|
|
@ -56,9 +56,9 @@ static long counter_x, // Counter variables for the bresenham line tracer
|
|
|
|
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
|
|
|
volatile static unsigned long step_events_completed; // The number of step events executed in the current block
|
|
|
|
#ifdef ADVANCE
|
|
|
|
#ifdef ADVANCE
|
|
|
|
static long advance_rate, advance, final_advance = 0;
|
|
|
|
static long advance_rate, advance, final_advance = 0;
|
|
|
|
static short old_advance = 0;
|
|
|
|
static long old_advance = 0;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
static short e_steps;
|
|
|
|
static long e_steps;
|
|
|
|
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
|
|
|
|
static unsigned char busy = false; // TRUE when SIG_OUTPUT_COMPARE1A is being serviced. Used to avoid retriggering that handler.
|
|
|
|
static long acceleration_time, deceleration_time;
|
|
|
|
static long acceleration_time, deceleration_time;
|
|
|
|
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
|
|
|
//static unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
|
|
|
@ -79,13 +79,20 @@ static bool old_y_max_endstop=false;
|
|
|
|
static bool old_z_min_endstop=false;
|
|
|
|
static bool old_z_min_endstop=false;
|
|
|
|
static bool old_z_max_endstop=false;
|
|
|
|
static bool old_z_max_endstop=false;
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
static bool check_endstops = true;
|
|
|
|
|
|
|
|
|
|
|
|
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
|
|
|
|
volatile long count_position[NUM_AXIS] = { 0, 0, 0, 0};
|
|
|
|
volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
|
|
|
|
volatile char count_direction[NUM_AXIS] = { 1, 1, 1, 1};
|
|
|
|
|
|
|
|
|
|
|
|
//===========================================================================
|
|
|
|
//===========================================================================
|
|
|
|
//=============================functions ============================
|
|
|
|
//=============================functions ============================
|
|
|
|
//===========================================================================
|
|
|
|
//===========================================================================
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
|
|
|
|
|
|
#define CHECK_ENDSTOPS if(check_endstops)
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
#define CHECK_ENDSTOPS
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
// intRes = intIn1 * intIn2 >> 16
|
|
|
|
// intRes = intIn1 * intIn2 >> 16
|
|
|
|
// uses:
|
|
|
|
// uses:
|
|
|
@ -191,6 +198,11 @@ void endstops_hit_on_purpose()
|
|
|
|
endstop_z_hit=false;
|
|
|
|
endstop_z_hit=false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
void enable_endstops(bool check)
|
|
|
|
|
|
|
|
{
|
|
|
|
|
|
|
|
check_endstops = check;
|
|
|
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// __________________________
|
|
|
|
// __________________________
|
|
|
|
// /| |\ _________________ ^
|
|
|
|
// /| |\ _________________ ^
|
|
|
|
// / | | \ /| |\ |
|
|
|
|
// / | | \ /| |\ |
|
|
|
@ -254,6 +266,9 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
|
|
|
#ifdef ADVANCE
|
|
|
|
#ifdef ADVANCE
|
|
|
|
advance = current_block->initial_advance;
|
|
|
|
advance = current_block->initial_advance;
|
|
|
|
final_advance = current_block->final_advance;
|
|
|
|
final_advance = current_block->final_advance;
|
|
|
|
|
|
|
|
// Do E steps + advance steps
|
|
|
|
|
|
|
|
e_steps += ((advance >>8) - old_advance);
|
|
|
|
|
|
|
|
old_advance = advance >>8;
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
deceleration_time = 0;
|
|
|
|
deceleration_time = 0;
|
|
|
|
// step_rate to timer interval
|
|
|
|
// step_rate to timer interval
|
|
|
@ -261,6 +276,17 @@ FORCE_INLINE void trapezoid_generator_reset() {
|
|
|
|
acceleration_time = calc_timer(acc_step_rate);
|
|
|
|
acceleration_time = calc_timer(acc_step_rate);
|
|
|
|
OCR1A = acceleration_time;
|
|
|
|
OCR1A = acceleration_time;
|
|
|
|
OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
|
|
|
OCR1A_nominal = calc_timer(current_block->nominal_rate);
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
// SERIAL_ECHO_START;
|
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("advance :");
|
|
|
|
|
|
|
|
// SERIAL_ECHO(current_block->advance/256.0);
|
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("advance rate :");
|
|
|
|
|
|
|
|
// SERIAL_ECHO(current_block->advance_rate/256.0);
|
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("initial advance :");
|
|
|
|
|
|
|
|
// SERIAL_ECHO(current_block->initial_advance/256.0);
|
|
|
|
|
|
|
|
// SERIAL_ECHOPGM("final advance :");
|
|
|
|
|
|
|
|
// SERIAL_ECHOLN(current_block->final_advance/256.0);
|
|
|
|
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
|
|
|
// "The Stepper Driver Interrupt" - This timer interrupt is the workhorse.
