6470:");
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
REPORT_ABSOLUTE_POS(X); REPORT_ABSOLUTE_POS(X);
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
REPORT_ABSOLUTE_POS(X2); REPORT_ABSOLUTE_POS(X2);
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
REPORT_ABSOLUTE_POS(Y); REPORT_ABSOLUTE_POS(Y);
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
REPORT_ABSOLUTE_POS(Y2); REPORT_ABSOLUTE_POS(Y2);
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
REPORT_ABSOLUTE_POS(Z); REPORT_ABSOLUTE_POS(Z);
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
REPORT_ABSOLUTE_POS(Z2); REPORT_ABSOLUTE_POS(Z2);
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
REPORT_ABSOLUTE_POS(Z3); REPORT_ABSOLUTE_POS(Z3);
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
REPORT_ABSOLUTE_POS(E0); REPORT_ABSOLUTE_POS(E0);
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
REPORT_ABSOLUTE_POS(E1); REPORT_ABSOLUTE_POS(E1);
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
REPORT_ABSOLUTE_POS(E2); REPORT_ABSOLUTE_POS(E2);
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
REPORT_ABSOLUTE_POS(E3); REPORT_ABSOLUTE_POS(E3);
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
REPORT_ABSOLUTE_POS(E4); REPORT_ABSOLUTE_POS(E4);
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
REPORT_ABSOLUTE_POS(E5); REPORT_ABSOLUTE_POS(E5);
#endif #endif
SERIAL_EOL(); SERIAL_EOL();
#endif // HAS_DRIVER(L6470) #endif // HAS_L64XX
SERIAL_ECHOPGM("Stepper:"); SERIAL_ECHOPGM("Stepper:");
LOOP_XYZE(i) { LOOP_XYZE(i) {

@ -2145,7 +2145,7 @@ static_assert(Y_MAX_LENGTH >= Y_BED_SIZE, "Movement bounds (Y_MIN_POS, Y_MAX_POS
#error "STEALTHCHOP requires TMC2130, TMC2160, TMC2208, TMC2209, or TMC5160 stepper drivers." #error "STEALTHCHOP requires TMC2130, TMC2160, TMC2208, TMC2209, or TMC5160 stepper drivers."
#endif #endif
#define IN_CHAIN(A) (A##_CHAIN_POS > 0) #define IN_CHAIN(A) ((A##_CHAIN_POS > 0) && !HAS_L64XX)
// TMC SPI Chaining // TMC SPI Chaining
#if IN_CHAIN(X) || IN_CHAIN(Y) || IN_CHAIN(Z) || IN_CHAIN(X2) || IN_CHAIN(Y2) || IN_CHAIN(Z2) || IN_CHAIN(Z3) || IN_CHAIN(E0) || IN_CHAIN(E1) || IN_CHAIN(E2) || IN_CHAIN(E3) || IN_CHAIN(E4) || IN_CHAIN(E5) #if IN_CHAIN(X) || IN_CHAIN(Y) || IN_CHAIN(Z) || IN_CHAIN(X2) || IN_CHAIN(Y2) || IN_CHAIN(Z2) || IN_CHAIN(Z3) || IN_CHAIN(E0) || IN_CHAIN(E1) || IN_CHAIN(E2) || IN_CHAIN(E3) || IN_CHAIN(E4) || IN_CHAIN(E5)
#if (IN_CHAIN(X) && !PIN_EXISTS(X_CS) ) || (IN_CHAIN(Y) && !PIN_EXISTS(Y_CS) ) \ #if (IN_CHAIN(X) && !PIN_EXISTS(X_CS) ) || (IN_CHAIN(Y) && !PIN_EXISTS(Y_CS) ) \

@ -1,105 +0,0 @@
Arduino-6470 library revision 0.7.0 or above is required.
This software can be used with any L647x chip and the powerSTEP01. L647x and powerSTEP01 devices can not be mixed within a system. A flag in the library must be set to enable use of a powerSTEP01.
These devices use voltage PWMs to drive the stepper phases. Phase current is not directly controlled. Each microstep corresponds to a particular PWM duty cycle. The KVAL\_HOLD register scales the PWM duty cycle.
This software assumes that all L6470 drivers are in one SPI daisy chain.
```
The hardware setup is:
MOSI from controller tied to SDI on the first device
SDO of the first device is tied to SDI of the next device
SDO of the last device is tied to MISO of the controller
all devices share the same SCK, SS\_PIN and RESET\_PIN
Each L6470 passes the data it saw on its SDI to its neighbor on the **NEXT** SPI cycle (8 bit delay).
Each L6470 acts on the **last** SPI data it saw when the SS\_PIN **goes high**.
```
The L6470 drivers operate in STEP\_CLOCK mode. In this mode the direction and enable are done via SPI commands and the phase currents are changed in response to step pulses (generated in the usual way).
There are two different SPI routines used.
- **uint8\_t** L6470\_Transfer(uint8\_t data, int \_SSPin, const uint8\_t chain\_position) is used to setup the chips and by the maintenance/status code. This code uses the Arduino-6470 library.
- **void** L6470\_Transfer(uint8\_t L6470\_buf[], const uint8\_t length) is used by the set\_directions() routine to send the direction/enable commands. The library is NOT used by this code.
**HARDWARE/SOFTWARE interaction**
Powering up a stepper and setting the direction are done by the same command. Can't do one without the other.
**All** directions are set **every time** a new block is popped off the queue by the stepper ISR.
SPI transfers, when setting the directions, are minimized by using arrays and a SPI routine dedicated to this function. L6470 library calls are not used. For N L6470 drivers, this results in a N byte transfer. If library calls were used then N\*N bytes would be sent.
**Power up (reset) sequence:**
1. Stepper objects are created before the **setup()** entry point is reached.
2. After the **setup()** entry point is reached and before the steppers are initialized, L6470\_init() is called to do the following
3. If present, the hardware reset is pulsed.
4. The L6470\_chain array is populated during **setup()**. This array is used to tell where in the SPI stream the commands/data for an stepper is positioned.
5. The L6470 soft SPI pins are initialized.
6. The L6470 chips are initialized during **setup()**. They can be re-initialized using the **L6470\_init\_to\_defaults()** function
The steppers are **NOT** powered up during this sequence.
**L6470\_chain** array
This array is used by all routines that transmit SPI data.
```
Location 0 - number of drivers in chain
Location 1 - axis index for first device in the chain (closest to MOSI)
...
Location N - axis index for last device in the N device long chain (closest to MISO)
```
**Direction set and enable**
The DIR\_WRITE macros for the L6470 drivers are written so that the standard X, Y, Z and extruder logic used by the set\_directions() routine is not altered. These macros write the correct forward/reverse command to the corresponding location in the array *L6470\_dir\_commands*.
At the end of the set\_directions() routine, the array *L6470\_chain* is used to grab the corresponding direction/enable commands out of the array *L6470\_dir\_commands* and put them in the correct sequence in the array *L6470\_buf*. Array *L6470\_buf* is then passed to the **void** L6470\_Transfer function which actually sends the data to the devices.
**Utilities and misc**
The **absolute position** registers should accurately reflect Marlins stepper position counts. They are set to zero during initialization. G28 sets them to the Marlin counts for the corresponding axis after homing. NOTE these registers are often the negative of the Marlin counts. This is because the Marlin counts reflect the logical direction while the registers reflect the stepper direction. The register contents are displayed via the M114 D command.
The **L6470\_monitor** feature reads the status of each device every half second. It will report if there are any error conditions present or if communications has been lost/restored. The KVAL\_HOLD value is reduced every 2 2.5 seconds if the thermal warning or thermal shutdown conditions are present.
**M122** displays the settings of most of the bits in the status register plus a couple of other items.
**M906** can be used to set the KVAL\_HOLD register one driver at a time. If a setting is not included with the command then the contents of the registers that affect the phase current/voltage are displayed.
**M916, M917 & M918**
These utilities are used to tune the system. They can get you in the ballpark for acceptable jerk, acceleration, top speed and KVAL\_HOLD settings. In general they seem to provide an overly optimistic KVAL\_HOLD setting because of the lag between setting KVAL\_HOLD and the driver reaching final temperature. Enabling the **L6470\_monitor** feature during prints will provide the **final useful KVAL\_HOLD setting**.
The amount of power needed to move the stepper without skipping steps increases as jerk, acceleration and top speed increase. The power dissipated by the driver increases as the power to the stepper increases. The net result is a balancing act between jerk, acceleration, top speed and power dissipated by the driver.
**M916 -** Increases KVAL\_HOLD while moving one axis until get thermal warning. This routine is also useful for determining the approximate KVAL\_HOLD where the stepper stops losing steps. The sound will get noticeably quieter as it stops losing steps.
**M917 -** Find minimum current thresholds. This is done by doing the following steps while moving an axis:
1. Decrease OCD current until overcurrent error
2. Increase OCD until overcurrent error goes away
3. Decrease stall threshold until stall error
4. Increase stall until stall error goes away
**M918 -** Increase speed until error or max feedrate achieved.

