Less use of "this"

2.0.x
Scott Lahteine 5 years ago
parent 661c3cfc99
commit 0b4aedf13e

@ -32,25 +32,25 @@
int Servo::channel_next_free = 12;
Servo::Servo() {
this->channel = channel_next_free++;
channel = channel_next_free++;
}
int8_t Servo::attach(const int pin) {
if (this->channel >= CHANNEL_MAX_NUM) return -1;
if (pin > 0) this->pin = pin;
int8_t Servo::attach(const int inPin) {
if (channel >= CHANNEL_MAX_NUM) return -1;
if (pin > 0) pin = inPin;
ledcSetup(this->channel, 50, 16); // channel X, 50 Hz, 16-bit depth
ledcAttachPin(this->pin, this->channel);
ledcSetup(channel, 50, 16); // channel X, 50 Hz, 16-bit depth
ledcAttachPin(pin, channel);
return true;
}
void Servo::detach() { ledcDetachPin(this->pin); }
void Servo::detach() { ledcDetachPin(pin); }
int Servo::read() { return this->degrees; }
int Servo::read() { return degrees; }
void Servo::write(int inDegrees) {
this->degrees = constrain(inDegrees, MIN_ANGLE, MAX_ANGLE);
int us = map(this->degrees, MIN_ANGLE, MAX_ANGLE, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
degrees = constrain(inDegrees, MIN_ANGLE, MAX_ANGLE);
int us = map(degrees, MIN_ANGLE, MAX_ANGLE, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
int duty = map(us, 0, TAU_USEC, 0, MAX_COMPARE);
ledcWrite(channel, duty);
}
@ -58,11 +58,11 @@ void Servo::write(int inDegrees) {
void Servo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) {
this->write(value);
safe_delay(servo_delay[this->channel]);
if (attach(0) >= 0) {
write(value);
safe_delay(servo_delay[channel]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
detach();
#endif
}
}

@ -57,11 +57,11 @@ class libServo: public Servo {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(servo_info[this->servoIndex].Pin.nbr) >= 0) { // try to reattach
this->write(value);
safe_delay(servo_delay[this->servoIndex]); // delay to allow servo to reach position
if (attach(servo_info[servoIndex].Pin.nbr) >= 0) { // try to reattach
write(value);
safe_delay(servo_delay[servoIndex]); // delay to allow servo to reach position
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
detach();
#endif
}

@ -31,24 +31,24 @@
uint8_t servoPin[MAX_SERVOS] = { 0 };
int8_t libServo::attach(const int pin) {
if (this->servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servoPin[this->servoIndex] = pin;
return Servo::attach(servoPin[this->servoIndex]);
if (servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servoPin[servoIndex] = pin;
return super::attach(servoPin[servoIndex]);
}
int8_t libServo::attach(const int pin, const int min, const int max) {
if (pin > 0) servoPin[this->servoIndex] = pin;
return Servo::attach(servoPin[this->servoIndex], min, max);
if (pin > 0) servoPin[servoIndex] = pin;
return super::attach(servoPin[servoIndex], min, max);
}
void libServo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) {
this->write(value);
safe_delay(servo_delay[this->servoIndex]);
if (attach(0) >= 0) {
write(value);
safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
detach();
#endif
}
}