|
|
|
@ -295,82 +321,100 @@ ISR(TIMER1_COMPA_vect)
|
|
|
|
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
|
|
|
|
if ((out_bits & (1<<X_AXIS)) != 0) { // -direction
|
|
|
|
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
|
|
|
WRITE(X_DIR_PIN, INVERT_X_DIR);
|
|
|
|
count_direction[X_AXIS]=-1;
|
|
|
|
count_direction[X_AXIS]=-1;
|
|
|
|
#if X_MIN_PIN > -1
|
|
|
|
CHECK_ENDSTOPS
|
|
|
|
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
|
|
|
|
{
|
|
|
|
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
|
|
|
#if X_MIN_PIN > -1
|
|
|
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
|
|
bool x_min_endstop=(READ(X_MIN_PIN) != X_ENDSTOPS_INVERTING);
|
|
|
|
endstop_x_hit=true;
|
|
|
|
if(x_min_endstop && old_x_min_endstop && (current_block->steps_x > 0)) {
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
|
|
}
|
|
|
|
endstop_x_hit=true;
|
|
|
|
old_x_min_endstop = x_min_endstop;
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
old_x_min_endstop = x_min_endstop;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else { // +direction
|
|
|
|
else { // +direction
|
|
|
|
WRITE(X_DIR_PIN,!INVERT_X_DIR);
|
|
|
|
WRITE(X_DIR_PIN,!INVERT_X_DIR);
|
|
|
|
count_direction[X_AXIS]=1;
|
|
|
|
count_direction[X_AXIS]=1;
|
|
|
|
#if X_MAX_PIN > -1
|
|
|
|
CHECK_ENDSTOPS
|
|
|
|
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
|
|
|
|
{
|
|
|
|
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
|
|
|
#if X_MAX_PIN > -1
|
|
|
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
|
|
bool x_max_endstop=(READ(X_MAX_PIN) != X_ENDSTOPS_INVERTING);
|
|
|
|
endstop_x_hit=true;
|
|
|
|
if(x_max_endstop && old_x_max_endstop && (current_block->steps_x > 0)){
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
endstops_trigsteps[X_AXIS] = count_position[X_AXIS];
|
|
|
|
}
|
|
|
|
endstop_x_hit=true;
|
|
|
|
old_x_max_endstop = x_max_endstop;
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
old_x_max_endstop = x_max_endstop;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
|
|
|
if ((out_bits & (1<<Y_AXIS)) != 0) { // -direction
|
|
|
|
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
|
|
|
|
WRITE(Y_DIR_PIN,INVERT_Y_DIR);
|
|
|
|
count_direction[Y_AXIS]=-1;
|
|
|
|
count_direction[Y_AXIS]=-1;
|
|
|
|
#if Y_MIN_PIN > -1
|
|
|
|
CHECK_ENDSTOPS
|
|
|
|
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
|
|
|
|
{
|
|
|
|
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
|
|
|
|
#if Y_MIN_PIN > -1
|
|
|
|
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
|
|
|
bool y_min_endstop=(READ(Y_MIN_PIN) != Y_ENDSTOPS_INVERTING);
|
|
|
|
endstop_y_hit=true;
|
|
|
|
if(y_min_endstop && old_y_min_endstop && (current_block->steps_y > 0)) {
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
|
|
|
}
|
|
|
|
endstop_y_hit=true;
|
|
|
|
old_y_min_endstop = y_min_endstop;
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
old_y_min_endstop = y_min_endstop;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else { // +direction
|
|
|
|
else { // +direction
|
|
|
|
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
|
|
|
|
WRITE(Y_DIR_PIN,!INVERT_Y_DIR);
|
|
|
|
count_direction[Y_AXIS]=1;
|
|
|
|
count_direction[Y_AXIS]=1;
|
|
|
|