@ -1,793 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* The monitor_driver routines are a close copy of the TMC code
*/
#include "../../inc/MarlinConfig.h"
#if HAS_DRIVER(L6470)
#include "L6470_Marlin.h"
L6470_Marlin L6470;
#include "../../module/stepper/indirection.h"
#include "../../module/planner.h"
#include "../../gcode/gcode.h"
#define DEBUG_OUT ENABLED(L6470_CHITCHAT)
#include "../../core/debug_out.h"
uint8_t L6470_Marlin::dir_commands[MAX_L6470]; // array to hold direction command for each driver
char L6470_Marlin::index_to_axis[MAX_L6470][3] = { "X ", "Y ", "Z ", "X2", "Y2", "Z2", "Z3", "E0", "E1", "E2", "E3", "E4", "E5" };
bool L6470_Marlin::index_to_dir[MAX_L6470] = {
INVERT_X_DIR , // 0 X
INVERT_Y_DIR , // 1 Y
INVERT_Z_DIR , // 2 Z
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
INVERT_X_DIR ^ INVERT_X2_VS_X_DIR , // 3 X2
#else
INVERT_X_DIR , // 3 X2
#endif
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
INVERT_Y_DIR ^ INVERT_Y2_VS_Y_DIR , // 4 Y2
#else
INVERT_Y_DIR , // 4 Y2
#endif
INVERT_Z_DIR , // 5 Z2
INVERT_Z_DIR , // 6 Z3
INVERT_E0_DIR , // 7 E0
INVERT_E1_DIR , // 8 E1
INVERT_E2_DIR , // 9 E2
INVERT_E3_DIR , //10 E3
INVERT_E4_DIR , //11 E4
INVERT_E5_DIR , //12 E5
};
uint8_t L6470_Marlin::axis_xref[MAX_L6470] = {
AxisEnum(X_AXIS), // X
AxisEnum(Y_AXIS), // Y
AxisEnum(Z_AXIS), // Z
AxisEnum(X_AXIS), // X2
AxisEnum(Y_AXIS), // Y2
AxisEnum(Z_AXIS), // Z2
AxisEnum(Z_AXIS), // Z3
AxisEnum(E_AXIS), // E0
AxisEnum(E_AXIS), // E1
AxisEnum(E_AXIS), // E2
AxisEnum(E_AXIS), // E3
AxisEnum(E_AXIS), // E4
AxisEnum(E_AXIS) // E5
};
volatile bool L6470_Marlin::spi_abort = false;
bool L6470_Marlin::spi_active = false;
void L6470_Marlin::populate_chain_array() {
#define _L6470_INIT_SPI(Q) do{ stepper##Q.set_chain_info(Q, Q##_CHAIN_POS); }while(0)
#if AXIS_DRIVER_TYPE_X(L6470)
_L6470_INIT_SPI(X);
#endif
#if AXIS_DRIVER_TYPE_X2(L6470)
_L6470_INIT_SPI(X2);
#endif
#if AXIS_DRIVER_TYPE_Y(L6470)
_L6470_INIT_SPI(Y);
#endif
#if AXIS_DRIVER_TYPE_Y2(L6470)
_L6470_INIT_SPI(Y2);
#endif
#if AXIS_DRIVER_TYPE_Z(L6470)
_L6470_INIT_SPI(Z);
#endif
#if AXIS_DRIVER_TYPE_Z2(L6470)
_L6470_INIT_SPI(Z2);
#endif
#if AXIS_DRIVER_TYPE_Z3(L6470)
_L6470_INIT_SPI(Z3);
#endif
#if AXIS_DRIVER_TYPE_E0(L6470)
_L6470_INIT_SPI(E0);
#endif
#if AXIS_DRIVER_TYPE_E1(L6470)
_L6470_INIT_SPI(E1);
#endif
#if AXIS_DRIVER_TYPE_E2(L6470)
_L6470_INIT_SPI(E2);
#endif
#if AXIS_DRIVER_TYPE_E3(L6470)
_L6470_INIT_SPI(E3);
#endif
#if AXIS_DRIVER_TYPE_E4(L6470)
_L6470_INIT_SPI(E4);
#endif
#if AXIS_DRIVER_TYPE_E5(L6470)
_L6470_INIT_SPI(E5);
#endif
}
void L6470_Marlin::init() { // Set up SPI and then init chips
#if PIN_EXISTS(L6470_RESET_CHAIN)
OUT_WRITE(L6470_RESET_CHAIN_PIN, LOW); // hardware reset of drivers
delay(1);
OUT_WRITE(L6470_RESET_CHAIN_PIN, HIGH);
delay(1); // need about 650uS for the chip to fully start up
#endif
populate_chain_array(); // Set up array to control where in the SPI transfer sequence a particular stepper's data goes
L6470_spi_init(); // Set up L6470 soft SPI pins
init_to_defaults(); // init the chips
}
uint16_t L6470_Marlin::get_status(const uint8_t axis) {
#define GET_L6470_STATUS(Q) stepper##Q.getStatus()
switch (axis) {
#if AXIS_DRIVER_TYPE_X(L6470)
case 0: return GET_L6470_STATUS(X);
#endif
#if AXIS_DRIVER_TYPE_Y(L6470)
case 1: return GET_L6470_STATUS(Y);
#endif
#if AXIS_DRIVER_TYPE_Z(L6470)
case 2: return GET_L6470_STATUS(Z);
#endif
#if AXIS_DRIVER_TYPE_X2(L6470)
case 3: return GET_L6470_STATUS(X2);
#endif
#if AXIS_DRIVER_TYPE_Y2(L6470)
case 4: return GET_L6470_STATUS(Y2);
#endif
#if AXIS_DRIVER_TYPE_Z2(L6470)
case 5: return GET_L6470_STATUS(Z2);
#endif
#if AXIS_DRIVER_TYPE_Z3(L6470)
case 6: return GET_L6470_STATUS(Z3);
#endif
#if AXIS_DRIVER_TYPE_E0(L6470)
case 7: return GET_L6470_STATUS(E0);
#endif
#if AXIS_DRIVER_TYPE_E1(L6470)
case 8: return GET_L6470_STATUS(E1);
#endif
#if AXIS_DRIVER_TYPE_E2(L6470)
case 9: return GET_L6470_STATUS(E2);
#endif
#if AXIS_DRIVER_TYPE_E3(L6470)
case 10: return GET_L6470_STATUS(E3);
#endif
#if AXIS_DRIVER_TYPE_E4(L6470)
case 11: return GET_L6470_STATUS(E4);
#endif
#if AXIS_DRIVER_TYPE_E5(L6470)
case 12: return GET_L6470_STATUS(E5);
#endif
}
return 0; // Not needed but kills a compiler warning
}
uint32_t L6470_Marlin::get_param(uint8_t axis, uint8_t param) {
#define GET_L6470_PARAM(Q) L6470_GETPARAM(param,Q)
switch (axis) {
#if AXIS_DRIVER_TYPE_X(L6470)
case 0: return GET_L6470_PARAM(X);
#endif
#if AXIS_DRIVER_TYPE_Y(L6470)
case 1: return GET_L6470_PARAM(Y);
#endif
#if AXIS_DRIVER_TYPE_Z(L6470)
case 2: return GET_L6470_PARAM(Z);
#endif
#if AXIS_DRIVER_TYPE_X2(L6470)
case 3: return GET_L6470_PARAM(X2);
#endif
#if AXIS_DRIVER_TYPE_Y2(L6470)
case 4: return GET_L6470_PARAM(Y2);
#endif
#if AXIS_DRIVER_TYPE_Z2(L6470)
case 5: return GET_L6470_PARAM(Z2);
#endif
#if AXIS_DRIVER_TYPE_Z3(L6470)
case 6: return GET_L6470_PARAM(Z3);
#endif
#if AXIS_DRIVER_TYPE_E0(L6470)
case 7: return GET_L6470_PARAM(E0);
#endif
#if AXIS_DRIVER_TYPE_E1(L6470)
case 8: return GET_L6470_PARAM(E1);
#endif
#if AXIS_DRIVER_TYPE_E2(L6470)
case 9: return GET_L6470_PARAM(E2);
#endif
#if AXIS_DRIVER_TYPE_E3(L6470)
case 10: return GET_L6470_PARAM(E3);
#endif
#if AXIS_DRIVER_TYPE_E4(L6470)
case 11: return GET_L6470_PARAM(E4);
#endif
#if AXIS_DRIVER_TYPE_E5(L6470)
case 12: return GET_L6470_PARAM(E5);
#endif
}
return 0 ; // not needed but kills a compiler warning
}
void L6470_Marlin::set_param(uint8_t axis, uint8_t param, uint32_t value) {
#define SET_L6470_PARAM(Q) stepper##Q.SetParam(param, value)
switch (axis) {
#if AXIS_DRIVER_TYPE_X(L6470)
case 0: SET_L6470_PARAM(X);
#endif
#if AXIS_DRIVER_TYPE_Y(L6470)
case 1: SET_L6470_PARAM(Y);
#endif
#if AXIS_DRIVER_TYPE_Z(L6470)
case 2: SET_L6470_PARAM(Z);
#endif
#if AXIS_DRIVER_TYPE_X2(L6470)
case 3: SET_L6470_PARAM(X2);
#endif
#if AXIS_DRIVER_TYPE_Y2(L6470)
case 4: SET_L6470_PARAM(Y2);
#endif
#if AXIS_DRIVER_TYPE_Z2(L6470)
case 5: SET_L6470_PARAM(Z2);
#endif
#if AXIS_DRIVER_TYPE_Z3(L6470)
case 6: SET_L6470_PARAM(Z3);
#endif
#if AXIS_DRIVER_TYPE_E0(L6470)
case 7: SET_L6470_PARAM(E0);
#endif
#if AXIS_DRIVER_TYPE_E1(L6470)
case 8: SET_L6470_PARAM(E1);
#endif
#if AXIS_DRIVER_TYPE_E2(L6470)
case 9: SET_L6470_PARAM(E2);
#endif
#if AXIS_DRIVER_TYPE_E3(L6470)
case 10: SET_L6470_PARAM(E3);
#endif
#if AXIS_DRIVER_TYPE_E4(L6470)
case 11: SET_L6470_PARAM(E4);
#endif
#if AXIS_DRIVER_TYPE_E5(L6470)
case 12: SET_L6470_PARAM(E5);
#endif
}
}
inline void echo_min_max(const char a, const float &min, const float &max) {
DEBUG_CHAR(' '); DEBUG_CHAR(a);
DEBUG_ECHOPAIR(" min = ", min);
DEBUG_ECHOLNPAIR(" max = ", max);
}
inline void echo_oct_used(const float &oct, const bool stall) {
DEBUG_ECHOPAIR("over_current_threshold used : ", oct);
serialprintPGM(stall ? PSTR(" (Stall") : PSTR(" (OCD"));
DEBUG_ECHOLNPGM(" threshold)");
}
inline void err_out_of_bounds() { DEBUG_ECHOLNPGM("ERROR - motion out of bounds"); }
bool L6470_Marlin::get_user_input(uint8_t &driver_count, uint8_t axis_index[3], char axis_mon[3][3],
float &position_max, float &position_min, float &final_feedrate, uint8_t &kval_hold,
bool over_current_flag, uint8_t &OCD_TH_val, uint8_t &STALL_TH_val, uint16_t &over_current_threshold
) {
// Return TRUE if the calling routine needs to abort/kill
uint16_t displacement = 0; // " = 0" to eliminate compiler warning
uint8_t j; // general purpose counter
if (!all_axes_homed()) {
DEBUG_ECHOLNPGM("ERROR - home all before running this command");
//return true;
}
LOOP_XYZE(i) if (uint16_t _displacement = parser.intval(axis_codes[i])) {
displacement = _displacement;
uint8_t axis_offset = parser.byteval('J');
axis_mon[0][0] = axis_codes[i]; // axis ASCII value (target character)
if (axis_offset >= 2 || axis_mon[0][0] == 'E') // Single axis, E0, or E1
axis_mon[0][1] = axis_offset + '0';
else if (axis_offset == 0) { // one or more axes
uint8_t driver_count_local = 0; // can't use "driver_count" directly as a subscript because it's passed by reference
for (j = 0; j < MAX_L6470; j++) // see how many drivers on this axis
if (axis_mon[0][0] == index_to_axis[j][0]) {
axis_mon[driver_count_local][0] = axis_mon[0][0];
axis_mon[driver_count_local][1] = index_to_axis[j][1];
axis_mon[driver_count_local][2] = index_to_axis[j][2]; // append end of string
axis_index[driver_count_local] = j; // set axis index
driver_count_local++;
}
driver_count = driver_count_local;
}
break; // only take first axis found
}
//
// Position calcs & checks
//
const xyze_pos_t center = {
LOGICAL_X_POSITION(current_position.x),
LOGICAL_Y_POSITION(current_position.y),
LOGICAL_Z_POSITION(current_position.z),
current_position.e
};
switch (axis_mon[0][0]) {
default: position_max = position_min = 0; break;
case 'X': {
position_min = center.x - displacement;
position_max = center.x + displacement;
echo_min_max('X', position_min, position_max);
if (false
#ifdef X_MIN_POS
|| position_min < (X_MIN_POS)
#endif
#ifdef X_MAX_POS
|| position_max > (X_MAX_POS)
#endif
) {
err_out_of_bounds();
return true;
}
} break;
case 'Y': {
position_min = center.y - displacement;
position_max = center.y + displacement;
echo_min_max('Y', position_min, position_max);
if (false
#ifdef Y_MIN_POS
|| position_min < (Y_MIN_POS)
#endif
#ifdef Y_MAX_POS
|| position_max > (Y_MAX_POS)
#endif
) {
err_out_of_bounds();
return true;
}
} break;
case 'Z': {
position_min = center.z - displacement;
position_max = center.z + displacement;
echo_min_max('Z', position_min, position_max);
if (false
#ifdef Z_MIN_POS
|| position_min < (Z_MIN_POS)
#endif
#ifdef Z_MAX_POS
|| position_max > (Z_MAX_POS)
#endif
) {
err_out_of_bounds();
return true;
}
} break;
case 'E': {
position_min = center.e - displacement;
position_max = center.e + displacement;
echo_min_max('E', position_min, position_max);
} break;
}
//
// Work on the drivers
//
for (uint8_t k = 0; k < driver_count; k++) {
bool not_found = true;
for (j = 1; j <= L6470::chain[0]; j++) {
const char * const ind_axis = index_to_axis[L6470::chain[j]];
if (ind_axis[0] == axis_mon[k][0] && ind_axis[1] == axis_mon[k][1]) { // See if a L6470 driver
not_found = false;
break;
}
}
if (not_found) {
driver_count = k;
axis_mon[k][0] = ' '; // mark this entry invalid
break;
}
}
if (driver_count == 0) {
DEBUG_ECHOLNPGM("ERROR - not a L6470 axis");
return true;
}
DEBUG_ECHOPGM("Monitoring:");
for (j = 0; j < driver_count; j++) DEBUG_ECHOPAIR(" ", axis_mon[j]);
L6470_EOL();
// now have a list of driver(s) to monitor
//
// kVAL_HOLD checks & settings
//
kval_hold = parser.byteval('K');
if (kval_hold) {
DEBUG_ECHOLNPAIR("kval_hold = ", kval_hold);
for (j = 0; j < driver_count; j++)
set_param(axis_index[j], L6470_KVAL_HOLD, kval_hold);
}
else {
// only print the KVAL_HOLD from one of the drivers
kval_hold = get_param(axis_index[0], L6470_KVAL_HOLD);
DEBUG_ECHOLNPAIR("KVAL_HOLD = ", kval_hold);
}
//
// Overcurrent checks & settings
//
if (over_current_flag) {
uint8_t OCD_TH_val_local = 0, // compiler thinks OCD_TH_val is unused if use it directly
STALL_TH_val_local = 0; // just in case ...
over_current_threshold = parser.intval('I');
if (over_current_threshold) {
OCD_TH_val_local = over_current_threshold/375;
LIMIT(OCD_TH_val_local, 0, 15);
STALL_TH_val_local = over_current_threshold/31.25;
LIMIT(STALL_TH_val_local, 0, 127);
uint16_t OCD_TH_actual = (OCD_TH_val_local + 1) * 375,
STALL_TH_actual = (STALL_TH_val_local + 1) * 31.25;
if (OCD_TH_actual < STALL_TH_actual) {
OCD_TH_val_local++;
OCD_TH_actual = (OCD_TH_val_local + 1) * 375;
}
DEBUG_ECHOLNPAIR("over_current_threshold specified: ", over_current_threshold);
echo_oct_used(STALL_TH_actual, true);
echo_oct_used(OCD_TH_actual, false);
#define SET_OVER_CURRENT(Q) do { stepper##Q.SetParam(L6470_STALL_TH, STALL_TH_val_local); stepper##Q.SetParam(L6470_OCD_TH, OCD_TH_val_local);} while (0)
for (j = 0; j < driver_count; j++) {
set_param(axis_index[j], L6470_STALL_TH, STALL_TH_val_local);
set_param(axis_index[j], L6470_OCD_TH, OCD_TH_val_local);
}
}
else {
// only get & print the OVER_CURRENT values from one of the drivers
STALL_TH_val_local = get_param(axis_index[0], L6470_STALL_TH);
OCD_TH_val_local = get_param(axis_index[0], L6470_OCD_TH);
echo_oct_used((STALL_TH_val_local + 1) * 31.25, true);
echo_oct_used((OCD_TH_val_local + 1) * 375, false);
} // over_current_threshold
for (j = 0; j < driver_count; j++) { // set all drivers on axis the same
set_param(axis_index[j], L6470_STALL_TH, STALL_TH_val_local);
set_param(axis_index[j], L6470_OCD_TH, OCD_TH_val_local);
}
OCD_TH_val = OCD_TH_val_local; // force compiler to update the main routine's copy
STALL_TH_val = STALL_TH_val_local; // force compiler to update the main routine's copy
} // end of overcurrent
//
// Feedrate
//
final_feedrate = parser.floatval('F');
if (final_feedrate == 0) {
static constexpr float default_max_feedrate[] = DEFAULT_MAX_FEEDRATE;
const uint8_t num_feedrates = COUNT(default_max_feedrate);
for (j = 0; j < num_feedrates; j++) {
if (axis_codes[j] == axis_mon[0][0]) {
final_feedrate = default_max_feedrate[j];
break;
}
}
if (j == 3 && num_feedrates > 4) { // have more than one extruder feedrate
uint8_t extruder_num = axis_mon[0][1] - '0';
if (j <= num_feedrates - extruder_num) // have a feedrate specifically for this extruder
final_feedrate = default_max_feedrate[j + extruder_num];
else
final_feedrate = default_max_feedrate[3]; // use E0 feedrate for this extruder
}
final_feedrate *= 60; // convert to mm/minute
} // end of feedrate
return false; // FALSE indicates no user input problems
}
#if ENABLED(L6470_CHITCHAT)
inline void echo_yes_no(const bool yes) { serialprintPGM(yes ? PSTR("YES") : PSTR("NO ")); }
#endif
void L6470_Marlin::say_axis(const uint8_t axis, const bool label/*=true*/) {
if (label) SERIAL_ECHOPGM("AXIS:");
SERIAL_CHAR(' ', index_to_axis[axis][0], index_to_axis[axis][1], ' ');
}
void L6470_Marlin::error_status_decode(const uint16_t status, const uint8_t axis) { // assumes status bits have been inverted
#if ENABLED(L6470_CHITCHAT)
char temp_buf[10];
say_axis(axis);
sprintf_P(temp_buf, PSTR(" %4x "), status);
DEBUG_ECHO(temp_buf);
print_bin(status);
DEBUG_ECHOPGM(" THERMAL: ");
serialprintPGM((status & STATUS_TH_SD) ? PSTR("SHUTDOWN") : (status & STATUS_TH_WRN) ? PSTR("WARNING ") : PSTR("OK "));
DEBUG_ECHOPGM(" OVERCURRENT: ");
echo_yes_no(status & STATUS_OCD);
DEBUG_ECHOPGM(" STALL: ");
echo_yes_no(status & (STATUS_STEP_LOSS_A | STATUS_STEP_LOSS_B));
L6470_EOL();
#else
UNUSED(status); UNUSED(axis);
#endif
}
//////////////////////////////////////////////////////////////////////////////////////////////////
////
//// MONITOR_L6470_DRIVER_STATUS routines
////
//////////////////////////////////////////////////////////////////////////////////////////////////
#if ENABLED(MONITOR_L6470_DRIVER_STATUS)
struct L6470_driver_data {
uint8_t driver_index;
uint32_t driver_status;
bool is_otw;
uint8_t otw_counter;
bool is_ot;
bool is_hi_Z;
uint8_t com_counter;
};
L6470_driver_data driver_L6470_data[] = {
#if AXIS_DRIVER_TYPE_X(L6470)
{ 0, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_Y(L6470)
{ 1, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_Z(L6470)
{ 2, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_X2(L6470)
{ 3, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_Y2(L6470)
{ 4, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_Z2(L6470)
{ 5, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_Z3(L6470)
{ 6, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_E0(L6470)
{ 7, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_E1(L6470)
{ 8, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_E2(L6470)
{ 9, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_E3(L6470)
{ 10, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_E4(L6470)
{ 11, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_DRIVER_TYPE_E5(L6470)
{ 12, 0, 0, 0, 0, 0, 0 }
#endif
};
inline void append_stepper_err(char * &p, const uint8_t stepper_index, const char * const err=nullptr) {
p += sprintf_P(p, PSTR("Stepper %c%c "), char(index_to_axis[stepper_index][0]), char(index_to_axis[stepper_index][1]));
if (err) p += sprintf_P(p, err);
}
void L6470_monitor_update(uint8_t stepper_index, uint16_t status) {
if (spi_abort) return; // don't do anything if set_directions() has occurred
uint8_t kval_hold;
char temp_buf[120];
char* p = &temp_buf[0];
uint8_t j;
for (j = 0; j < L6470::chain[0]; j++) // find the table for this stepper
if (driver_L6470_data[j].driver_index == stepper_index) break;
driver_L6470_data[j].driver_status = status;
uint16_t _status = ~status; // all error bits are active low
if (status == 0 || status == 0xFFFF) { // com problem
if (driver_L6470_data[j].com_counter == 0) { // warn user when it first happens
driver_L6470_data[j].com_counter++;
append_stepper_err(p, stepper_index, PSTR(" - communications lost\n"));
DEBUG_ECHO(temp_buf);
}
else {
driver_L6470_data[j].com_counter++;
if (driver_L6470_data[j].com_counter > 240) { // remind of com problem about every 2 minutes
driver_L6470_data[j].com_counter = 1;
append_stepper_err(p, stepper_index, PSTR(" - still no communications\n"));
DEBUG_ECHO(temp_buf);
}
}
}
else {
if (driver_L6470_data[j].com_counter) { // comms re-established
driver_L6470_data[j].com_counter = 0;
append_stepper_err(p, stepper_index, PSTR(" - communications re-established\n.. setting all drivers to default values\n"));
DEBUG_ECHO(temp_buf);
init_to_defaults();
}
else {
// no com problems - do the usual checks
if (_status & L6470_ERROR_MASK) {
append_stepper_err(p, stepper_index);
if (status & STATUS_HIZ) { // the driver has shut down HiZ is active high
driver_L6470_data[j].is_hi_Z = true;
p += sprintf_P(p, PSTR("%cIS SHUT DOWN"), ' ');
// if (_status & STATUS_TH_SD) { // strange - TH_SD never seems to go active, must be implied by the HiZ and TH_WRN
if (_status & STATUS_TH_WRN) { // over current shutdown
p += sprintf_P(p, PSTR("%cdue to over temperature"), ' ');
driver_L6470_data[j].is_ot = true;
kval_hold = get_param(stepper_index, L6470_KVAL_HOLD) - 2 * KVAL_HOLD_STEP_DOWN;
set_param(stepper_index, L6470_KVAL_HOLD, kval_hold); // reduce KVAL_HOLD
p += sprintf_P(p, PSTR(" - KVAL_HOLD reduced by %d to %d"), 2 * KVAL_HOLD_STEP_DOWN, kval_hold); // let user know
}
else
driver_L6470_data[j].is_ot = false;
}
else {
driver_L6470_data[j].is_hi_Z = false;
if (_status & STATUS_TH_WRN) { // have an over temperature warning
driver_L6470_data[j].is_otw = true;
driver_L6470_data[j].otw_counter++;
kval_hold = get_param(stepper_index, L6470_KVAL_HOLD);
if (driver_L6470_data[j].otw_counter > 4) { // otw present for 2 - 2.5 seconds, reduce KVAL_HOLD
kval_hold -= KVAL_HOLD_STEP_DOWN;
set_param(stepper_index, L6470_KVAL_HOLD, kval_hold); // reduce KVAL_HOLD
p += sprintf_P(p, PSTR(" - KVAL_HOLD reduced by %d to %d"), KVAL_HOLD_STEP_DOWN, kval_hold); // let user know
driver_L6470_data[j].otw_counter = 0;
driver_L6470_data[j].is_otw = true;
}
else if (driver_L6470_data[j].otw_counter)
p += sprintf_P(p, PSTR("%c- thermal warning"), ' '); // warn user
}
}
#ifdef L6470_STOP_ON_ERROR
if (_status & (STATUS_UVLO | STATUS_TH_WRN | STATUS_TH_SD))
kill(temp_buf);
#endif
#if ENABLED(L6470_CHITCHAT)
if (_status & STATUS_OCD)
p += sprintf_P(p, PSTR("%c over current"), ' ');
if (_status & (STATUS_STEP_LOSS_A | STATUS_STEP_LOSS_B))
p += sprintf_P(p, PSTR("%c stall"), ' ');
if (_status & STATUS_UVLO)
p += sprintf_P(p, PSTR("%c under voltage lock out"), ' ');
p += sprintf_P(p, PSTR("%c\n"), ' ');
#endif
DEBUG_ECHOLN(temp_buf); // print the error message
}
else {
driver_L6470_data[j].is_ot = false;
driver_L6470_data[j].otw_counter = 0; //clear out warning indicators
driver_L6470_data[j].is_otw = false;
} // end usual checks
} // comms established but have errors
} // comms re-established
} // end L6470_monitor_update()
#define MONITOR_L6470_DRIVE(Q) L6470_monitor_update(Q, stepper##Q.getStatus())
void L6470_Marlin::monitor_driver() {
static millis_t next_cOT = 0;
if (ELAPSED(millis(), next_cOT)) {
next_cOT = millis() + 500;
spi_active = true; // let set_directions() know we're in the middle of a series of SPI transfers
#if AXIS_DRIVER_TYPE_X(L6470)
MONITOR_L6470_DRIVE(X);
#endif
#if AXIS_DRIVER_TYPE_Y(L6470)
MONITOR_L6470_DRIVE(Y);
#endif
#if AXIS_DRIVER_TYPE_Z(L6470)
MONITOR_L6470_DRIVE(Z);
#endif
#if AXIS_DRIVER_TYPE_X2(L6470)
MONITOR_L6470_DRIVE(X2);
#endif
#if AXIS_DRIVER_TYPE_Y2(L6470)
MONITOR_L6470_DRIVE(Y2);
#endif
#if AXIS_DRIVER_TYPE_Z2(L6470)
MONITOR_L6470_DRIVE(Z2);
#endif
#if AXIS_DRIVER_TYPE_Z3(L6470)
MONITOR_L6470_DRIVE(Z3);
#endif
#if AXIS_DRIVER_TYPE_E0(L6470)
MONITOR_L6470_DRIVE(E0);
#endif
#if AXIS_DRIVER_TYPE_E1(L6470)
MONITOR_L6470_DRIVE(E1);
#endif
#if AXIS_DRIVER_TYPE_E2(L6470)
MONITOR_L6470_DRIVE(E2);
#endif
#if AXIS_DRIVER_TYPE_E3(L6470)
MONITOR_L6470_DRIVE(E3);
#endif
#if AXIS_DRIVER_TYPE_E4(L6470)
MONITOR_L6470_DRIVE(E4);
#endif
#if AXIS_DRIVER_TYPE_E5(L6470)
MONITOR_L6470_DRIVE(E5);
#endif
#if ENABLED(L6470_DEBUG)
if (report_L6470_status) L6470_EOL();
#endif
spi_active = false; // done with all SPI transfers - clear handshake flags
spi_abort = false;
}
}
#endif // MONITOR_L6470_DRIVER_STATUS
#endif // HAS_DRIVER(L6470)