@ -213,31 +213,31 @@ void SPIClass::setDataSize(uint32_t datasize) {
}
void SPIClass::setDataMode(uint8_t dataMode) {
/*
Notes:
As far as we know the AVR numbers for dataMode match the numbers required by the STM32.
From the AVR doc http://www.atmel.com/images/doc2585.pdf section 2.4
SPI Mode CPOL CPHA Shift SCK-edge Capture SCK-edge
0 0 0 Falling Rising
1 0 1 Rising Falling
2 1 0 Rising Falling
3 1 1 Falling Rising
On the STM32 it appears to be
bit 1 - CPOL : Clock polarity
(This bit should not be changed when communication is ongoing)
0 : CLK to 0 when idle
1 : CLK to 1 when idle
bit 0 - CPHA : Clock phase
(This bit should not be changed when communication is ongoing)
0 : The first clock transition is the first data capture edge
1 : The second clock transition is the first data capture edge
If someone finds this is not the case or sees a logic error with this let me know ;-)
*/
/**
* Notes:
* As far as we know the AVR numbers for dataMode match the numbers required by the STM32.
* From the AVR doc http://www.atmel.com/images/doc2585.pdf section 2.4
*
* SPI Mode CPOL CPHA Shift SCK-edge Capture SCK-edge
* 0 0 0 Falling Rising
* 1 0 1 Rising Falling
* 2 1 0 Rising Falling
* 3 1 1 Falling Rising
*
* On the STM32 it appears to be
*
* bit 1 - CPOL : Clock polarity
* (This bit should not be changed when communication is ongoing)
* 0 : CLK to 0 when idle
* 1 : CLK to 1 when idle
*
* bit 0 - CPHA : Clock phase
* (This bit should not be changed when communication is ongoing)
* 0 : The first clock transition is the first data capture edge
* 1 : The second clock transition is the first data capture edge
*
* If someone finds this is not the case or sees a logic error with this let me know ;-)
*/
_currentSetting->dataMode = dataMode;
uint32_t cr1 = _currentSetting->spi_d->regs->CR1 & ~(SPI_CR1_CPOL|SPI_CR1_CPHA);
_currentSetting->spi_d->regs->CR1 = cr1 | (dataMode & (SPI_CR1_CPOL|SPI_CR1_CPHA));
@ -593,7 +593,7 @@ void SPIClass::detachInterrupt() {
// Should be disableInterrupt()
}
/*
/**
* Pin accessors
*/
@ -613,25 +613,14 @@ uint8_t SPIClass::nssPin() {
return dev_to_spi_pins(_currentSetting->spi_d)->nss;
}
/*
/**
* Deprecated functions
*/
uint8_t SPIClass::send(uint8_t data) { write(data); return 1; }
uint8_t SPIClass::send(uint8_t *buf, uint32_t len) { write(buf, len); return len; }
uint8_t SPIClass::recv() { return read(); }
uint8_t SPIClass::send(uint8_t data) {
this->write(data);
return 1;
}
uint8_t SPIClass::send(uint8_t *buf, uint32_t len) {
this->write(buf, len);
return len;
}
uint8_t SPIClass::recv() {
return this->read();
}
/*
/**
* DMA call back functions, one per port.
*/
#if BOARD_NR_SPI >= 1
@ -650,7 +639,7 @@ uint8_t SPIClass::recv() {
}
#endif
/*
/**
* Auxiliary functions
*/
static const spi_pins* dev_to_spi_pins(spi_dev *dev) {

