Implementation of M190 bed temp hysteresis

2.0.x
gralco 9 years ago
parent 0439483bc8
commit 178aeb79c8

@ -192,11 +192,15 @@
//#define TEMP_SENSOR_1_AS_REDUNDANT //#define TEMP_SENSOR_1_AS_REDUNDANT
#define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10 #define MAX_REDUNDANT_TEMP_SENSOR_DIFF 10
// Actual temperature must be close to target for this long before M109 returns success // Actual temperature must be close to target for this long before M109/M190 returns success
#define TEMP_RESIDENCY_TIME 10 // (seconds) #define TEMP_RESIDENCY_TIME 10 // (seconds)
#define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one #define TEMP_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early. #define TEMP_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
#define TEMP_BED_RESIDENCY_TIME 10 // (seconds)
#define TEMP_BED_HYSTERESIS 3 // (degC) range of +/- temperatures considered "close" to the target one
#define TEMP_BED_WINDOW 1 // (degC) Window around target to start the residency timer x degC early.
// The minimal temperature defines the temperature below which the heater will not be enabled It is used // The minimal temperature defines the temperature below which the heater will not be enabled It is used
// to check that the wiring to the thermistor is not broken. // to check that the wiring to the thermistor is not broken.
// Otherwise this would lead to the heater being powered on all the time. // Otherwise this would lead to the heater being powered on all the time.

@ -4389,20 +4389,57 @@ inline void gcode_M109() {
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher> // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) return; if (no_wait_for_cooling && wants_to_cool) return;
#ifdef TEMP_BED_RESIDENCY_TIME
millis_t residency_start_ms = 0;
// Loop until the temperature has stabilized
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
#else
// Loop until the temperature is very close target
#define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
#endif //TEMP_BED_RESIDENCY_TIME
cancel_heatup = false; cancel_heatup = false;
millis_t next_temp_ms = 0; millis_t now, next_temp_ms = 0;
// Wait for temperature to come close enough // Wait for temperature to come close enough
do { do {
millis_t now = millis(); now = millis();
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up. if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
next_temp_ms = now + 1000UL; next_temp_ms = now + 1000UL;
print_heaterstates(); print_heaterstates();
#ifdef TEMP_BED_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:");
if (residency_start_ms) {
long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
SERIAL_PROTOCOLLN(rem);
}
else {
SERIAL_PROTOCOLLNPGM("?");
}
#else
SERIAL_EOL; SERIAL_EOL;
#endif
} }
idle(); idle();
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
} while (!cancel_heatup && (wants_to_cool ? isCoolingBed() : isHeatingBed()));
#ifdef TEMP_BED_RESIDENCY_TIME
float temp_diff = fabs(degBed() - degTargetBed());
if (!residency_start_ms) {
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
}
else if (temp_diff > TEMP_BED_HYSTERESIS) {
// Restart the timer whenever the temperature falls outside the hysteresis.
residency_start_ms = millis();
}
#endif //TEMP_BED_RESIDENCY_TIME
} while (!cancel_heatup && TEMP_BED_CONDITIONS);
LCD_MESSAGEPGM(MSG_BED_DONE); LCD_MESSAGEPGM(MSG_BED_DONE);
} }

Loading…
Cancel
Save