@ -1,72 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
#include "../../inc/MarlinConfig.h"
#include <L6470.h>
#define L6470_GETPARAM(P,Q) stepper##Q.GetParam(P)
enum L6470_driver_enum : unsigned char { X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5, MAX_L6470 };
#define L6470_ERROR_MASK (STATUS_UVLO | STATUS_TH_WRN | STATUS_TH_SD | STATUS_OCD | STATUS_STEP_LOSS_A | STATUS_STEP_LOSS_B)
#define dSPIN_STEP_CLOCK_FWD dSPIN_STEP_CLOCK
#define dSPIN_STEP_CLOCK_REV dSPIN_STEP_CLOCK+1
class L6470_Marlin {
public:
static bool index_to_dir[MAX_L6470];
static uint8_t axis_xref[MAX_L6470];
static char index_to_axis[MAX_L6470][3];
static uint8_t dir_commands[MAX_L6470];
// Flags to guarantee graceful switch if stepper interrupts L6470 SPI transfer
static volatile bool spi_abort;
static bool spi_active;
L6470_Marlin() {}
static uint16_t get_status(const uint8_t axis);
static uint32_t get_param(uint8_t axis, uint8_t param);
static void set_param(uint8_t axis, uint8_t param, uint32_t value);
static bool get_user_input(uint8_t &driver_count, uint8_t axis_index[3], char axis_mon[3][3],
float &position_max, float &position_min, float &final_feedrate, uint8_t &kval_hold,
bool over_current_flag, uint8_t &OCD_TH_val, uint8_t &STALL_TH_val, uint16_t &over_current_threshold);
static void error_status_decode(const uint16_t status, const uint8_t axis);
static void monitor_driver();
static void init();
static void init_to_defaults();
static void say_axis(const uint8_t axis, const bool label=true);
private:
void populate_chain_array();
};
extern L6470_Marlin L6470;