@ -96,36 +96,36 @@ typedef enum {
class SPISettings {
public:
SPISettings(uint32_t clock, BitOrder bitOrder, uint8_t dataMode) {
if (__builtin_constant_p(clock))
init_AlwaysInline(clock, bitOrder, dataMode, DATA_SIZE_8BIT);
SPISettings(uint32_t inClock, BitOrder inBitOrder, uint8_t inDataMode) {
if (__builtin_constant_p(inClock))
init_AlwaysInline(inClock, inBitOrder, inDataMode, DATA_SIZE_8BIT);
else
init_MightInline(clock, bitOrder, dataMode, DATA_SIZE_8BIT);
init_MightInline(inClock, inBitOrder, inDataMode, DATA_SIZE_8BIT);
}
SPISettings(uint32_t clock, BitOrder bitOrder, uint8_t dataMode, uint32_t dataSize) {
if (__builtin_constant_p(clock))
init_AlwaysInline(clock, bitOrder, dataMode, dataSize);
SPISettings(uint32_t inClock, BitOrder inBitOrder, uint8_t inDataMode, uint32_t inDataSize) {
if (__builtin_constant_p(inClock))
init_AlwaysInline(inClock, inBitOrder, inDataMode, inDataSize);
else
init_MightInline(clock, bitOrder, dataMode, dataSize);
init_MightInline(inClock, inBitOrder, inDataMode, inDataSize);
}
SPISettings(uint32_t clock) {
if (__builtin_constant_p(clock))
init_AlwaysInline(clock, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT);
SPISettings(uint32_t inClock) {
if (__builtin_constant_p(inClock))
init_AlwaysInline(inClock, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT);
else
init_MightInline(clock, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT);
init_MightInline(inClock, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT);
}
SPISettings() {
init_AlwaysInline(4000000, MSBFIRST, SPI_MODE0, DATA_SIZE_8BIT);
}
private:
void init_MightInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode, uint32_t dataSize) {
init_AlwaysInline(clock, bitOrder, dataMode, dataSize);
void init_MightInline(uint32_t inClock, BitOrder inBitOrder, uint8_t inDataMode, uint32_t inDataSize) {
init_AlwaysInline(inClock, inBitOrder, inDataMode, inDataSize);
}
void init_AlwaysInline(uint32_t clock, BitOrder bitOrder, uint8_t dataMode, uint32_t dataSize) __attribute__((__always_inline__)) {
this->clock = clock;
this->bitOrder = bitOrder;
this->dataMode = dataMode;
this->dataSize = dataSize;
void init_AlwaysInline(uint32_t inClock, BitOrder inBitOrder, uint8_t inDataMode, uint32_t inDataSize) __attribute__((__always_inline__)) {
clock = inClock;
bitOrder = inBitOrder;
dataMode = inDataMode;
dataSize = inDataSize;
}
uint32_t clock;
uint32_t dataSize;
@ -339,7 +339,7 @@ public:
* or 1-3 in high density devices.
*/
void setModule(int spi_num) {
_currentSetting=&_settings[spi_num-1];// SPI channels are called 1 2 and 3 but the array is zero indexed
_currentSetting = &_settings[spi_num - 1];// SPI channels are called 1 2 and 3 but the array is zero indexed
}
/* -- The following methods are deprecated --------------------------- */