#if Y_MAX_PIN > -1
|
|
|
|
CHECK_ENDSTOPS
|
|
|
|
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
|
|
|
|
{
|
|
|
|
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
|
|
|
|
#if Y_MAX_PIN > -1
|
|
|
|
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
|
|
|
bool y_max_endstop=(READ(Y_MAX_PIN) != Y_ENDSTOPS_INVERTING);
|
|
|
|
endstop_y_hit=true;
|
|
|
|
if(y_max_endstop && old_y_max_endstop && (current_block->steps_y > 0)){
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
endstops_trigsteps[Y_AXIS] = count_position[Y_AXIS];
|
|
|
|
}
|
|
|
|
endstop_y_hit=true;
|
|
|
|
old_y_max_endstop = y_max_endstop;
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
old_y_max_endstop = y_max_endstop;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
|
|
|
if ((out_bits & (1<<Z_AXIS)) != 0) { // -direction
|
|
|
|
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
|
|
|
WRITE(Z_DIR_PIN,INVERT_Z_DIR);
|
|
|
|
count_direction[Z_AXIS]=-1;
|
|
|
|
count_direction[Z_AXIS]=-1;
|
|
|
|
#if Z_MIN_PIN > -1
|
|
|
|
CHECK_ENDSTOPS
|
|
|
|
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
|
|
|
|
{
|
|
|
|
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
|
|
|
|
#if Z_MIN_PIN > -1
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
bool z_min_endstop=(READ(Z_MIN_PIN) != Z_ENDSTOPS_INVERTING);
|
|
|
|
endstop_z_hit=true;
|
|
|
|
if(z_min_endstop && old_z_min_endstop && (current_block->steps_z > 0)) {
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
}
|
|
|
|
endstop_z_hit=true;
|
|
|
|
old_z_min_endstop = z_min_endstop;
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
old_z_min_endstop = z_min_endstop;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else { // +direction
|
|
|
|
else { // +direction
|
|
|
|
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
|
|
|
WRITE(Z_DIR_PIN,!INVERT_Z_DIR);
|
|
|
|
count_direction[Z_AXIS]=1;
|
|
|
|
count_direction[Z_AXIS]=1;
|
|
|
|
#if Z_MAX_PIN > -1
|
|
|
|
CHECK_ENDSTOPS
|
|
|
|
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
|
|
|
|
{
|
|
|
|
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
|
|
|
|
#if Z_MAX_PIN > -1
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
bool z_max_endstop=(READ(Z_MAX_PIN) != Z_ENDSTOPS_INVERTING);
|
|
|
|
endstop_z_hit=true;
|
|
|
|
if(z_max_endstop && old_z_max_endstop && (current_block->steps_z > 0)) {
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
|
|
|
|
}
|
|
|
|
endstop_z_hit=true;
|
|
|
|
old_z_max_endstop = z_max_endstop;
|
|
|
|
step_events_completed = current_block->step_event_count;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
old_z_max_endstop = z_max_endstop;
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
#ifndef ADVANCE
|
|
|
|
#ifndef ADVANCE
|
|
|
@ -383,6 +427,9 @@ ISR(TIMER1_COMPA_vect)
|
|
|
|
count_direction[E_AXIS]=-1;
|
|
|
|
count_direction[E_AXIS]=-1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif //!ADVANCE
|
|
|
|
#endif //!ADVANCE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
|
|
|
for(int8_t i=0; i < step_loops; i++) { // Take multiple steps per interrupt (For high speed moves)
|
|
|
|
MSerial.checkRx(); // Check for serial chars.
|
|
|
|
MSerial.checkRx(); // Check for serial chars.