@ -0,0 +1,892 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* The monitor_driver routines are a close copy of the TMC code
*/
#include "../../inc/MarlinConfig.h"
#if HAS_L64XX
#include "L64XX_Marlin.h"
L64XX_Marlin L64xxManager;
#include "../../module/stepper/indirection.h"
#include "../../gcode/gcode.h"
#include "../../module/planner.h"
#include "../../HAL/shared/Delay.h"
void echo_yes_no(const bool yes) { serialprintPGM(yes ? PSTR(" YES") : PSTR(" NO ")); }
char L64XX_Marlin::index_to_axis[MAX_L6470][3] = { "X ", "Y ", "Z ", "X2", "Y2", "Z2", "Z3", "E0", "E1", "E2", "E3", "E4", "E5" };
#define DEBUG_OUT ENABLED(L6470_CHITCHAT)
#include "../../core/debug_out.h"
uint8_t L64XX_Marlin::dir_commands[MAX_L6470]; // array to hold direction command for each driver
uint8_t L64XX_Marlin::index_to_dir[MAX_L6470] = { (INVERT_X_DIR) , // 0 X
(INVERT_Y_DIR) , // 1 Y
(INVERT_Z_DIR) , // 2 Z
#if ENABLED(X_DUAL_STEPPER_DRIVERS)
(INVERT_X_DIR) ^ (INVERT_X2_VS_X_DIR) , // 3 X2
#else
(INVERT_X_DIR) , // 3 X2
#endif
#if ENABLED(Y_DUAL_STEPPER_DRIVERS)
(INVERT_Y_DIR) ^ (INVERT_Y2_VS_Y_DIR) , // 4 Y2
#else
(INVERT_Y_DIR) , // 4 Y2
#endif
(INVERT_Z_DIR) , // 5 Z2
(INVERT_Z_DIR) , // 6 Z3
(INVERT_E0_DIR) , // 7 E0
(INVERT_E1_DIR) , // 8 E1
(INVERT_E2_DIR) , // 9 E2
(INVERT_E3_DIR) , // 10 E3
(INVERT_E4_DIR) , // 11 E4
(INVERT_E5_DIR) , // 12 E5
};
volatile uint8_t L64XX_Marlin::spi_abort = false;
uint8_t L64XX_Marlin::spi_active = false;
L64XX_Marlin::L64XX_shadow_t L64XX_Marlin::shadow;
//uint32_t UVLO_ADC = 0x0400; // ADC undervoltage event
void L6470_populate_chain_array() {
#define _L6470_INIT_SPI(Q) do{ stepper##Q.set_chain_info(Q, Q##_CHAIN_POS); }while(0)
#if AXIS_IS_L64XX(X)
_L6470_INIT_SPI(X);
#endif
#if AXIS_IS_L64XX(X2)
_L6470_INIT_SPI(X2);
#endif
#if AXIS_IS_L64XX(Y)
_L6470_INIT_SPI(Y);
#endif
#if AXIS_IS_L64XX(Y2)
_L6470_INIT_SPI(Y2);
#endif
#if AXIS_IS_L64XX(Z)
_L6470_INIT_SPI(Z);
#endif
#if AXIS_IS_L64XX(Z2)
_L6470_INIT_SPI(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
_L6470_INIT_SPI(Z3);
#endif
#if AXIS_IS_L64XX(E0)
_L6470_INIT_SPI(E0);
#endif
#if AXIS_IS_L64XX(E1)
_L6470_INIT_SPI(E1);
#endif
#if AXIS_IS_L64XX(E2)
_L6470_INIT_SPI(E2);
#endif
#if AXIS_IS_L64XX(E3)
_L6470_INIT_SPI(E3);
#endif
#if AXIS_IS_L64XX(E4)
_L6470_INIT_SPI(E4);
#endif
#if AXIS_IS_L64XX(E5)
_L6470_INIT_SPI(E5);
#endif
}
/**
* Some status bit positions & definitions differ per driver.
* Copy info to known locations to simplfy check/display logic.
* 1. Copy stepper status
* 2. Copy status bit definitions
* 3. Copy status layout
* 4. Make all error bits active low (as needed)
*/
uint16_t L64XX_Marlin::get_stepper_status(L64XX &st) {
shadow.STATUS_AXIS_RAW = st.getStatus();
shadow.STATUS_AXIS = shadow.STATUS_AXIS_RAW;
shadow.STATUS_AXIS_LAYOUT = st.L6470_status_layout;
shadow.AXIS_OCD_TH_MAX = st.OCD_TH_MAX;
shadow.AXIS_STALL_TH_MAX = st.STALL_TH_MAX;
shadow.AXIS_OCD_CURRENT_CONSTANT_INV = st.OCD_CURRENT_CONSTANT_INV;
shadow.AXIS_STALL_CURRENT_CONSTANT_INV = st.STALL_CURRENT_CONSTANT_INV;
shadow.L6470_AXIS_CONFIG = st.L64XX_CONFIG;
shadow.L6470_AXIS_STATUS = st.L64XX_STATUS;
shadow.STATUS_AXIS_OCD = st.STATUS_OCD;
shadow.STATUS_AXIS_SCK_MOD = st.STATUS_SCK_MOD;
shadow.STATUS_AXIS_STEP_LOSS_A = st.STATUS_STEP_LOSS_A;
shadow.STATUS_AXIS_STEP_LOSS_B = st.STATUS_STEP_LOSS_B;
shadow.STATUS_AXIS_TH_SD = st.STATUS_TH_SD;
shadow.STATUS_AXIS_TH_WRN = st.STATUS_TH_WRN;
shadow.STATUS_AXIS_UVLO = st.STATUS_UVLO;
shadow.STATUS_AXIS_WRONG_CMD = st.STATUS_WRONG_CMD;
shadow.STATUS_AXIS_CMD_ERR = st.STATUS_CMD_ERR;
shadow.STATUS_AXIS_NOTPERF_CMD = st.STATUS_NOTPERF_CMD;
switch (shadow.STATUS_AXIS_LAYOUT) {
case L6470_STATUS_LAYOUT: { // L6470
shadow.L6470_ERROR_MASK = shadow.STATUS_AXIS_UVLO | shadow.STATUS_AXIS_TH_WRN | shadow.STATUS_AXIS_TH_SD | shadow.STATUS_AXIS_OCD | shadow.STATUS_AXIS_STEP_LOSS_A | shadow.STATUS_AXIS_STEP_LOSS_B;
shadow.STATUS_AXIS ^= (shadow.STATUS_AXIS_WRONG_CMD | shadow.STATUS_AXIS_NOTPERF_CMD); // invert just error bits that are active high
break;
}
case L6474_STATUS_LAYOUT: { // L6474
shadow.L6470_ERROR_MASK = shadow.STATUS_AXIS_UVLO | shadow.STATUS_AXIS_TH_WRN | shadow.STATUS_AXIS_TH_SD | shadow.STATUS_AXIS_OCD ;
shadow.STATUS_AXIS ^= (shadow.STATUS_AXIS_WRONG_CMD | shadow.STATUS_AXIS_NOTPERF_CMD); // invert just error bits that are active high
break;
}
case L6480_STATUS_LAYOUT: { // L6480 & powerSTEP01
shadow.L6470_ERROR_MASK = shadow.STATUS_AXIS_UVLO | shadow.STATUS_AXIS_TH_WRN | shadow.STATUS_AXIS_TH_SD | shadow.STATUS_AXIS_OCD | shadow.STATUS_AXIS_STEP_LOSS_A | shadow.STATUS_AXIS_STEP_LOSS_B;
shadow.STATUS_AXIS ^= (shadow.STATUS_AXIS_CMD_ERR | shadow.STATUS_AXIS_TH_WRN | shadow.STATUS_AXIS_TH_SD); // invert just error bits that are active high
break;
}
}
return shadow.STATUS_AXIS;
}
void L64XX_Marlin::init() { // Set up SPI and then init chips
ENABLE_RESET_L64XX_CHIPS(LOW); // hardware reset of drivers
DELAY_US(100);
ENABLE_RESET_L64XX_CHIPS(HIGH);
DELAY_US(1000); // need about 650µs for the chip(s) to fully start up
L6470_populate_chain_array(); // Set up array to control where in the SPI transfer sequence a particular stepper's data goes
spi_init(); // Since L64XX SPI pins are unset we must init SPI here
init_to_defaults(); // init the chips
}
uint16_t L64XX_Marlin::get_status(const L64XX_axis_t axis) {
#define STATUS_L6470(Q) get_stepper_status(stepper##Q)
switch (axis) {
default: break;
#if AXIS_IS_L64XX(X)
case X : return STATUS_L6470(X);
#endif
#if AXIS_IS_L64XX(Y)
case Y : return STATUS_L6470(Y);
#endif
#if AXIS_IS_L64XX(Z)
case Z : return STATUS_L6470(Z);
#endif
#if AXIS_IS_L64XX(X2)
case X2: return STATUS_L6470(X2);
#endif
#if AXIS_IS_L64XX(Y2)
case Y2: return STATUS_L6470(Y2);
#endif
#if AXIS_IS_L64XX(Z2)
case Z2: return STATUS_L6470(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
case Z3: return STATUS_L6470(Z3);
#endif
#if AXIS_IS_L64XX(E0)
case E0: return STATUS_L6470(E0);
#endif
#if AXIS_IS_L64XX(E1)
case E1: return STATUS_L6470(E1);
#endif
#if AXIS_IS_L64XX(E2)
case E2: return STATUS_L6470(E2);
#endif
#if AXIS_IS_L64XX(E3)
case E3: return STATUS_L6470(E3);
#endif
#if AXIS_IS_L64XX(E4)
case E4: return STATUS_L6470(E4);
#endif
#if AXIS_IS_L64XX(E5)
case E5: return STATUS_L6470(E5);
#endif
}
return 0; // Not needed but kills a compiler warning
}
uint32_t L64XX_Marlin::get_param(const L64XX_axis_t axis, const uint8_t param) {
#define GET_L6470_PARAM(Q) L6470_GETPARAM(param, Q)
switch (axis) {
default: break;
#if AXIS_IS_L64XX(X)
case X : return GET_L6470_PARAM(X);
#endif
#if AXIS_IS_L64XX(Y)
case Y : return GET_L6470_PARAM(Y);
#endif
#if AXIS_IS_L64XX(Z)
case Z : return GET_L6470_PARAM(Z);
#endif
#if AXIS_IS_L64XX(X2)
case X2: return GET_L6470_PARAM(X2);
#endif
#if AXIS_IS_L64XX(Y2)
case Y2: return GET_L6470_PARAM(Y2);
#endif
#if AXIS_IS_L64XX(Z2)
case Z2: return GET_L6470_PARAM(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
case Z3: return GET_L6470_PARAM(Z3);
#endif
#if AXIS_IS_L64XX(E0)
case E0: return GET_L6470_PARAM(E0);
#endif
#if AXIS_IS_L64XX(E1)
case E1: return GET_L6470_PARAM(E1);
#endif
#if AXIS_IS_L64XX(E2)
case E2: return GET_L6470_PARAM(E2);
#endif
#if AXIS_IS_L64XX(E3)
case E3: return GET_L6470_PARAM(E3);
#endif
#if AXIS_IS_L64XX(E4)
case E4: return GET_L6470_PARAM(E4);
#endif
#if AXIS_IS_L64XX(E5)
case E5: return GET_L6470_PARAM(E5);
#endif
}
return 0; // not needed but kills a compiler warning
}
void L64XX_Marlin::set_param(const L64XX_axis_t axis, const uint8_t param, const uint32_t value) {
#define SET_L6470_PARAM(Q) stepper##Q.SetParam(param, value)
switch (axis) {
default: break;
#if AXIS_IS_L64XX(X)
case X : SET_L6470_PARAM(X); break;
#endif
#if AXIS_IS_L64XX(Y)
case Y : SET_L6470_PARAM(Y); break;
#endif
#if AXIS_IS_L64XX(Z)
case Z : SET_L6470_PARAM(Z); break;
#endif
#if AXIS_IS_L64XX(X2)
case X2: SET_L6470_PARAM(X2); break;
#endif
#if AXIS_IS_L64XX(Y2)
case Y2: SET_L6470_PARAM(Y2); break;
#endif
#if AXIS_IS_L64XX(Z2)
case Z2: SET_L6470_PARAM(Z2); break;
#endif
#if AXIS_IS_L64XX(Z3)
case Z3: SET_L6470_PARAM(Z3); break;
#endif
#if AXIS_IS_L64XX(E0)
case E0: SET_L6470_PARAM(E0); break;
#endif
#if AXIS_IS_L64XX(E1)
case E1: SET_L6470_PARAM(E1); break;
#endif
#if AXIS_IS_L64XX(E2)
case E2: SET_L6470_PARAM(E2); break;
#endif
#if AXIS_IS_L64XX(E3)
case E3: SET_L6470_PARAM(E3); break;
#endif
#if AXIS_IS_L64XX(E4)
case E4: SET_L6470_PARAM(E4); break;
#endif
#if AXIS_IS_L64XX(E5)
case E5: SET_L6470_PARAM(E5); break;
#endif
}
}
inline void echo_min_max(const char a, const float &min, const float &max) {
DEBUG_CHAR(' '); DEBUG_CHAR(a);
DEBUG_ECHOPAIR(" min = ", min);
DEBUG_ECHOLNPAIR(" max = ", max);
}
inline void echo_oct_used(const float &oct, const uint8_t stall) {
DEBUG_ECHOPAIR("over_current_threshold used : ", oct);
serialprintPGM(stall ? PSTR(" (Stall") : PSTR(" (OCD"));
DEBUG_ECHOLNPGM(" threshold)");
}
inline void err_out_of_bounds() { DEBUG_ECHOLNPGM("Test aborted - motion out of bounds"); }
uint8_t L64XX_Marlin::get_user_input(uint8_t &driver_count, L64XX_axis_t axis_index[3], char axis_mon[3][3],
float &position_max, float &position_min, float &final_feedrate, uint8_t &kval_hold,
uint8_t over_current_flag, uint8_t &OCD_TH_val, uint8_t &STALL_TH_val, uint16_t &over_current_threshold
) {
// Return TRUE if the calling routine needs to abort/kill
uint16_t displacement = 0; // " = 0" to eliminate compiler warning
uint8_t j; // general purpose counter
if (!all_axes_homed()) {
DEBUG_ECHOLNPGM("Test aborted - home all before running this command");
return true;
}
uint8_t found_displacement = false;
LOOP_XYZE(i) if (uint16_t _displacement = parser.intval(axis_codes[i])) {
found_displacement = true;
displacement = _displacement;
uint8_t axis_offset = parser.byteval('J');
axis_mon[0][0] = axis_codes[i]; // axis ASCII value (target character)
uint8_t driver_count_local = 0; // Can't use "driver_count" directly as a subscript because it's passed by reference
if (axis_offset >= 2 || axis_mon[0][0] == 'E') { // Single axis, E0, or E1
axis_mon[0][1] = axis_offset + '0';
for (j = 0; j < MAX_L6470; j++) { // See how many drivers on this axis
const char * const str = index_to_axis[j];
if (axis_mon[0][0] == str[0]) {
char * const mon = axis_mon[driver_count_local];
mon[0] = str[0];
mon[1] = str[1];
mon[2] = str[2]; // append end of string
axis_index[driver_count_local] = (L64XX_axis_t)j; // set axis index
driver_count_local++;
}
}
}
else if (axis_offset == 0) { // One or more axes
for (j = 0; j < MAX_L6470; j++) { // See how many drivers on this axis
const char * const str = index_to_axis[j];
if (axis_mon[0][0] == str[0]) {
char * const mon = axis_mon[driver_count_local];
mon[0] = str[0];
mon[1] = str[1];
mon[2] = str[2]; // append end of string
axis_index[driver_count_local] = (L64XX_axis_t)j; // set axis index
driver_count_local++;
}
}
driver_count = driver_count_local;
}
break; // only take first axis found
}
if (!found_displacement) {
DEBUG_ECHOLNPGM("Test aborted - AXIS with displacement is required");
return true;
}
//
// Position calcs & checks
//
const float X_center = LOGICAL_X_POSITION(current_position.x),
Y_center = LOGICAL_Y_POSITION(current_position.y),
Z_center = LOGICAL_Z_POSITION(current_position.z),
E_center = current_position.e;
switch (axis_mon[0][0]) {
default: position_max = position_min = 0; break;
case 'X': {
position_min = X_center - displacement;
position_max = X_center + displacement;
echo_min_max('X', position_min, position_max);
if (false
#ifdef X_MIN_POS
|| position_min < (X_MIN_POS)
#endif
#ifdef X_MAX_POS
|| position_max > (X_MAX_POS)
#endif
) {
err_out_of_bounds();
return true;
}
} break;
case 'Y': {
position_min = Y_center - displacement;
position_max = Y_center + displacement;
echo_min_max('Y', position_min, position_max);
if (false
#ifdef Y_MIN_POS
|| position_min < (Y_MIN_POS)
#endif
#ifdef Y_MAX_POS
|| position_max > (Y_MAX_POS)
#endif
) {
err_out_of_bounds();
return true;
}
} break;
case 'Z': {
position_min = Z_center - displacement;
position_max = Z_center + displacement;
echo_min_max('Z', position_min, position_max);
if (false
#ifdef Z_MIN_POS
|| position_min < (Z_MIN_POS)
#endif
#ifdef Z_MAX_POS
|| position_max > (Z_MAX_POS)
#endif
) {
err_out_of_bounds();
return true;
}
} break;
case 'E': {
position_min = E_center - displacement;
position_max = E_center + displacement;
echo_min_max('E', position_min, position_max);
} break;
}
//
// Work on the drivers
//
for (uint8_t k = 0; k < driver_count; k++) {
uint8_t not_found = true;
for (j = 1; j <= L64XX::chain[0]; j++) {
const char * const ind_axis = index_to_axis[L64XX::chain[j]];
if (ind_axis[0] == axis_mon[k][0] && ind_axis[1] == axis_mon[k][1]) { // See if a L6470 driver
not_found = false;
break;
}
}
if (not_found) {
driver_count = k;
axis_mon[k][0] = ' '; // mark this entry invalid
break;
}
}
if (driver_count == 0) {
DEBUG_ECHOLNPGM("Test aborted - not a L6470 axis");
return true;
}
DEBUG_ECHOPGM("Monitoring:");
for (j = 0; j < driver_count; j++) DEBUG_ECHOPAIR(" ", axis_mon[j]);
DEBUG_EOL();
// now have a list of driver(s) to monitor
//
// TVAL & kVAL_HOLD checks & settings
//
const L64XX_shadow_t &sh = shadow;
get_status(axis_index[0]); // populate shadow array
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // L6474 - use TVAL
uint16_t TVAL_current = parser.ushortval('T');
if (TVAL_current) {
uint8_t TVAL_count = (TVAL_current / sh.AXIS_STALL_CURRENT_CONSTANT_INV) - 1;
LIMIT(TVAL_count, 0, sh.AXIS_STALL_TH_MAX);
for (j = 0; j < driver_count; j++)
set_param(axis_index[j], L6474_TVAL, TVAL_count);
}
// only print the tval from one of the drivers
kval_hold = get_param(axis_index[0], L6474_TVAL);
DEBUG_ECHOLNPAIR("TVAL current (mA) = ", (kval_hold + 1) * sh.AXIS_STALL_CURRENT_CONSTANT_INV);
}
else {
kval_hold = parser.byteval('K');
if (kval_hold) {
DEBUG_ECHOLNPAIR("kval_hold = ", kval_hold);
for (j = 0; j < driver_count; j++)
set_param(axis_index[j], L6470_KVAL_HOLD, kval_hold);
}
else {
// only print the KVAL_HOLD from one of the drivers
kval_hold = get_param(axis_index[0], L6470_KVAL_HOLD);
DEBUG_ECHOLNPAIR("KVAL_HOLD = ", kval_hold);
}
}
//
// Overcurrent checks & settings
//
if (over_current_flag) {
uint8_t OCD_TH_val_local = 0, // compiler thinks OCD_TH_val is unused if use it directly
STALL_TH_val_local = 0; // just in case ...
over_current_threshold = parser.intval('I');
if (over_current_threshold) {
OCD_TH_val_local = over_current_threshold/375;
LIMIT(OCD_TH_val_local, 0, 15);
STALL_TH_val_local = over_current_threshold/31.25;
LIMIT(STALL_TH_val_local, 0, 127);
uint16_t OCD_TH_actual = (OCD_TH_val_local + 1) * 375,
STALL_TH_actual = (STALL_TH_val_local + 1) * 31.25;
if (OCD_TH_actual < STALL_TH_actual) {
OCD_TH_val_local++;
OCD_TH_actual = (OCD_TH_val_local + 1) * 375;
}
DEBUG_ECHOLNPAIR("over_current_threshold specified: ", over_current_threshold);
if (!(sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT)) echo_oct_used((STALL_TH_val_local + 1) * 31.25, true);
echo_oct_used((OCD_TH_val_local + 1) * 375, false);
#define SET_OVER_CURRENT(Q) do { stepper##Q.SetParam(L6470_STALL_TH, STALL_TH_val_local); stepper##Q.SetParam(L6470_OCD_TH, OCD_TH_val_local);} while (0)
for (j = 0; j < driver_count; j++) {
set_param(axis_index[j], L6470_STALL_TH, STALL_TH_val_local);
set_param(axis_index[j], L6470_OCD_TH, OCD_TH_val_local);
}
}
else {
// only get & print the OVER_CURRENT values from one of the drivers
STALL_TH_val_local = get_param(axis_index[0], L6470_STALL_TH);
OCD_TH_val_local = get_param(axis_index[0], L6470_OCD_TH);
if (!(sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT)) echo_oct_used((STALL_TH_val_local + 1) * 31.25, true);
echo_oct_used((OCD_TH_val_local + 1) * 375, false);
} // over_current_threshold
for (j = 0; j < driver_count; j++) { // set all drivers on axis the same
set_param(axis_index[j], L6470_STALL_TH, STALL_TH_val_local);
set_param(axis_index[j], L6470_OCD_TH, OCD_TH_val_local);
}
OCD_TH_val = OCD_TH_val_local; // force compiler to update the main routine's copy
STALL_TH_val = STALL_TH_val_local; // force compiler to update the main routine's copy
} // end of overcurrent
//
// Feedrate
//
final_feedrate = parser.floatval('F');
if (final_feedrate == 0) {
static constexpr float default_max_feedrate[] = DEFAULT_MAX_FEEDRATE;
const uint8_t num_feedrates = COUNT(default_max_feedrate);
for (j = 0; j < num_feedrates; j++) {
if (axis_codes[j] == axis_mon[0][0]) {
final_feedrate = default_max_feedrate[j];
break;
}
}
if (j == 3 && num_feedrates > 4) { // have more than one extruder feedrate
uint8_t extruder_num = axis_mon[0][1] - '0';
if (j <= num_feedrates - extruder_num) // have a feedrate specifically for this extruder
final_feedrate = default_max_feedrate[j + extruder_num];
else
final_feedrate = default_max_feedrate[3]; // use E0 feedrate for this extruder
}
final_feedrate *= 60; // convert to mm/minute
} // end of feedrate
return false; // FALSE indicates no user input problems
}
void L64XX_Marlin::say_axis(const L64XX_axis_t axis, const uint8_t label/*=true*/) {
if (label) SERIAL_ECHOPGM("AXIS:");
const char * const str = L64xxManager.index_to_axis[axis];
SERIAL_CHAR(' ', str[0], str[1], ' ');
}
#if ENABLED(L6470_CHITCHAT)
// Assumes status bits have been inverted
void L64XX_Marlin::error_status_decode(const uint16_t status, const L64XX_axis_t axis,
const uint16_t _status_axis_th_sd, const uint16_t _status_axis_th_wrn,
const uint16_t _status_axis_step_loss_a, const uint16_t _status_axis_step_loss_b,
const uint16_t _status_axis_ocd, const uint8_t _status_axis_layout
) {
say_axis(axis);
DEBUG_ECHOPGM(" THERMAL: ");
serialprintPGM((status & _status_axis_th_sd) ? PSTR("SHUTDOWN") : (status & _status_axis_th_wrn) ? PSTR("WARNING ") : PSTR("OK "));
DEBUG_ECHOPGM(" OVERCURRENT: ");
echo_yes_no((status & _status_axis_ocd) != 0);
if (!(_status_axis_layout == L6474_STATUS_LAYOUT)) { // L6474 doesn't have these bits
DEBUG_ECHOPGM(" STALL: ");
echo_yes_no((status & (_status_axis_step_loss_a | _status_axis_step_loss_b)) != 0);
}
DEBUG_EOL();
}
#endif
//////////////////////////////////////////////////////////////////////////////////////////////////
////
//// MONITOR_L6470_DRIVER_STATUS routines
////
//////////////////////////////////////////////////////////////////////////////////////////////////
#if ENABLED(MONITOR_L6470_DRIVER_STATUS)
bool L64XX_Marlin::monitor_paused = false; // Flag to skip monitor during M122, M906, M916, M917, M918, etc.
struct L6470_driver_data {
uint8_t driver_index;
uint32_t driver_status;
uint8_t is_otw;
uint8_t otw_counter;
uint8_t is_ot;
uint8_t is_hi_Z;
uint8_t com_counter;
};
L6470_driver_data driver_L6470_data[] = {
#if AXIS_IS_L64XX(X)
{ 0, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(Y)
{ 1, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(Z)
{ 2, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(X2)
{ 3, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(Y2)
{ 4, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(Z2)
{ 5, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(Z3)
{ 6, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E0)
{ 7, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E1)
{ 8, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E2)
{ 9, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E3)
{ 10, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E4)
{ 11, 0, 0, 0, 0, 0, 0 },
#endif
#if AXIS_IS_L64XX(E5)
{ 12, 0, 0, 0, 0, 0, 0 }
#endif
};
void L64XX_Marlin::append_stepper_err(char* &p, const uint8_t stepper_index, const char * const err/*=nullptr*/) {
p += sprintf_P(p, PSTR("Stepper %c%c "), index_to_axis[stepper_index][0], index_to_axis[stepper_index][1]);
if (err) p += sprintf_P(p, err);
}
void L64XX_Marlin::monitor_update(L64XX_axis_t stepper_index) {
if (spi_abort) return; // don't do anything if set_directions() has occurred
const L64XX_shadow_t &sh = shadow;
get_status(stepper_index); // get stepper status and details
uint16_t status = sh.STATUS_AXIS;
uint8_t kval_hold, tval;
char temp_buf[120], *p = temp_buf;
uint8_t j;
for (j = 0; j < L64XX::chain[0]; j++) // find the table for this stepper
if (driver_L6470_data[j].driver_index == stepper_index) break;
driver_L6470_data[j].driver_status = status;
uint16_t _status = ~status; // all error bits are active low
if (status == 0 || status == 0xFFFF) { // com problem
if (driver_L6470_data[j].com_counter == 0) { // warn user when it first happens
driver_L6470_data[j].com_counter++;
append_stepper_err(p, stepper_index, PSTR(" - communications lost\n"));
DEBUG_ECHO(temp_buf);
}
else {
driver_L6470_data[j].com_counter++;
if (driver_L6470_data[j].com_counter > 240) { // remind of com problem about every 2 minutes
driver_L6470_data[j].com_counter = 1;
append_stepper_err(p, stepper_index, PSTR(" - still no communications\n"));
DEBUG_ECHO(temp_buf);
}
}
}
else {
if (driver_L6470_data[j].com_counter) { // comms re-established
driver_L6470_data[j].com_counter = 0;
append_stepper_err(p, stepper_index, PSTR(" - communications re-established\n.. setting all drivers to default values\n"));
DEBUG_ECHO(temp_buf);
init_to_defaults();
}
else {
// no com problems - do the usual checks
if (_status & sh.L6470_ERROR_MASK) {
append_stepper_err(p, stepper_index);
if (status & STATUS_HIZ) { // The driver has shut down. HiZ is active high
driver_L6470_data[j].is_hi_Z = true;
p += sprintf_P(p, PSTR("%cIS SHUT DOWN"), ' ');
//if (_status & sh.STATUS_AXIS_TH_SD) { // strange - TH_SD never seems to go active, must be implied by the HiZ and TH_WRN
if (_status & sh.STATUS_AXIS_TH_WRN) { // over current shutdown
p += sprintf_P(p, PSTR("%cdue to over temperature"), ' ');
driver_L6470_data[j].is_ot = true;
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // L6474
tval = get_param(stepper_index, L6474_TVAL) - 2 * KVAL_HOLD_STEP_DOWN;
set_param(stepper_index, L6474_TVAL, tval); // reduce TVAL
p += sprintf_P(p, PSTR(" - TVAL reduced by %d to %d mA"), uint16_t (2 * KVAL_HOLD_STEP_DOWN * sh.AXIS_STALL_CURRENT_CONSTANT_INV), uint16_t ((tval + 1) * sh.AXIS_STALL_CURRENT_CONSTANT_INV)); // let user know
}
else {
kval_hold = get_param(stepper_index, L6470_KVAL_HOLD) - 2 * KVAL_HOLD_STEP_DOWN;
set_param(stepper_index, L6470_KVAL_HOLD, kval_hold); // reduce KVAL_HOLD
p += sprintf_P(p, PSTR(" - KVAL_HOLD reduced by %d to %d"), 2 * KVAL_HOLD_STEP_DOWN, kval_hold); // let user know
}
}
else
driver_L6470_data[j].is_ot = false;
}
else {
driver_L6470_data[j].is_hi_Z = false;
if (_status & sh.STATUS_AXIS_TH_WRN) { // have an over temperature warning
driver_L6470_data[j].is_otw = true;
driver_L6470_data[j].otw_counter++;
kval_hold = get_param(stepper_index, L6470_KVAL_HOLD);
if (driver_L6470_data[j].otw_counter > 4) { // otw present for 2 - 2.5 seconds, reduce KVAL_HOLD
driver_L6470_data[j].otw_counter = 0;
driver_L6470_data[j].is_otw = true;
if (sh.STATUS_AXIS_LAYOUT == L6474_STATUS_LAYOUT) { // L6474
tval = get_param(stepper_index, L6474_TVAL) - KVAL_HOLD_STEP_DOWN;
set_param(stepper_index, L6474_TVAL, tval); // reduce TVAL
p += sprintf_P(p, PSTR(" - TVAL reduced by %d to %d mA"), uint16_t (KVAL_HOLD_STEP_DOWN * sh.AXIS_STALL_CURRENT_CONSTANT_INV), uint16_t ((tval + 1) * sh.AXIS_STALL_CURRENT_CONSTANT_INV)); // let user know
}
else {
kval_hold = get_param(stepper_index, L6470_KVAL_HOLD) - KVAL_HOLD_STEP_DOWN;
set_param(stepper_index, L6470_KVAL_HOLD, kval_hold); // reduce KVAL_HOLD
p += sprintf_P(p, PSTR(" - KVAL_HOLD reduced by %d to %d"), KVAL_HOLD_STEP_DOWN, kval_hold); // let user know
}
}
else if (driver_L6470_data[j].otw_counter)
p += sprintf_P(p, PSTR("%c- thermal warning"), ' '); // warn user
}
}
#if ENABLED(L6470_STOP_ON_ERROR)
if (_status & (sh.STATUS_AXIS_UVLO | sh.STATUS_AXIS_TH_WRN | sh.STATUS_AXIS_TH_SD))
kill(temp_buf);
#endif
#if ENABLED(L6470_CHITCHAT)
if (_status & sh.STATUS_AXIS_OCD)
p += sprintf_P(p, PSTR("%c over current"), ' ');
if (_status & (sh.STATUS_AXIS_STEP_LOSS_A | sh.STATUS_AXIS_STEP_LOSS_B))
p += sprintf_P(p, PSTR("%c stall"), ' ');
if (_status & sh.STATUS_AXIS_UVLO)
p += sprintf_P(p, PSTR("%c under voltage lock out"), ' ');
p += sprintf_P(p, PSTR("%c\n"), ' ');
#endif
DEBUG_ECHOLN(temp_buf); // print the error message
}
else {
driver_L6470_data[j].is_ot = false;
driver_L6470_data[j].otw_counter = 0; //clear out warning indicators
driver_L6470_data[j].is_otw = false;
} // end usual checks
} // comms established but have errors
} // comms re-established
} // end monitor_update()
void L64XX_Marlin::monitor_driver() {
static millis_t next_cOT = 0;
if (ELAPSED(millis(), next_cOT)) {
next_cOT = millis() + 500;
if (!monitor_paused) { // Skip during M122, M906, M916, M917 or M918 (could steal status result from test)
spi_active = true; // Tell set_directions() a series of SPI transfers is underway
#if AXIS_IS_L64XX(X)
monitor_update(X);
#endif
#if AXIS_IS_L64XX(Y)
monitor_update(Y);
#endif
#if AXIS_IS_L64XX(Z)
monitor_update(Z);
#endif
#if AXIS_IS_L64XX(X2)
monitor_update(X2);
#endif
#if AXIS_IS_L64XX(Y2)
monitor_update(Y2);
#endif
#if AXIS_IS_L64XX(Z2)
monitor_update(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
monitor_update(Z3);
#endif
#if AXIS_IS_L64XX(E0)
monitor_update(E0);
#endif
#if AXIS_IS_L64XX(E1)
monitor_update(E1);
#endif
#if AXIS_IS_L64XX(E2)
monitor_update(E2);
#endif
#if AXIS_IS_L64XX(E3)
monitor_update(E3);
#endif
#if AXIS_IS_L64XX(E4)
monitor_update(E4);
#endif
#if AXIS_IS_L64XX(E5)
monitor_update(E5);
#endif
#if ENABLED(L6470_DEBUG)
if (report_L6470_status) DEBUG_EOL();
#endif
spi_active = false; // done with all SPI transfers - clear handshake flags
spi_abort = false;
}
}
}
#endif // MONITOR_L6470_DRIVER_STATUS
#endif // HAS_L64XX