@ -56,52 +56,50 @@ uint8_t ServoCount = 0;
#define SERVO_OVERFLOW ((uint16_t)round((double)TAU_CYC / SERVO_PRESCALER))
// Unit conversions
#define US_TO_COMPARE(us) ((uint16_t)map((us), 0, TAU_USEC, 0, SERVO_OVERFLOW))
#define COMPARE_TO_US(c) ((uint32_t)map((c), 0, SERVO_OVERFLOW, 0, TAU_USEC))
#define ANGLE_TO_US(a) ((uint16_t)(map((a), this->minAngle, this->maxAngle, \
SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW)))
#define US_TO_ANGLE(us) ((int16_t)(map((us), SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW, \
this->minAngle, this->maxAngle)))
void libServo::servoWrite(uint8_t pin, uint16_t duty_cycle) {
#define US_TO_COMPARE(us) uint16_t(map((us), 0, TAU_USEC, 0, SERVO_OVERFLOW))
#define COMPARE_TO_US(c) uint32_t(map((c), 0, SERVO_OVERFLOW, 0, TAU_USEC))
#define ANGLE_TO_US(a) uint16_t(map((a), minAngle, maxAngle, SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW))
#define US_TO_ANGLE(us) int16_t(map((us), SERVO_DEFAULT_MIN_PW, SERVO_DEFAULT_MAX_PW, minAngle, maxAngle))
void libServo::servoWrite(uint8_t inPin, uint16_t duty_cycle) {
#ifdef SERVO0_TIMER_NUM
if (this->servoIndex == 0) {
this->pwmSetDuty(duty_cycle);
if (servoIndex == 0) {
pwmSetDuty(duty_cycle);
return;
}
#endif
timer_dev *tdev = PIN_MAP[pin].timer_device;
uint8_t tchan = PIN_MAP[pin].timer_channel;
timer_dev *tdev = PIN_MAP[inPin].timer_device;
uint8_t tchan = PIN_MAP[inPin].timer_channel;
if (tdev) timer_set_compare(tdev, tchan, duty_cycle);
}
libServo::libServo() {
this->servoIndex = ServoCount < MAX_SERVOS ? ServoCount++ : INVALID_SERVO;
servoIndex = ServoCount < MAX_SERVOS ? ServoCount++ : INVALID_SERVO;
}
bool libServo::attach(const int32_t pin, const int32_t minAngle, const int32_t maxAngle) {
if (this->servoIndex >= MAX_SERVOS) return false;
if (pin >= BOARD_NR_GPIO_PINS) return false;
bool libServo::attach(const int32_t inPin, const int32_t inMinAngle, const int32_t inMaxAngle) {
if (servoIndex >= MAX_SERVOS) return false;
if (inPin >= BOARD_NR_GPIO_PINS) return false;
this->minAngle = minAngle;
this->maxAngle = maxAngle;
this->angle = -1;
minAngle = inMinAngle;
maxAngle = inMaxAngle;
angle = -1;
#ifdef SERVO0_TIMER_NUM
if (this->servoIndex == 0 && this->setupSoftPWM(pin)) {
this->pin = pin; // set attached()
if (servoIndex == 0 && setupSoftPWM(inPin)) {
pin = inPin; // set attached()
return true;
}
#endif
if (!PWM_PIN(pin)) return false;
if (!PWM_PIN(inPin)) return false;
timer_dev *tdev = PIN_MAP[pin].timer_device;
//uint8_t tchan = PIN_MAP[pin].timer_channel;
timer_dev *tdev = PIN_MAP[inPin].timer_device;
//uint8_t tchan = PIN_MAP[inPin].timer_channel;
SET_PWM(pin);
servoWrite(pin, 0);
SET_PWM(inPin);
servoWrite(inPin, 0);
timer_pause(tdev);
timer_set_prescaler(tdev, SERVO_PRESCALER - 1); // prescaler is 1-based
@ -109,25 +107,24 @@ bool libServo::attach(const int32_t pin, const int32_t minAngle, const int32_t m
timer_generate_update(tdev);
timer_resume(tdev);
this->pin = pin; // set attached()
pin = inPin; // set attached()
return true;
}
bool libServo::detach() {
if (!this->attached()) return false;
this->angle = -1;
servoWrite(this->pin, 0);
if (!attached()) return false;
angle = -1;
servoWrite(pin, 0);
return true;
}
int32_t libServo::read() const {
if (this->attached()) {
if (attached()) {
#ifdef SERVO0_TIMER_NUM
if (this->servoIndex == 0) return this->angle;
if (servoIndex == 0) return angle;
#endif
timer_dev *tdev = PIN_MAP[this->pin].timer_device;
uint8_t tchan = PIN_MAP[this->pin].timer_channel;
timer_dev *tdev = PIN_MAP[pin].timer_device;
uint8_t tchan = PIN_MAP[pin].timer_channel;
return US_TO_ANGLE(COMPARE_TO_US(timer_get_compare(tdev, tchan)));
}
return 0;
@ -137,12 +134,12 @@ void libServo::move(const int32_t value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attached()) {
this->angle = constrain(value, this->minAngle, this->maxAngle);
servoWrite(this->pin, US_TO_COMPARE(ANGLE_TO_US(this->angle)));
safe_delay(servo_delay[this->servoIndex]);
if (attached()) {
angle = constrain(value, minAngle, maxAngle);
servoWrite(pin, US_TO_COMPARE(ANGLE_TO_US(angle)));
safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
detach();
#endif
}
}
@ -169,13 +166,13 @@ void libServo::move(const int32_t value) {
}
}
bool libServo::setupSoftPWM(const int32_t pin) {
bool libServo::setupSoftPWM(const int32_t inPin) {
timer_dev *tdev = get_timer_dev(SERVO0_TIMER_NUM);
if (!tdev) return false;
#ifdef SERVO0_PWM_OD
OUT_WRITE_OD(pin, 1);
OUT_WRITE_OD(inPin, 1);
#else
OUT_WRITE(pin, 0);
OUT_WRITE(inPin, 0);
#endif
timer_pause(tdev);
@ -206,9 +203,9 @@ void libServo::move(const int32_t value) {
timer_disable_irq(tdev, 1);
timer_disable_irq(tdev, 2);
#ifdef SERVO0_PWM_OD
OUT_WRITE_OD(this->pin, 1); // off
OUT_WRITE_OD(pin, 1); // off
#else
OUT_WRITE(this->pin, 0);
OUT_WRITE(pin, 0);
#endif
}
}
@ -221,7 +218,7 @@ void libServo::move(const int32_t value) {
#else
bool libServo::setupSoftPWM(const int32_t pin) { return false; }
bool libServo::setupSoftPWM(const int32_t inPin) { return false; }
void libServo::pwmSetDuty(const uint16_t duty_cycle) {}
void libServo::pauseSoftPWM() {}