|
|
|
|
|
|
|
|
|
|
|
@ -391,19 +438,12 @@ ISR(TIMER1_COMPA_vect)
|
|
|
|
if (counter_e > 0) {
|
|
|
|
if (counter_e > 0) {
|
|
|
|
counter_e -= current_block->step_event_count;
|
|
|
|
counter_e -= current_block->step_event_count;
|
|
|
|
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
|
|
|
|
if ((out_bits & (1<<E_AXIS)) != 0) { // - direction
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
|
|
|
|
e_steps--;
|
|
|
|
e_steps--;
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else {
|
|
|
|
CRITICAL_SECTION_START;
|
|
|
|
|
|
|
|
e_steps++;
|
|
|
|
e_steps++;
|
|
|
|
CRITICAL_SECTION_END;
|
|
|
|
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
// Do E steps + advance steps
|
|
|
|
|
|
|
|
e_steps += ((advance >> 16) - old_advance);
|
|
|
|
|
|
|
|
old_advance = advance >> 16;
|
|
|
|
|
|
|
|
#endif //ADVANCE
|
|
|
|
#endif //ADVANCE
|
|
|
|
|
|
|
|
|
|
|
|
counter_x += current_block->steps_x;
|
|
|
|
counter_x += current_block->steps_x;
|
|
|
@ -462,6 +502,11 @@ ISR(TIMER1_COMPA_vect)
|
|
|
|
for(int8_t i=0; i < step_loops; i++) {
|
|
|
|
for(int8_t i=0; i < step_loops; i++) {
|
|
|
|
advance += advance_rate;
|
|
|
|
advance += advance_rate;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
//if(advance > current_block->advance) advance = current_block->advance;
|
|
|
|
|
|
|
|
// Do E steps + advance steps
|
|
|
|
|
|
|
|
e_steps += ((advance >>8) - old_advance);
|
|
|
|
|
|
|
|
old_advance = advance >>8;
|
|
|
|
|
|
|
|
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
|
|
|
|
else if (step_events_completed > (unsigned long int)current_block->decelerate_after) {
|
|
|
@ -486,8 +531,10 @@ ISR(TIMER1_COMPA_vect)
|
|
|
|
for(int8_t i=0; i < step_loops; i++) {
|
|
|
|
for(int8_t i=0; i < step_loops; i++) {
|
|
|
|
advance -= advance_rate;
|
|
|
|
advance -= advance_rate;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if(advance < final_advance)
|
|
|
|
if(advance < final_advance) advance = final_advance;
|
|
|
|
advance = final_advance;
|
|
|
|
// Do E steps + advance steps
|
|
|
|
|
|
|
|
e_steps += ((advance >>8) - old_advance);
|
|
|
|
|
|
|
|
old_advance = advance >>8;
|
|
|
|
#endif //ADVANCE
|
|
|
|
#endif //ADVANCE
|
|
|
|
}
|
|
|
|
}
|
|
|
|
else {
|
|
|
|
else {
|
|
|
@ -508,7 +555,7 @@ ISR(TIMER1_COMPA_vect)
|
|
|
|
// Timer 0 is shared with millies
|
|
|
|
// Timer 0 is shared with millies
|
|
|
|
ISR(TIMER0_COMPA_vect)
|
|
|
|
ISR(TIMER0_COMPA_vect)
|
|
|
|
{
|
|
|
|
{
|
|
|
|
old_OCR0A += 25; // ~10kHz interrupt
|
|
|
|
old_OCR0A += 52; // ~10kHz interrupt (250000 / 26 = 9615kHz)
|
|
|
|
OCR0A = old_OCR0A;
|
|
|
|
OCR0A = old_OCR0A;
|
|
|
|
// Set E direction (Depends on E direction + advance)
|
|
|
|
// Set E direction (Depends on E direction + advance)
|
|
|
|
for(unsigned char i=0; i<4;) {
|
|
|
|
for(unsigned char i=0; i<4;) {
|
|
|
@ -520,7 +567,7 @@ ISR(TIMER1_COMPA_vect)
|
|
|
|
e_steps++;
|
|
|
|
e_steps++;
|
|
|
|
WRITE(E_STEP_PIN, HIGH);
|
|
|
|
WRITE(E_STEP_PIN, HIGH);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
if (e_steps > 0) {
|
|
|
|
else if (e_steps > 0) {
|
|
|
|
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
|
|
|
WRITE(E_DIR_PIN,!INVERT_E_DIR);
|
|
|
|
e_steps--;
|
|
|
|
e_steps--;
|
|
|
|
WRITE(E_STEP_PIN, HIGH);
|
|
|
|
WRITE(E_STEP_PIN, HIGH);
|
|
|
@ -649,6 +696,13 @@ void st_init()
|
|
|
|
e_steps = 0;
|
|
|
|
e_steps = 0;
|
|
|
|
TIMSK0 |= (1<<OCIE0A);
|
|
|
|
TIMSK0 |= (1<<OCIE0A);
|
|
|
|
#endif //ADVANCE
|
|
|
|
#endif //ADVANCE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
#ifdef ENDSTOPS_ONLY_FOR_HOMING
|
|
|
|
|
|
|
|
enable_endstops(false);
|
|
|
|
|
|
|
|
#else
|
|
|
|
|
|
|
|
enable_endstops(true);
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
sei();
|
|
|
|
sei();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|