@ -0,0 +1,141 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
#include "../../inc/MarlinConfig.h"
#include <L6470.h>
#if !(L6470_LIBRARY_VERSION >= 0x000800)
#error 'L6470_LIBRARY_VERSION 0x000800 or later required'
#endif
#define L6470_GETPARAM(P,Q) stepper##Q.GetParam(P)
#define MAX_L6470 (7 + MAX_EXTRUDERS) // Maximum number of axes in Marlin
#define dSPIN_STEP_CLOCK 0x58
#define dSPIN_STEP_CLOCK_FWD dSPIN_STEP_CLOCK
#define dSPIN_STEP_CLOCK_REV dSPIN_STEP_CLOCK+1
#define HAS_L64XX_EXTRUDER (AXIS_IS_L64XX(E0) || AXIS_IS_L64XX(E1) || AXIS_IS_L64XX(E2) || AXIS_IS_L64XX(E3) || AXIS_IS_L64XX(E4) || AXIS_IS_L64XX(E5))
typedef enum : uint8_t { X, Y, Z, X2, Y2, Z2, Z3, E0, E1, E2, E3, E4, E5 } L64XX_axis_t;
class L64XX_Marlin : public L64XXHelper {
public:
static char index_to_axis[MAX_L6470][3];
static uint8_t index_to_dir[MAX_L6470];
static uint8_t dir_commands[MAX_L6470];
// Flags to guarantee graceful switch if stepper interrupts L6470 SPI transfer
static volatile uint8_t spi_abort;
static uint8_t spi_active;
L64XX_Marlin() {}
static void init();
static void init_to_defaults();
static uint16_t get_stepper_status(L64XX &st);
static uint16_t get_status(const L64XX_axis_t axis);
static uint32_t get_param(const L64XX_axis_t axis, const uint8_t param);
static void set_param(const L64XX_axis_t axis, const uint8_t param, const uint32_t value);
//static void send_command(const L64XX_axis_t axis, uint8_t command);
static uint8_t get_user_input(uint8_t &driver_count, L64XX_axis_t axis_index[3], char axis_mon[3][3],
float &position_max, float &position_min, float &final_feedrate, uint8_t &kval_hold,
uint8_t over_current_flag, uint8_t &OCD_TH_val, uint8_t &STALL_TH_val, uint16_t &over_current_threshold);
static void transfer(uint8_t L6470_buf[], const uint8_t length);
//static char* index_to_axis(const uint8_t index);
static void say_axis(const L64XX_axis_t axis, const uint8_t label=true);
#if ENABLED(L6470_CHITCHAT)
static void error_status_decode(
const uint16_t status, const L64XX_axis_t axis,
const uint16_t _status_axis_th_sd, const uint16_t _status_axis_th_wrn,
const uint16_t _status_axis_step_loss_a, const uint16_t _status_axis_step_loss_b,
const uint16_t _status_axis_ocd, const uint8_t _status_axis_layout
);
#else
FORCE_INLINE static void error_status_decode(
const uint16_t, const L64XX_axis_t,
const uint16_t, const uint16_t,
const uint16_t, const uint16_t,
const uint16_t, const uint8_t
){}
#endif
// ~40 bytes SRAM to simplify status decode routines
typedef struct {
uint8_t STATUS_AXIS_LAYOUT; // Copy of L6470_status_layout
uint8_t AXIS_OCD_TH_MAX; // Size of OCD_TH field
uint8_t AXIS_STALL_TH_MAX; // Size of STALL_TH field
float AXIS_OCD_CURRENT_CONSTANT_INV; // mA per count
float AXIS_STALL_CURRENT_CONSTANT_INV; // mA per count
uint8_t L6470_AXIS_CONFIG, // Address of the CONFIG register
L6470_AXIS_STATUS; // Address of the STATUS register
uint16_t L6470_ERROR_MASK, // STATUS_UVLO | STATUS_TH_WRN | STATUS_TH_SD | STATUS_OCD | STATUS_STEP_LOSS_A | STATUS_STEP_LOSS_B
L6474_ERROR_MASK, // STATUS_UVLO | STATUS_TH_WRN | STATUS_TH_SD | STATUS_OCD
STATUS_AXIS_RAW, // Copy of status register contents
STATUS_AXIS, // Copy of status register contents but with all error bits active low
STATUS_AXIS_OCD, // Overcurrent detected bit position
STATUS_AXIS_SCK_MOD, // Step clock mode is active bit position
STATUS_AXIS_STEP_LOSS_A, // Stall detected on A bridge bit position
STATUS_AXIS_STEP_LOSS_B, // Stall detected on B bridge bit position
STATUS_AXIS_TH_SD, // Thermal shutdown bit position
STATUS_AXIS_TH_WRN, // Thermal warning bit position
STATUS_AXIS_UVLO, // Undervoltage lockout is active bit position
STATUS_AXIS_WRONG_CMD, // Last command not valid bit position
STATUS_AXIS_CMD_ERR, // Command error bit position
STATUS_AXIS_NOTPERF_CMD; // Last command not performed bit position
} L64XX_shadow_t;
static L64XX_shadow_t shadow;
#if ENABLED(MONITOR_L6470_DRIVER_STATUS)
static bool monitor_paused;
static inline void pause_monitor(const bool p) { monitor_paused = p; }
static void monitor_update(L64XX_axis_t stepper_index);
static void monitor_driver();
#else
static inline void pause_monitor(const bool) {}
#endif
//protected:
// L64XXHelper methods
static void spi_init();
static uint8_t transfer_single(uint8_t data, int16_t ss_pin);
static uint8_t transfer_chain(uint8_t data, int16_t ss_pin, uint8_t chain_position);
private:
static void append_stepper_err(char* &p, const uint8_t stepper_index, const char * const err=nullptr);
};
void echo_yes_no(const bool yes);
extern L64XX_Marlin L64xxManager;

@ -0,0 +1,98 @@
### L64XX Stepper Driver
*Arduino-L6470* library revision 0.8.0 or above is required.
This software can be used with the L6470, L6474, L6480 and the powerSTEP01 (collectively referred to as "L64xx" from now on). Different drivers can be mixed within a system.
These devices use voltage PWMs to drive the stepper phases. On the L6474 the phase current is controlled by the `TVAL` register. On all the other drivers the phase current is indirectly controlled via the `KVAL_HOLD` register which scales the PWM duty cycle.
This software assumes that all drivers are in one SPI daisy chain.
### Hardware Setup
- MOSI from controller tied to SDI on the first device
- SDO of the first device is tied to SDI of the next device
- SDO of the last device is tied to MISO of the controller
- All devices share the same `SCK` and `SS_PIN` pins. The user must supply a macro to control the `RESET_PIN`(s).
- Each L6470 passes the data it saw on its SDI to its neighbor on the **NEXT** SPI cycle (8 bit delay).
- Each L6470 acts on the **last** SPI data it saw when the `SS_PIN` **goes high**.
The L6474 uses the standard STEP DIR interface. Phase currents are changed in response to step pulses. The direction is set by the DIR pin. Instead of an ENA pin, stepper power is controlled with SPI commands.
The other drivers operate in `STEP_CLOCK` mode. In this mode the Direction / Enable functions are done with SPI commands and the phase currents are changed in response to STEP pulses.
### Hardware / Software Interaction
Except for the L6474, powering up a stepper and setting the direction are done by the same command. You can't do one without the other.
**All** directions are set **every time** a new block is popped off the queue by the stepper ISR.
When setting direction, SPI transfers are minimized by using arrays and a specialized SPI method. *Arduino-L6470* library calls are not used. For N L64xx drivers, this results in N bytes transferred. If library calls were used then N<sup>2</sup> bytes would be sent.
### Power-up (Reset) Sequence
- Stepper objects are instantiated before the `setup()` entry point is reached.
- In `setup()` (before stepper drivers are initialized) the `L6470_init()` method is called to do the following:
- If present, pulse the hardware reset pin.
- Populate the `L6470_chain` array, which maps positions in the SPI stream to commands/data for L64XX stepper drivers.
- Initialize the L64XX Software SPI pin states.
- Initialize L64XX drivers. They may be reset later by a call to `L6470_init_to_defaults()`.
The steppers are **NOT** powered up (enabled) during this sequence.
### `L6470_chain` array
This array is used by all routines that transmit SPI data. For a chain with N devices, the array contains:
Index|Value
-----|-----
0|Number of drivers in chain
1|Axis index of the first device in the chain (closest to MOSI)
...|
N|Axis index of the last device chain (closest to MISO)
### Set Direction and Enable
The `DIR_WRITE` macros for the L64xx drivers are written so that the standard X, Y, Z and extruder logic used by the `set_directions()` routine is not altered. These macros write the correct forward/reverse command to the corresponding location in the array `L6470_dir_commands`. On the L6474 the array the command used just enables the stepper because direction is set by the DIR pin.
At the end of the `set_directions()` routine, the array `L6470_chain` is used to grab the corresponding direction/enable commands out of the array `L6470_dir_commands` and put them in the correct sequence in the array `L6470_buf`. Array `L6470_buf` is then passed to the **`void`** `L6470_Transfer` function which actually sends the data to the devices.
### Utilities, etc.
The **absolute position** registers should accurately reflect Marlins stepper position counts. They are set to zero during initialization. `G28` sets them to the Marlin counts for the corresponding axis after homing. NOTE: These registers are often the negative of the Marlin counts. This is because the Marlin counts reflect the logical direction while the registers reflect the stepper direction. The register contents are displayed via the `M114 D` command.
The `L6470_monitor` feature reads the status of each device every half second. It will report if there are any error conditions present or if communications has been lost/restored. The `KVAL_HOLD` value is reduced every 2 2.5 seconds if the thermal warning or thermal shutdown conditions are present.
**M122** displays the settings of most of the bits in the status register plus a couple of other items.
**M906** can be used to set the `KVAL_HOLD` register (`TVAL` on L6474) one driver at a time. If a setting is not included with the command then the contents of the registers that affect the phase current/voltage are displayed.
**M916, M917 & M918**
These utilities are used to tune the system. They can get you in the ballpark for acceptable jerk, acceleration, top speed and `KVAL_HOLD` settings (`TVAL` on L6474). In general they seem to provide an overly optimistic `KVAL_HOLD` (`TVAL`) setting because of the lag between setting `KVAL_HOLD` (`TVAL`) and the driver reaching final temperature. Enabling the `L6470_monitor` feature during prints will provide the **final useful setting**.
The amount of power needed to move the stepper without skipping steps increases as jerk, acceleration, top speed, and micro-steps increase. The power dissipated by the driver increases as the power to the stepper increases. The net result is a balancing act between jerk, acceleration, top speed, micro-steps, and power dissipated by the driver.
**M916** - Increases `KVAL_HOLD` (`TVAL`) while moving one axis until a thermal warning is generated. This routine is also useful for determining the approximate `KVAL_HOLD` (`TVAL`) where the stepper stops losing steps. The sound will get noticeably quieter as it stops losing steps.
**M917** - Find minimum current thresholds. This is accomplished by doing the following steps while moving an axis:
1. Decrease OCD current until overcurrent error.
2. Increase OCD until overcurrent error goes away.
3. Decrease stall threshold until stall error (not available on the L6474).
4. Increase stall until stall error goes away (not available on the L6474).
**M918** - Increase speed until error or max feedrate achieved.