@ -41,7 +41,7 @@ class libServo {
public:
libServo();
bool attach(const int32_t pin, const int32_t minAngle=SERVO_DEFAULT_MIN_ANGLE, const int32_t maxAngle=SERVO_DEFAULT_MAX_ANGLE);
bool attached() const { return this->pin != NOT_ATTACHED; }
bool attached() const { return pin != NOT_ATTACHED; }
bool detach();
void move(const int32_t value);
int32_t read() const;

@ -30,22 +30,22 @@
#include "Servo.h"
int8_t libServo::attach(const int pin) {
if (this->servoIndex >= MAX_SERVOS) return -1;
return Servo::attach(pin);
if (servoIndex >= MAX_SERVOS) return -1;
return super::attach(pin);
}
int8_t libServo::attach(const int pin, const int min, const int max) {
return Servo::attach(pin, min, max);
return super::attach(pin, min, max);
}
void libServo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) {
this->write(value);
safe_delay(servo_delay[this->servoIndex]);
if (attach(0) >= 0) {
write(value);
safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
detach();
#endif
}
}

@ -29,25 +29,25 @@
uint8_t servoPin[MAX_SERVOS] = { 0 };
int8_t libServo::attach(const int pin) {
if (this->servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servoPin[this->servoIndex] = pin;
return Servo::attach(servoPin[this->servoIndex]);
int8_t libServo::attach(const int inPin) {
if (servoIndex >= MAX_SERVOS) return -1;
if (inPin > 0) servoPin[servoIndex] = inPin;
return super::attach(servoPin[servoIndex]);
}
int8_t libServo::attach(const int pin, const int min, const int max) {
if (pin > 0) servoPin[this->servoIndex] = pin;
return Servo::attach(servoPin[this->servoIndex], min, max);
int8_t libServo::attach(const int inPin, const int inMin, const int inMax) {
if (inPin > 0) servoPin[servoIndex] = inPin;
return super::attach(servoPin[servoIndex], inMin, inMax);
}
void libServo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) {
this->write(value);
safe_delay(servo_delay[this->servoIndex]);
if (attach(0) >= 0) {
write(value);
safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
detach();
#endif
}
}

@ -1,3 +1,24 @@
/**
* Marlin 3D Printer Firmware
* Copyright (c) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (c) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#if defined(__MK64FX512__) || defined(__MK66FX1M0__)
#include "../../inc/MarlinConfig.h"
@ -8,25 +29,25 @@
uint8_t servoPin[MAX_SERVOS] = { 0 };
int8_t libServo::attach(const int pin) {
if (this->servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servoPin[this->servoIndex] = pin;
return Servo::attach(servoPin[this->servoIndex]);
int8_t libServo::attach(const int inPin) {
if (servoIndex >= MAX_SERVOS) return -1;
if (inPin > 0) servoPin[servoIndex] = inPin;
return super::attach(servoPin[servoIndex]);
}
int8_t libServo::attach(const int pin, const int min, const int max) {
if (pin > 0) servoPin[this->servoIndex] = pin;
return Servo::attach(servoPin[this->servoIndex], min, max);
int8_t libServo::attach(const int inPin, const int inMin, const int inMax) {
if (inPin > 0) servoPin[servoIndex] = inPin;
return super::attach(servoPin[servoIndex], inMin, inMax);
}
void libServo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) {
this->write(value);
safe_delay(servo_delay[this->servoIndex]);
if (attach(0) >= 0) {
write(value);
safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
detach();
#endif
}
}