@ -117,8 +117,10 @@ Stepper stepper; // Singleton
#include "../feature/runout.h" #include "../feature/runout.h"
#endif #endif
#if HAS_DRIVER(L6470) #if HAS_L64XX
#include "../libs/L6470/L6470_Marlin.h" #include "../libs/L64XX/L64XX_Marlin.h"
uint8_t L6470_buf[MAX_L6470 + 1]; // chip command sequence - element 0 not used
bool L64XX_OK_to_power_up = false; // flag to keep L64xx steppers powered down after a reset or power up
#endif #endif
#if ENABLED(POWER_LOSS_RECOVERY) #if ENABLED(POWER_LOSS_RECOVERY)
@ -371,21 +373,17 @@ void Stepper::wake_up() {
*/ */
void Stepper::set_directions() { void Stepper::set_directions() {
#if HAS_DRIVER(L6470)
uint8_t L6470_buf[MAX_L6470 + 1]; // chip command sequence - element 0 not used
#endif
#if MINIMUM_STEPPER_PRE_DIR_DELAY > 0 #if MINIMUM_STEPPER_PRE_DIR_DELAY > 0
DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY); DELAY_NS(MINIMUM_STEPPER_PRE_DIR_DELAY);
#endif #endif
#define SET_STEP_DIR(A) \ #define SET_STEP_DIR(A) \
if (motor_direction(_AXIS(A))) { \ if (motor_direction(_AXIS(A))) { \
A##_APPLY_DIR(INVERT_## A##_DIR, false); \ A##_APPLY_DIR(INVERT_##A##_DIR, false); \
count_direction[_AXIS(A)] = -1; \ count_direction[_AXIS(A)] = -1; \
} \ } \
else { \ else { \
A##_APPLY_DIR(!INVERT_## A##_DIR, false); \ A##_APPLY_DIR(!INVERT_##A##_DIR, false); \
count_direction[_AXIS(A)] = 1; \ count_direction[_AXIS(A)] = 1; \
} }
@ -425,25 +423,25 @@ void Stepper::set_directions() {
#endif #endif
#endif // !LIN_ADVANCE #endif // !LIN_ADVANCE
#if HAS_DRIVER(L6470) #if HAS_L64XX
if (L64XX_OK_to_power_up) { // OK to send the direction commands (which powers up the L64XX steppers)
if (L6470.spi_active) { if (L64xxManager.spi_active) {
L6470.spi_abort = true; // interrupted a SPI transfer - need to shut it down gracefully L64xxManager.spi_abort = true; // Interrupted SPI transfer needs to shut down gracefully
for (uint8_t j = 1; j <= L6470::chain[0]; j++) for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
L6470_buf[j] = dSPIN_NOP; // fill buffer with NOOP commands L6470_buf[j] = dSPIN_NOP; // Fill buffer with NOOPs
L6470.transfer(L6470_buf, L6470::chain[0]); // send enough NOOPs to complete any command L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // Send enough NOOPs to complete any command
L6470.transfer(L6470_buf, L6470::chain[0]); L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
L6470.transfer(L6470_buf, L6470::chain[0]); L64xxManager.transfer(L6470_buf, L64XX::chain[0]);
} }
// The L6470.dir_commands[] array holds the direction command for each stepper // L64xxManager.dir_commands[] is an array that holds direction command for each stepper
//scan command array and copy matches into L6470.transfer // Scan command array, copy matches into L64xxManager.transfer
for (uint8_t j = 1; j <= L6470::chain[0]; j++) for (uint8_t j = 1; j <= L64XX::chain[0]; j++)
L6470_buf[j] = L6470.dir_commands[L6470::chain[j]]; L6470_buf[j] = L64xxManager.dir_commands[L64XX::chain[j]];
L6470.transfer(L6470_buf, L6470::chain[0]); // send the command stream to the drivers
L64xxManager.transfer(L6470_buf, L64XX::chain[0]); // send the command stream to the drivers
}
#endif #endif
// A small delay may be needed after changing direction // A small delay may be needed after changing direction
@ -1846,8 +1844,8 @@ uint32_t Stepper::stepper_block_phase_isr() {
#endif #endif
if ( if (
#if HAS_DRIVER(L6470) #if HAS_L64XX
true // Always set direction for L6470 (This also enables the chips) true // Always set direction for L64xx (This also enables the chips)
#else #else
current_block->direction_bits != last_direction_bits current_block->direction_bits != last_direction_bits
#if DISABLED(MIXING_EXTRUDER) #if DISABLED(MIXING_EXTRUDER)
@ -1859,6 +1857,10 @@ uint32_t Stepper::stepper_block_phase_isr() {
#if EXTRUDERS > 1 #if EXTRUDERS > 1
last_moved_extruder = stepper_extruder; last_moved_extruder = stepper_extruder;
#endif #endif
#if HAS_L64XX
L64XX_OK_to_power_up = true;
#endif
set_directions(); set_directions();
} }

@ -1,143 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* stepper/L6470.cpp
* Stepper driver indirection for L6470 drivers
*/
#include "../../inc/MarlinConfig.h"
#if HAS_DRIVER(L6470)
#include "L6470.h"
#define _L6470_DEFINE(ST) L6470 stepper##ST((const int)L6470_CHAIN_SS_PIN)
// L6470 Stepper objects
#if AXIS_DRIVER_TYPE_X(L6470)
_L6470_DEFINE(X);
#endif
#if AXIS_DRIVER_TYPE_X2(L6470)
_L6470_DEFINE(X2);
#endif
#if AXIS_DRIVER_TYPE_Y(L6470)
_L6470_DEFINE(Y);
#endif
#if AXIS_DRIVER_TYPE_Y2(L6470)
_L6470_DEFINE(Y2);
#endif
#if AXIS_DRIVER_TYPE_Z(L6470)
_L6470_DEFINE(Z);
#endif
#if AXIS_DRIVER_TYPE_Z2(L6470)
_L6470_DEFINE(Z2);
#endif
#if AXIS_DRIVER_TYPE_Z3(L6470)
_L6470_DEFINE(Z3);
#endif
#if AXIS_DRIVER_TYPE_E0(L6470)
_L6470_DEFINE(E0);
#endif
#if AXIS_DRIVER_TYPE_E1(L6470)
_L6470_DEFINE(E1);
#endif
#if AXIS_DRIVER_TYPE_E2(L6470)
_L6470_DEFINE(E2);
#endif
#if AXIS_DRIVER_TYPE_E3(L6470)
_L6470_DEFINE(E3);
#endif
#if AXIS_DRIVER_TYPE_E4(L6470)
_L6470_DEFINE(E4);
#endif
#if AXIS_DRIVER_TYPE_E5(L6470)
_L6470_DEFINE(E5);
#endif
// not using L6470 library's init command because it
// briefly sends power to the steppers
#define _L6470_INIT_CHIP(Q) do{ \
stepper##Q.resetDev(); \
stepper##Q.softFree(); \
stepper##Q.SetParam(L6470_CONFIG, CONFIG_PWM_DIV_1 \
| CONFIG_PWM_MUL_2 \
| CONFIG_SR_290V_us \
| CONFIG_OC_SD_DISABLE \
| CONFIG_VS_COMP_DISABLE \
| CONFIG_SW_HARD_STOP \
| CONFIG_INT_16MHZ); \
stepper##Q.SetParam(L6470_KVAL_RUN, 0xFF); \
stepper##Q.SetParam(L6470_KVAL_ACC, 0xFF); \
stepper##Q.SetParam(L6470_KVAL_DEC, 0xFF); \
stepper##Q.setMicroSteps(Q##_MICROSTEPS); \
stepper##Q.setOverCurrent(Q##_OVERCURRENT); \
stepper##Q.setStallCurrent(Q##_STALLCURRENT); \
stepper##Q.SetParam(L6470_KVAL_HOLD, Q##_MAX_VOLTAGE); \
stepper##Q.SetParam(L6470_ABS_POS, 0); \
stepper##Q.getStatus(); \
}while(0)
void L6470_Marlin::init_to_defaults() {
#if AXIS_DRIVER_TYPE_X(L6470)
_L6470_INIT_CHIP(X);
#endif
#if AXIS_DRIVER_TYPE_X2(L6470)
_L6470_INIT_CHIP(X2);
#endif
#if AXIS_DRIVER_TYPE_Y(L6470)
_L6470_INIT_CHIP(Y);
#endif
#if AXIS_DRIVER_TYPE_Y2(L6470)
_L6470_INIT_CHIP(Y2);
#endif
#if AXIS_DRIVER_TYPE_Z(L6470)
_L6470_INIT_CHIP(Z);
#endif
#if AXIS_DRIVER_TYPE_Z2(L6470)
_L6470_INIT_CHIP(Z2);
#endif
#if AXIS_DRIVER_TYPE_Z3(L6470)
_L6470_INIT_CHIP(Z3);
#endif
#if AXIS_DRIVER_TYPE_E0(L6470)
_L6470_INIT_CHIP(E0);
#endif
#if AXIS_DRIVER_TYPE_E1(L6470)
_L6470_INIT_CHIP(E1);
#endif
#if AXIS_DRIVER_TYPE_E2(L6470)
_L6470_INIT_CHIP(E2);
#endif
#if AXIS_DRIVER_TYPE_E3(L6470)
_L6470_INIT_CHIP(E3);
#endif
#if AXIS_DRIVER_TYPE_E4(L6470)
_L6470_INIT_CHIP(E4);
#endif
#if AXIS_DRIVER_TYPE_E5(L6470)
_L6470_INIT_CHIP(E5);
#endif
}
#endif // L6470

@ -1,176 +0,0 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* stepper/L6470.h
* Stepper driver indirection for L6470 drivers
*/
#include "../../inc/MarlinConfig.h"
#include "../../libs/L6470/L6470_Marlin.h"
// L6470 has STEP on normal pins, but DIR/ENABLE via SPI
#define L6470_WRITE_DIR_COMMAND(STATE,Q) do{ L6470_dir_commands[Q] = (STATE ? dSPIN_STEP_CLOCK_REV : dSPIN_STEP_CLOCK_FWD); }while(0)
// X Stepper
#if AXIS_DRIVER_TYPE_X(L6470)
extern L6470 stepperX;
#define X_ENABLE_INIT NOOP
#define X_ENABLE_WRITE(STATE) NOOP
#define X_ENABLE_READ() (stepperX.getStatus() & STATUS_HIZ)
#define X_DIR_INIT NOOP
#define X_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,X)
#define X_DIR_READ() (stepperX.getStatus() & STATUS_DIR)
#endif
// Y Stepper
#if AXIS_DRIVER_TYPE_Y(L6470)
extern L6470 stepperY;
#define Y_ENABLE_INIT NOOP
#define Y_ENABLE_WRITE(STATE) NOOP
#define Y_ENABLE_READ() (stepperY.getStatus() & STATUS_HIZ)
#define Y_DIR_INIT NOOP
#define Y_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Y)
#define Y_DIR_READ() (stepperY.getStatus() & STATUS_DIR)
#endif
// Z Stepper
#if AXIS_DRIVER_TYPE_Z(L6470)
extern L6470 stepperZ;
#define Z_ENABLE_INIT NOOP
#define Z_ENABLE_WRITE(STATE) NOOP
#define Z_ENABLE_READ() (stepperZ.getStatus() & STATUS_HIZ)
#define Z_DIR_INIT NOOP
#define Z_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Z)
#define Z_DIR_READ() (stepperZ.getStatus() & STATUS_DIR)
#endif
// X2 Stepper
#if HAS_X2_ENABLE && AXIS_DRIVER_TYPE_X2(L6470)
extern L6470 stepperX2;
#define X2_ENABLE_INIT NOOP
#define X2_ENABLE_WRITE(STATE) NOOP
#define X2_ENABLE_READ() (stepperX2.getStatus() & STATUS_HIZ)
#define X2_DIR_INIT NOOP
#define X2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,X2)
#define X2_DIR_READ() (stepperX2.getStatus() & STATUS_DIR)
#endif
// Y2 Stepper
#if HAS_Y2_ENABLE && AXIS_DRIVER_TYPE_Y2(L6470)
extern L6470 stepperY2;
#define Y2_ENABLE_INIT NOOP
#define Y2_ENABLE_WRITE(STATE) NOOP
#define Y2_ENABLE_READ() (stepperY2.getStatus() & STATUS_HIZ)
#define Y2_DIR_INIT NOOP
#define Y2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Y2)
#define Y2_DIR_READ() (stepperY2.getStatus() & STATUS_DIR)
#endif
// Z2 Stepper
#if HAS_Z2_ENABLE && AXIS_DRIVER_TYPE_Z2(L6470)
extern L6470 stepperZ2;
#define Z2_ENABLE_INIT NOOP
#define Z2_ENABLE_WRITE(STATE) NOOP
#define Z2_ENABLE_READ() (stepperZ2.getStatus() & STATUS_HIZ)
#define Z2_DIR_INIT NOOP
#define Z2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Z2)
#define Z2_DIR_READ() (stepperZ2.getStatus() & STATUS_DIR)
#endif
// Z3 Stepper
#if HAS_Z3_ENABLE && AXIS_DRIVER_TYPE_Z3(L6470)
extern L6470 stepperZ3;
#define Z3_ENABLE_INIT NOOP
#define Z3_ENABLE_WRITE(STATE) NOOP
#define Z3_ENABLE_READ() (stepperZ3.getStatus() & STATUS_HIZ)
#define Z3_DIR_INIT NOOP
#define Z3_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,Z3)
#define Z3_DIR_READ() (stepperZ3.getStatus() & STATUS_DIR)
#endif
// E0 Stepper
#if AXIS_DRIVER_TYPE_E0(L6470)
extern L6470 stepperE0;
#define E0_ENABLE_INIT NOOP
#define E0_ENABLE_WRITE(STATE) NOOP
#define E0_ENABLE_READ() (stepperE0.getStatus() & STATUS_HIZ)
#define E0_DIR_INIT NOOP
#define E0_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E0)
#define E0_DIR_READ() (stepperE0.getStatus() & STATUS_DIR)
#endif
// E1 Stepper
#if AXIS_DRIVER_TYPE_E1(L6470)
extern L6470 stepperE1;
#define E1_ENABLE_INIT NOOP
#define E1_ENABLE_WRITE(STATE) NOOP
#define E1_ENABLE_READ() (stepperE1.getStatus() & STATUS_HIZ)
#define E1_DIR_INIT NOOP
#define E1_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E1)
#define E1_DIR_READ() (stepperE1.getStatus() & STATUS_DIR)
#endif
// E2 Stepper
#if AXIS_DRIVER_TYPE_E2(L6470)
extern L6470 stepperE2;
#define E2_ENABLE_INIT NOOP
#define E2_ENABLE_WRITE(STATE) NOOP
#define E2_ENABLE_READ() (stepperE2.getStatus() & STATUS_HIZ)
#define E2_DIR_INIT NOOP
#define E2_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E2)
#define E2_DIR_READ() (stepperE2.getStatus() & STATUS_DIR)
#endif
// E3 Stepper
#if AXIS_DRIVER_TYPE_E3(L6470)
extern L6470 stepperE3;
#define E3_ENABLE_INIT NOOP
#define E3_ENABLE_WRITE(STATE) NOOP
#define E3_ENABLE_READ() (stepperE3.getStatus() & STATUS_HIZ)
#define E3_DIR_INIT NOOP
#define E3_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E3)
#define E3_DIR_READ() (stepperE3.getStatus() & STATUS_DIR)
#endif
// E4 Stepper
#if AXIS_DRIVER_TYPE_E4(L6470)
extern L6470 stepperE4;
#define E4_ENABLE_INIT NOOP
#define E4_ENABLE_WRITE(STATE) NOOP
#define E4_ENABLE_READ() (stepperE4.getStatus() & STATUS_HIZ)
#define E4_DIR_INIT NOOP
#define E4_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E4)
#define E4_DIR_READ() (stepperE4.getStatus() & STATUS_DIR)
#endif
// E5 Stepper
#if AXIS_DRIVER_TYPE_E5(L6470)
extern L6470 stepperE5;
#define E5_ENABLE_INIT NOOP
#define E5_ENABLE_WRITE(STATE) NOOP
#define E5_ENABLE_READ() (stepperE5.getStatus() & STATUS_HIZ)
#define E5_DIR_INIT NOOP
#define E5_DIR_WRITE(STATE) L6470_WRITE_DIR_COMMAND(STATE,E5)
#define E5_DIR_READ() (stepperE5.getStatus() & STATUS_DIR)
#endif

@ -0,0 +1,210 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* stepper/L64xx.cpp
* Stepper driver indirection for L64XX drivers
*/
#include "../../inc/MarlinConfig.h"
#if HAS_L64XX
#include "L64xx.h"
#if AXIS_IS_L64XX(X)
L64XX_CLASS(X) stepperX(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(X2)
L64XX_CLASS(X2) stepperX2(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(Y)
L64XX_CLASS(Y) stepperY(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(Y2)
L64XX_CLASS(Y2) stepperY2(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(Z)
L64XX_CLASS(Z) stepperZ(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(Z2)
L64XX_CLASS(Z2) stepperZ2(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(Z3)
L64XX_CLASS(Z3) stepperZ3(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(E0)
L64XX_CLASS(E0) stepperE0(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(E1)
L64XX_CLASS(E1) stepperE1(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(E2)
L64XX_CLASS(E2) stepperE2(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(E3)
L64XX_CLASS(E3) stepperE3(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(E4)
L64XX_CLASS(E4) stepperE4(L6470_CHAIN_SS_PIN);
#endif
#if AXIS_IS_L64XX(E5)
L64XX_CLASS(E5) stepperE5(L6470_CHAIN_SS_PIN);
#endif
// Not using L64XX class init method because it
// briefly sends power to the steppers
inline void L6470_init_chip(L64XX &st, const int ms, const int oc, const int sc, const int mv, const int slew_rate) {
st.set_handlers(L64xxManager.spi_init, L64xxManager.transfer_single, L64xxManager.transfer_chain); // specify which external SPI routines to use
switch (st.L6470_status_layout) {
case L6470_STATUS_LAYOUT: {
st.resetDev();
st.softFree();
st.SetParam(st.L64XX_CONFIG, CONFIG_PWM_DIV_1 | CONFIG_PWM_MUL_2 | CONFIG_OC_SD_DISABLE | CONFIG_VS_COMP_DISABLE | CONFIG_SW_HARD_STOP | CONFIG_INT_16MHZ);
st.SetParam(L6470_KVAL_RUN, 0xFF);
st.SetParam(L6470_KVAL_ACC, 0xFF);
st.SetParam(L6470_KVAL_DEC, 0xFF);
st.setMicroSteps(ms);
st.setOverCurrent(oc);
st.setStallCurrent(sc);
st.SetParam(L6470_KVAL_HOLD, mv);
st.SetParam(L6470_ABS_POS, 0);
uint32_t config_temp = st.GetParam(st.L64XX_CONFIG);
config_temp &= ~CONFIG_POW_SR;
switch (slew_rate) {
case 0: st.SetParam(st.L64XX_CONFIG, config_temp | CONFIG_SR_75V_us); break;
default:
case 1: st.SetParam(st.L64XX_CONFIG, config_temp | CONFIG_SR_110V_us); break;
case 3:
case 2: st.SetParam(st.L64XX_CONFIG, config_temp | CONFIG_SR_260V_us); break;
}
st.getStatus();
st.getStatus();
break;
}
case L6474_STATUS_LAYOUT: {
st.free();
//st.SetParam(st.L64XX_CONFIG, CONFIG_PWM_DIV_1 | CONFIG_PWM_MUL_2 | CONFIG_OC_SD_DISABLE | CONFIG_VS_COMP_DISABLE | CONFIG_SW_HARD_STOP | CONFIG_INT_16MHZ);
//st.SetParam(L6474_TVAL, 0xFF);
st.setMicroSteps(ms);
st.setOverCurrent(oc);
st.setTVALCurrent(sc);
st.SetParam(L6470_ABS_POS, 0);
uint32_t config_temp = st.GetParam(st.L64XX_CONFIG);
config_temp &= ~CONFIG_POW_SR & ~CONFIG_EN_TQREG; // clear out slew rate and set current to be controlled by TVAL register
switch (slew_rate) {
case 0: st.SetParam(st.L64XX_CONFIG, config_temp | CONFIG_SR_75V_us); break;
default:
case 1: st.SetParam(st.L64XX_CONFIG, config_temp | CONFIG_SR_110V_us); break;
case 3:
case 2: st.SetParam(st.L64XX_CONFIG, config_temp | CONFIG_SR_260V_us); break;
//case 0: st.SetParam(st.L64XX_CONFIG, 0x2E88 | CONFIG_EN_TQREG | CONFIG_SR_75V_us); break;
//default:
//case 1: st.SetParam(st.L64XX_CONFIG, 0x2E88 | CONFIG_EN_TQREG | CONFIG_SR_110V_us); break;
//case 3:
//case 2: st.SetParam(st.L64XX_CONFIG, 0x2E88 | CONFIG_EN_TQREG | CONFIG_SR_260V_us); break;
//case 0: st.SetParam(st.L64XX_CONFIG, 0x2E88 ); break;
//default:
//case 1: st.SetParam(st.L64XX_CONFIG, 0x2E88 ); break;
//case 3:
//case 2: st.SetParam(st.L64XX_CONFIG, 0x2E88 ); break;
}
st.getStatus();
st.getStatus();
break;
}
case L6480_STATUS_LAYOUT: {
st.resetDev();
st.softFree();
st.SetParam(st.L64XX_CONFIG, CONFIG_PWM_DIV_1 | CONFIG_PWM_MUL_2 | CONFIG_OC_SD_DISABLE | CONFIG_VS_COMP_DISABLE | CONFIG_SW_HARD_STOP | CONFIG_INT_16MHZ);
st.SetParam(L6470_KVAL_RUN, 0xFF);
st.SetParam(L6470_KVAL_ACC, 0xFF);
st.SetParam(L6470_KVAL_DEC, 0xFF);
st.setMicroSteps(ms);
st.setOverCurrent(oc);
st.setStallCurrent(sc);
st.SetParam(+-L6470_KVAL_HOLD, mv);
st.SetParam(L6470_ABS_POS, 0);
st.SetParam(st.L64XX_CONFIG,(st.GetParam(st.L64XX_CONFIG) | PWR_VCC_7_5V));
st.getStatus(); // must clear out status bits before can set slew rate
st.getStatus();
switch (slew_rate) {
case 0: st.SetParam(L6470_GATECFG1, CONFIG1_SR_220V_us); st.SetParam(L6470_GATECFG2, CONFIG2_SR_220V_us); break;
default:
case 1: st.SetParam(L6470_GATECFG1, CONFIG1_SR_400V_us); st.SetParam(L6470_GATECFG2, CONFIG2_SR_400V_us); break;
case 2: st.SetParam(L6470_GATECFG1, CONFIG1_SR_520V_us); st.SetParam(L6470_GATECFG2, CONFIG2_SR_520V_us); break;
case 3: st.SetParam(L6470_GATECFG1, CONFIG1_SR_980V_us); st.SetParam(L6470_GATECFG2, CONFIG2_SR_980V_us); break;
}
break;
}
}
}
#define L6470_INIT_CHIP(Q) L6470_init_chip(stepper##Q, Q##_MICROSTEPS, Q##_OVERCURRENT, Q##_STALLCURRENT, Q##_MAX_VOLTAGE, Q##_SLEW_RATE)
void L64XX_Marlin::init_to_defaults() {
#if AXIS_IS_L64XX(X)
L6470_INIT_CHIP(X);
#endif
#if AXIS_IS_L64XX(X2)
L6470_INIT_CHIP(X2);
#endif
#if AXIS_IS_L64XX(Y)
L6470_INIT_CHIP(Y);
#endif
#if AXIS_IS_L64XX(Y2)
L6470_INIT_CHIP(Y2);
#endif
#if AXIS_IS_L64XX(Z)
L6470_INIT_CHIP(Z);
#endif
#if AXIS_IS_L64XX(Z2)
L6470_INIT_CHIP(Z2);
#endif
#if AXIS_IS_L64XX(Z3)
L6470_INIT_CHIP(Z3);
#endif
#if AXIS_IS_L64XX(E0)
L6470_INIT_CHIP(E0);
#endif
#if AXIS_IS_L64XX(E1)
L6470_INIT_CHIP(E1);
#endif
#if AXIS_IS_L64XX(E2)
L6470_INIT_CHIP(E2);
#endif
#if AXIS_IS_L64XX(E3)
L6470_INIT_CHIP(E3);
#endif
#if AXIS_IS_L64XX(E4)
L6470_INIT_CHIP(E4);
#endif
#if AXIS_IS_L64XX(E5)
L6470_INIT_CHIP(E5);
#endif
}
#endif // HAS_L64XX

@ -0,0 +1,263 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#pragma once
/**
* stepper/L64xx.h
* Stepper driver indirection for L64XX drivers
*/
#include "../../inc/MarlinConfig.h"
#include "../../libs/L64XX/L64XX_Marlin.h"
// Convert option names to L64XX classes
#define CLASS_L6470 L6470
#define CLASS_L6474 L6474
#define CLASS_POWERSTEP01 powerSTEP01
#define __L64XX_CLASS(TYPE) CLASS_##TYPE
#define _L64XX_CLASS(TYPE) __L64XX_CLASS(TYPE)
#define L64XX_CLASS(ST) _L64XX_CLASS(ST##_DRIVER_TYPE)
#define L6474_DIR_WRITE(A,STATE) do{ L64xxManager.dir_commands[A] = dSPIN_L6474_ENABLE; WRITE(A##_DIR_PIN, STATE); }while(0)
#define L64XX_DIR_WRITE(A,STATE) do{ L64xxManager.dir_commands[A] = (STATE) ? dSPIN_STEP_CLOCK_REV : dSPIN_STEP_CLOCK_FWD; }while(0)
// X Stepper
#if AXIS_IS_L64XX(X)
extern L64XX_CLASS(X) stepperX;
#define X_ENABLE_INIT NOOP
#define X_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperX.free())
#define X_ENABLE_READ (stepperX.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_X(L6474)
#define X_DIR_INIT SET_OUTPUT(X_DIR_PIN)
#define X_DIR_WRITE(STATE) L6474_DIR_WRITE(X, STATE)
#define X_DIR_READ READ(X_DIR_PIN)
#else
#define X_DIR_INIT NOOP
#define X_DIR_WRITE(STATE) L64XX_DIR_WRITE(X, STATE)
#define X_DIR_READ (stepper##X.getStatus() & STATUS_DIR);
#endif
#endif
// Y Stepper
#if AXIS_IS_L64XX(Y)
extern L64XX_CLASS(Y) stepperY;
#define Y_ENABLE_INIT NOOP
#define Y_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperY.free())
#define Y_ENABLE_READ (stepperY.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_Y(L6474)
#define Y_DIR_INIT SET_OUTPUT(Y_DIR_PIN)
#define Y_DIR_WRITE(STATE) L6474_DIR_WRITE(Y, STATE)
#define Y_DIR_READ READ(Y_DIR_PIN)
#else
#define Y_DIR_INIT NOOP
#define Y_DIR_WRITE(STATE) L64XX_DIR_WRITE(Y, STATE)
#define Y_DIR_READ (stepper##Y.getStatus() & STATUS_DIR);
#endif
#endif
// Z Stepper
#if AXIS_IS_L64XX(Z)
extern L64XX_CLASS(Z) stepperZ;
#define Z_ENABLE_INIT NOOP
#define Z_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperZ.free())
#define Z_ENABLE_READ (stepperZ.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_Z(L6474)
#define Z_DIR_INIT SET_OUTPUT(Z_DIR_PIN)
#define Z_DIR_WRITE(STATE) L6474_DIR_WRITE(Z, STATE)
#define Z_DIR_READ READ(Z_DIR_PIN)
#else
#define Z_DIR_INIT NOOP
#define Z_DIR_WRITE(STATE) L64XX_DIR_WRITE(Z, STATE)
#define Z_DIR_READ (stepper##Z.getStatus() & STATUS_DIR);
#endif
#endif
// X2 Stepper
#if HAS_X2_ENABLE && AXIS_IS_L64XX(X2)
extern L64XX_CLASS(X2) stepperX2;
#define X2_ENABLE_INIT NOOP
#define X2_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperX2.free())
#define X2_ENABLE_READ (stepperX2.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_X2(L6474)
#define X2_DIR_INIT SET_OUTPUT(X2_DIR_PIN)
#define X2_DIR_WRITE(STATE) L6474_DIR_WRITE(X2, STATE)
#define X2_DIR_READ READ(X2_DIR_PIN)
#else
#define X2_DIR_INIT NOOP
#define X2_DIR_WRITE(STATE) L64XX_DIR_WRITE(X2, STATE)
#define X2_DIR_READ (stepper##X2.getStatus() & STATUS_DIR);
#endif
#endif
// Y2 Stepper
#if HAS_Y2_ENABLE && AXIS_IS_L64XX(Y2)
extern L64XX_CLASS(Y2) stepperY2;
#define Y2_ENABLE_INIT NOOP
#define Y2_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperY2.free())
#define Y2_ENABLE_READ (stepperY2.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_Y2(L6474)
#define Y2_DIR_INIT SET_OUTPUT(Y2_DIR_PIN)
#define Y2_DIR_WRITE(STATE) L6474_DIR_WRITE(Y2, STATE)
#define Y2_DIR_READ READ(Y2_DIR_PIN)
#else
#define Y2_DIR_INIT NOOP
#define Y2_DIR_WRITE(STATE) L64XX_DIR_WRITE(Y2, STATE)
#define Y2_DIR_READ (stepper##Y2.getStatus() & STATUS_DIR);
#endif
#endif
// Z2 Stepper
#if HAS_Z2_ENABLE && AXIS_IS_L64XX(Z2)
extern L64XX_CLASS(Z2) stepperZ2;
#define Z2_ENABLE_INIT NOOP
#define Z2_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperZ2.free())
#define Z2_ENABLE_READ (stepperZ2.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_Z2(L6474)
#define Z2_DIR_INIT SET_OUTPUT(Z2_DIR_PIN)
#define Z2_DIR_WRITE(STATE) L6474_DIR_WRITE(Z2, STATE)
#define Z2_DIR_READ READ(Z2_DIR_PIN)
#else
#define Z2_DIR_INIT NOOP
#define Z2_DIR_WRITE(STATE) L64XX_DIR_WRITE(Z2, STATE)
#define Z2_DIR_READ (stepper##Z2.getStatus() & STATUS_DIR);
#endif
#endif
// Z3 Stepper
#if HAS_Z3_ENABLE && AXIS_IS_L64XX(Z3)
extern L64XX_CLASS(Z3) stepperZ3;
#define Z3_ENABLE_INIT NOOP
#define Z3_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperZ3.free())
#define Z3_ENABLE_READ (stepperZ3.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_Z3(L6474)
#define Z3_DIR_INIT SET_OUTPUT(Z3_DIR_PIN)
#define Z3_DIR_WRITE(STATE) L6474_DIR_WRITE(Z3, STATE)
#define Z3_DIR_READ READ(Z3_DIR_PIN)
#else
#define Z3_DIR_INIT NOOP
#define Z3_DIR_WRITE(STATE) L64XX_DIR_WRITE(Z3, STATE)
#define Z3_DIR_READ (stepper##Z3.getStatus() & STATUS_DIR);
#endif
#endif
// E0 Stepper
#if AXIS_IS_L64XX(E0)
extern L64XX_CLASS(E0) stepperE0;
#define E0_ENABLE_INIT NOOP
#define E0_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperE0.free())
#define E0_ENABLE_READ (stepperE0.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_E0(L6474)
#define E0_DIR_INIT SET_OUTPUT(E0_DIR_PIN)
#define E0_DIR_WRITE(STATE) L6474_DIR_WRITE(E0, STATE)
#define E0_DIR_READ READ(E0_DIR_PIN)
#else
#define E0_DIR_INIT NOOP
#define E0_DIR_WRITE(STATE) L64XX_DIR_WRITE(E0, STATE)
#define E0_DIR_READ (stepper##E0.getStatus() & STATUS_DIR);
#endif
#endif
// E1 Stepper
#if AXIS_IS_L64XX(E1)
extern L64XX_CLASS(E1) stepperE1;
#define E1_ENABLE_INIT NOOP
#define E1_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperE1.free())
#define E1_ENABLE_READ (stepperE1.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_E1(L6474)
#define E1_DIR_INIT SET_OUTPUT(E1_DIR_PIN)
#define E1_DIR_WRITE(STATE) L6474_DIR_WRITE(E1, STATE)
#define E1_DIR_READ READ(E1_DIR_PIN)
#else
#define E1_DIR_INIT NOOP
#define E1_DIR_WRITE(STATE) L64XX_DIR_WRITE(E1, STATE)
#define E1_DIR_READ (stepper##E1.getStatus() & STATUS_DIR);
#endif
#endif
// E2 Stepper
#if AXIS_IS_L64XX(E2)
extern L64XX_CLASS(E2) stepperE2;
#define E2_ENABLE_INIT NOOP
#define E2_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperE2.free())
#define E2_ENABLE_READ (stepperE2.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_E2(L6474)
#define E2_DIR_INIT SET_OUTPUT(E2_DIR_PIN)
#define E2_DIR_WRITE(STATE) L6474_DIR_WRITE(E2, STATE)
#define E2_DIR_READ READ(E2_DIR_PIN)
#else
#define E2_DIR_INIT NOOP
#define E2_DIR_WRITE(STATE) L64XX_DIR_WRITE(E2, STATE)
#define E2_DIR_READ (stepper##E2.getStatus() & STATUS_DIR);
#endif
#endif
// E3 Stepper
#if AXIS_IS_L64XX(E3)
extern L64XX_CLASS(E3) stepperE3;
#define E3_ENABLE_INIT NOOP
#define E3_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperE3.free())
#define E3_ENABLE_READ (stepperE3.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_E3(L6474)
#define E3_DIR_INIT SET_OUTPUT(E3_DIR_PIN)
#define E3_DIR_WRITE(STATE) L6474_DIR_WRITE(E3, STATE)
#define E3_DIR_READ READ(E3_DIR_PIN)
#else
#define E3_DIR_INIT NOOP
#define E3_DIR_WRITE(STATE) L64XX_DIR_WRITE(E3, STATE)
#define E3_DIR_READ (stepper##E3.getStatus() & STATUS_DIR);
#endif
#endif
// E4 Stepper
#if AXIS_IS_L64XX(E4)
extern L64XX_CLASS(E4) stepperE4;
#define E4_ENABLE_INIT NOOP
#define E4_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperE4.free())
#define E4_ENABLE_READ (stepperE4.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_E4(L6474)
#define E4_DIR_INIT SET_OUTPUT(E4_DIR_PIN)
#define E4_DIR_WRITE(STATE) L6474_DIR_WRITE(E4, STATE)
#define E4_DIR_READ READ(E4_DIR_PIN)
#else
#define E4_DIR_INIT NOOP
#define E4_DIR_WRITE(STATE) L64XX_DIR_WRITE(E4, STATE)
#define E4_DIR_READ (stepper##E4.getStatus() & STATUS_DIR);
#endif
#endif
// E5 Stepper
#if AXIS_IS_L64XX(E5)
extern L64XX_CLASS(E5) stepperE5;
#define E5_ENABLE_INIT NOOP
#define E5_ENABLE_WRITE(STATE) (STATE ? NOOP : stepperE5.free())
#define E5_ENABLE_READ (stepperE5.getStatus() & STATUS_HIZ)
#if AXIS_DRIVER_TYPE_E5(L6474)
#define E5_DIR_INIT SET_OUTPUT(E5_DIR_PIN)
#define E5_DIR_WRITE(STATE) L6474_DIR_WRITE(E5, STATE)
#define E5_DIR_READ READ(E5_DIR_PIN)
#else
#define E5_DIR_INIT NOOP
#define E5_DIR_WRITE(STATE) L64XX_DIR_WRITE(E5, STATE)
#define E5_DIR_READ (stepper##E5.getStatus() & STATUS_DIR);
#endif
#endif

@ -43,8 +43,8 @@ void reset_stepper_drivers() {
tmc26x_init_to_defaults(); tmc26x_init_to_defaults();
#endif #endif
#if HAS_DRIVER(L6470) #if HAS_L64XX
L6470.init_to_defaults(); L64xxManager.init_to_defaults();
#endif #endif
#if HAS_TRINAMIC #if HAS_TRINAMIC

@ -32,8 +32,8 @@
#include "../../inc/MarlinConfig.h" #include "../../inc/MarlinConfig.h"
#if HAS_DRIVER(L6470) #if HAS_L64XX
#include "L6470.h" #include "L64xx.h"
#endif #endif
#if HAS_DRIVER(TMC26X) #if HAS_DRIVER(TMC26X)

@ -297,8 +297,16 @@ exec_test $1 $2 "Full-featured CR-10S config"
# Delta Config (generic) + ABL bilinear + BLTOUCH # Delta Config (generic) + ABL bilinear + BLTOUCH
use_example_configs delta/generic use_example_configs delta/generic
opt_set LCD_LANGUAGE cz opt_set LCD_LANGUAGE cz
opt_set X_DRIVER_TYPE L6470
opt_set Y_DRIVER_TYPE L6470
opt_set Z_DRIVER_TYPE L6470
opt_add L6470_CHAIN_SCK_PIN 53
opt_add L6470_CHAIN_MISO_PIN 49
opt_add L6470_CHAIN_MOSI_PIN 40
opt_add L6470_CHAIN_SS_PIN 42
opt_add "ENABLE_RESET_L64XX_CHIPS(V) NOOP"
opt_enable REPRAP_DISCOUNT_SMART_CONTROLLER DELTA_CALIBRATION_MENU AUTO_BED_LEVELING_BILINEAR BLTOUCH opt_enable REPRAP_DISCOUNT_SMART_CONTROLLER DELTA_CALIBRATION_MENU AUTO_BED_LEVELING_BILINEAR BLTOUCH
exec_test $1 $2 "RAMPS | DELTA | RRD LCD | ABL Bilinear | BLTOUCH" exec_test $1 $2 "DELTA | L6470 | RRD LCD | ABL Bilinear | BLTOUCH"
# #
# Delta Config (generic) + UBL + ALLEN_KEY + OLED_PANEL_TINYBOY2 + EEPROM_SETTINGS # Delta Config (generic) + UBL + ALLEN_KEY + OLED_PANEL_TINYBOY2 + EEPROM_SETTINGS

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -660,12 +660,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
#define X_DRIVER_TYPE A4988 #define X_DRIVER_TYPE A4988
#define Y_DRIVER_TYPE A4988 #define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
#define X_DRIVER_TYPE A4988 #define X_DRIVER_TYPE A4988
#define Y_DRIVER_TYPE A4988 #define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -674,12 +674,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -717,12 +717,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
#define X_DRIVER_TYPE A4988 #define X_DRIVER_TYPE A4988
#define Y_DRIVER_TYPE A4988 #define Y_DRIVER_TYPE A4988

@ -2219,12 +2219,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2232,114 +2232,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2365,7 +2384,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -717,12 +717,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
#define X_DRIVER_TYPE A4988 #define X_DRIVER_TYPE A4988
#define Y_DRIVER_TYPE A4988 #define Y_DRIVER_TYPE A4988

@ -2218,12 +2218,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2231,114 +2231,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2364,7 +2383,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -665,12 +665,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2219,12 +2219,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2232,114 +2232,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2365,7 +2384,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -674,12 +674,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -667,12 +667,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -665,12 +665,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
#define X_DRIVER_TYPE A4988 #define X_DRIVER_TYPE A4988
#define Y_DRIVER_TYPE A4988 #define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
#define X_DRIVER_TYPE A4988 #define X_DRIVER_TYPE A4988
#define Y_DRIVER_TYPE A4988 #define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -666,12 +666,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
#define X_DRIVER_TYPE A4988 #define X_DRIVER_TYPE A4988
#define Y_DRIVER_TYPE A4988 #define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -664,12 +664,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -655,12 +655,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2221,12 +2221,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2234,114 +2234,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2367,7 +2386,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -637,12 +637,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
#define X_DRIVER_TYPE TMC2100 #define X_DRIVER_TYPE TMC2100
#define Y_DRIVER_TYPE TMC2100 #define Y_DRIVER_TYPE TMC2100

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -659,12 +659,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
#define X_DRIVER_TYPE TMC2100 #define X_DRIVER_TYPE TMC2100
#define Y_DRIVER_TYPE TMC2100 #define Y_DRIVER_TYPE TMC2100

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -642,12 +642,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -655,12 +655,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2225,12 +2225,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2238,114 +2238,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2371,7 +2390,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -642,12 +642,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -646,12 +646,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
#define X_DRIVER_TYPE TMC2209 #define X_DRIVER_TYPE TMC2209
#define Y_DRIVER_TYPE TMC2209 #define Y_DRIVER_TYPE TMC2209

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -647,12 +647,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
#define X_DRIVER_TYPE TMC2209 #define X_DRIVER_TYPE TMC2209
#define Y_DRIVER_TYPE TMC2209 #define Y_DRIVER_TYPE TMC2209

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -653,12 +653,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -664,12 +664,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -654,12 +654,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -673,12 +673,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -658,12 +658,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -658,12 +658,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

@ -664,12 +664,13 @@
* *
* A4988 is assumed for unspecified drivers. * A4988 is assumed for unspecified drivers.
* *
* Options: A4988, A5984, DRV8825, LV8729, L6470, TB6560, TB6600, TMC2100, * Options: A4988, A5984, DRV8825, LV8729, L6470, L6474, POWERSTEP01,
* TB6560, TB6600, TMC2100,
* TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE, * TMC2130, TMC2130_STANDALONE, TMC2160, TMC2160_STANDALONE,
* TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE, * TMC2208, TMC2208_STANDALONE, TMC2209, TMC2209_STANDALONE,
* TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE, * TMC26X, TMC26X_STANDALONE, TMC2660, TMC2660_STANDALONE,
* TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE * TMC5130, TMC5130_STANDALONE, TMC5160, TMC5160_STANDALONE
* :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE'] * :['A4988', 'A5984', 'DRV8825', 'LV8729', 'L6470', 'L6474', 'POWERSTEP01', 'TB6560', 'TB6600', 'TMC2100', 'TMC2130', 'TMC2130_STANDALONE', 'TMC2160', 'TMC2160_STANDALONE', 'TMC2208', 'TMC2208_STANDALONE', 'TMC2209', 'TMC2209_STANDALONE', 'TMC26X', 'TMC26X_STANDALONE', 'TMC2660', 'TMC2660_STANDALONE', 'TMC5130', 'TMC5130_STANDALONE', 'TMC5160', 'TMC5160_STANDALONE']
*/ */
//#define X_DRIVER_TYPE A4988 //#define X_DRIVER_TYPE A4988
//#define Y_DRIVER_TYPE A4988 //#define Y_DRIVER_TYPE A4988

@ -2217,12 +2217,12 @@
#endif // HAS_TRINAMIC #endif // HAS_TRINAMIC
// @section L6470 // @section L64XX
/** /**
* L6470 Stepper Driver options * L64XX Stepper Driver options
* *
* Arduino-L6470 library (0.7.0 or higher) is required for this stepper driver. * Arduino-L6470 library (0.8.0 or higher) is required.
* https://github.com/ameyer/Arduino-L6470 * https://github.com/ameyer/Arduino-L6470
* *
* Requires the following to be defined in your pins_YOUR_BOARD file * Requires the following to be defined in your pins_YOUR_BOARD file
@ -2230,114 +2230,133 @@
* L6470_CHAIN_MISO_PIN * L6470_CHAIN_MISO_PIN
* L6470_CHAIN_MOSI_PIN * L6470_CHAIN_MOSI_PIN
* L6470_CHAIN_SS_PIN * L6470_CHAIN_SS_PIN
* L6470_RESET_CHAIN_PIN (optional) * ENABLE_RESET_L64XX_CHIPS(Q) where Q is 1 to enable and 0 to reset
*/ */
#if HAS_DRIVER(L6470)
#if HAS_L64XX
//#define L6470_CHITCHAT // Display additional status info //#define L6470_CHITCHAT // Display additional status info
#if AXIS_DRIVER_TYPE_X(L6470) #if AXIS_IS_L64XX(X)
#define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) #define X_MICROSTEPS 128 // Number of microsteps (VALID: 1, 2, 4, 8, 16, 32, 128) - L6474 max is 16
#define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current (VALID: 375 x (1 - 16) - 6A max - rounds down) #define X_OVERCURRENT 2000 // (mA) Current where the driver detects an over current
// L6470 & L6474 - VALID: 375 x (1 - 16) - 6A max - rounds down
// POWERSTEP01: VALID: 1000 x (1 - 32) - 32A max - rounds down
#define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down) #define X_STALLCURRENT 1500 // (mA) Current where the driver detects a stall (VALID: 31.25 * (1-128) - 4A max - rounds down)
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper // L6470 & L6474 - VALID: 31.25 * (1-128) - 4A max - rounds down
#define X_CHAIN_POS -1 // Position in SPI chain. (<=0 : Not in chain. 1 : Nearest MOSI) // POWERSTEP01: VALID: 200 x (1 - 32) - 6.4A max - rounds down
// L6474 - STALLCURRENT setting is used to set the nominal (TVAL) current
#define X_MAX_VOLTAGE 127 // 0-255, Maximum effective voltage seen by stepper - not used by L6474
#define X_CHAIN_POS -1 // Position in SPI chain, 0=Not in chain, 1=Nearest MOSI
#define X_SLEW_RATE 1 // 0-3, Slew 0 is slowest, 3 is fastest
#endif #endif
#if AXIS_DRIVER_TYPE_X2(L6470) #if AXIS_IS_L64XX(X2)
#define X2_MICROSTEPS 128 #define X2_MICROSTEPS 128
#define X2_OVERCURRENT 2000 #define X2_OVERCURRENT 2000
#define X2_STALLCURRENT 1500 #define X2_STALLCURRENT 1500
#define X2_MAX_VOLTAGE 127 #define X2_MAX_VOLTAGE 127
#define X2_CHAIN_POS -1 #define X2_CHAIN_POS -1
#define X2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y(L6470) #if AXIS_IS_L64XX(Y)
#define Y_MICROSTEPS 128 #define Y_MICROSTEPS 128
#define Y_OVERCURRENT 2000 #define Y_OVERCURRENT 2000
#define Y_STALLCURRENT 1500 #define Y_STALLCURRENT 1500
#define Y_MAX_VOLTAGE 127 #define Y_MAX_VOLTAGE 127
#define Y_CHAIN_POS -1 #define Y_CHAIN_POS -1
#define Y_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Y2(L6470) #if AXIS_IS_L64XX(Y2)
#define Y2_MICROSTEPS 128 #define Y2_MICROSTEPS 128
#define Y2_OVERCURRENT 2000 #define Y2_OVERCURRENT 2000
#define Y2_STALLCURRENT 1500 #define Y2_STALLCURRENT 1500
#define Y2_MAX_VOLTAGE 127 #define Y2_MAX_VOLTAGE 127
#define Y2_CHAIN_POS -1 #define Y2_CHAIN_POS -1
#define Y2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z(L6470) #if AXIS_IS_L64XX(Z)
#define Z_MICROSTEPS 128 #define Z_MICROSTEPS 128
#define Z_OVERCURRENT 2000 #define Z_OVERCURRENT 2000
#define Z_STALLCURRENT 1500 #define Z_STALLCURRENT 1500
#define Z_MAX_VOLTAGE 127 #define Z_MAX_VOLTAGE 127
#define Z_CHAIN_POS -1 #define Z_CHAIN_POS -1
#define Z_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z2(L6470) #if AXIS_IS_L64XX(Z2)
#define Z2_MICROSTEPS 128 #define Z2_MICROSTEPS 128
#define Z2_OVERCURRENT 2000 #define Z2_OVERCURRENT 2000
#define Z2_STALLCURRENT 1500 #define Z2_STALLCURRENT 1500
#define Z2_MAX_VOLTAGE 127 #define Z2_MAX_VOLTAGE 127
#define Z2_CHAIN_POS -1 #define Z2_CHAIN_POS -1
#define Z2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_Z3(L6470) #if AXIS_IS_L64XX(Z3)
#define Z3_MICROSTEPS 128 #define Z3_MICROSTEPS 128
#define Z3_OVERCURRENT 2000 #define Z3_OVERCURRENT 2000
#define Z3_STALLCURRENT 1500 #define Z3_STALLCURRENT 1500
#define Z3_MAX_VOLTAGE 127 #define Z3_MAX_VOLTAGE 127
#define Z3_CHAIN_POS -1 #define Z3_CHAIN_POS -1
#define Z3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E0(L6470) #if AXIS_IS_L64XX(E0)
#define E0_MICROSTEPS 128 #define E0_MICROSTEPS 128
#define E0_OVERCURRENT 2000 #define E0_OVERCURRENT 2000
#define E0_STALLCURRENT 1500 #define E0_STALLCURRENT 1500
#define E0_MAX_VOLTAGE 127 #define E0_MAX_VOLTAGE 127
#define E0_CHAIN_POS -1 #define E0_CHAIN_POS -1
#define E0_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E1(L6470) #if AXIS_IS_L64XX(E1)
#define E1_MICROSTEPS 128 #define E1_MICROSTEPS 128
#define E1_OVERCURRENT 2000 #define E1_OVERCURRENT 2000
#define E1_STALLCURRENT 1500 #define E1_STALLCURRENT 1500
#define E1_MAX_VOLTAGE 127 #define E1_MAX_VOLTAGE 127
#define E1_CHAIN_POS -1 #define E1_CHAIN_POS -1
#define E1_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E2(L6470) #if AXIS_IS_L64XX(E2)
#define E2_MICROSTEPS 128 #define E2_MICROSTEPS 128
#define E2_OVERCURRENT 2000 #define E2_OVERCURRENT 2000
#define E2_STALLCURRENT 1500 #define E2_STALLCURRENT 1500
#define E2_MAX_VOLTAGE 127 #define E2_MAX_VOLTAGE 127
#define E2_CHAIN_POS -1 #define E2_CHAIN_POS -1
#define E2_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E3(L6470) #if AXIS_IS_L64XX(E3)
#define E3_MICROSTEPS 128 #define E3_MICROSTEPS 128
#define E3_OVERCURRENT 2000 #define E3_OVERCURRENT 2000
#define E3_STALLCURRENT 1500 #define E3_STALLCURRENT 1500
#define E3_MAX_VOLTAGE 127 #define E3_MAX_VOLTAGE 127
#define E3_CHAIN_POS -1 #define E3_CHAIN_POS -1
#define E3_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E4(L6470) #if AXIS_IS_L64XX(E4)
#define E4_MICROSTEPS 128 #define E4_MICROSTEPS 128
#define E4_OVERCURRENT 2000 #define E4_OVERCURRENT 2000
#define E4_STALLCURRENT 1500 #define E4_STALLCURRENT 1500
#define E4_MAX_VOLTAGE 127 #define E4_MAX_VOLTAGE 127
#define E4_CHAIN_POS -1 #define E4_CHAIN_POS -1
#define E4_SLEW_RATE 1
#endif #endif
#if AXIS_DRIVER_TYPE_E5(L6470) #if AXIS_IS_L64XX(E5)
#define E5_MICROSTEPS 128 #define E5_MICROSTEPS 128
#define E5_OVERCURRENT 2000 #define E5_OVERCURRENT 2000
#define E5_STALLCURRENT 1500 #define E5_STALLCURRENT 1500
#define E5_MAX_VOLTAGE 127 #define E5_MAX_VOLTAGE 127
#define E5_CHAIN_POS -1 #define E5_CHAIN_POS -1
#define E5_SLEW_RATE 1
#endif #endif
/** /**
@ -2363,7 +2382,7 @@
//#define L6470_STOP_ON_ERROR //#define L6470_STOP_ON_ERROR
#endif #endif
#endif // L6470 #endif // HAS_L64XX
/** /**
* TWI/I2C BUS * TWI/I2C BUS

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save