@ -58,11 +58,11 @@
#include "servo.h"
#include "servo_private.h"
ServoInfo_t servo_info[MAX_SERVOS]; // static array of servo info structures
uint8_t ServoCount = 0; // the total number of attached servos
ServoInfo_t servo_info[MAX_SERVOS]; // static array of servo info structures
uint8_t ServoCount = 0; // the total number of attached servos
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
#define SERVO_MIN(v) (MIN_PULSE_WIDTH - (v) * 4) // minimum value in uS for this servo
#define SERVO_MAX(v) (MAX_PULSE_WIDTH - (v) * 4) // maximum value in uS for this servo
/************ static functions common to all instances ***********************/
@ -79,54 +79,54 @@ static boolean isTimerActive(timer16_Sequence_t timer) {
Servo::Servo() {
if (ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servo_info[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
servoIndex = ServoCount++; // assign a servo index to this instance
servo_info[servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
}
else
this->servoIndex = INVALID_SERVO; // too many servos
servoIndex = INVALID_SERVO; // too many servos
}
int8_t Servo::attach(const int pin) {
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
int8_t Servo::attach(const int inPin) {
return attach(inPin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
int8_t Servo::attach(const int pin, const int min, const int max) {
int8_t Servo::attach(const int inPin, const int inMin, const int inMax) {
if (this->servoIndex >= MAX_SERVOS) return -1;
if (servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servo_info[this->servoIndex].Pin.nbr = pin;
pinMode(servo_info[this->servoIndex].Pin.nbr, OUTPUT); // set servo pin to output
if (inPin > 0) servo_info[servoIndex].Pin.nbr = inPin;
pinMode(servo_info[servoIndex].Pin.nbr, OUTPUT); // set servo pin to output
// todo min/max check: ABS(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min) / 4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max) / 4;
// TODO: min/max check: ABS(min - MIN_PULSE_WIDTH) / 4 < 128
min = (MIN_PULSE_WIDTH - inMin) / 4; //resolution of min/max is 4 uS
max = (MAX_PULSE_WIDTH - inMax) / 4;
// initialize the timer if it has not already been initialized
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (!isTimerActive(timer)) initISR(timer);
servo_info[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
servo_info[servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
return this->servoIndex;
return servoIndex;
}
void Servo::detach() {
servo_info[this->servoIndex].Pin.isActive = false;
servo_info[servoIndex].Pin.isActive = false;
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (!isTimerActive(timer)) finISR(timer);
}
void Servo::write(int value) {
if (value < MIN_PULSE_WIDTH) // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(), SERVO_MAX());
this->writeMicroseconds(value);
value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(min), SERVO_MAX(max));
writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value) {
// calculate and store the values for the given channel
byte channel = this->servoIndex;
byte channel = servoIndex;
if (channel < MAX_SERVOS) { // ensure channel is valid
// ensure pulse width is valid
value = constrain(value, SERVO_MIN(), SERVO_MAX()) - (TRIM_DURATION);
value = constrain(value, SERVO_MIN(min), SERVO_MAX(max)) - (TRIM_DURATION);
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
CRITICAL_SECTION_START;
@ -136,22 +136,22 @@ void Servo::writeMicroseconds(int value) {
}
// return the value as degrees
int Servo::read() { return map(this->readMicroseconds() + 1, SERVO_MIN(), SERVO_MAX(), 0, 180); }
int Servo::read() { return map(readMicroseconds() + 1, SERVO_MIN(min), SERVO_MAX(max), 0, 180); }
int Servo::readMicroseconds() {
return (this->servoIndex == INVALID_SERVO) ? 0 : ticksToUs(servo_info[this->servoIndex].ticks) + (TRIM_DURATION);
return (servoIndex == INVALID_SERVO) ? 0 : ticksToUs(servo_info[servoIndex].ticks) + (TRIM_DURATION);
}
bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; }
bool Servo::attached() { return servo_info[servoIndex].Pin.isActive; }
void Servo::move(const int value) {
constexpr uint16_t servo_delay[] = SERVO_DELAY;
static_assert(COUNT(servo_delay) == NUM_SERVOS, "SERVO_DELAY must be an array NUM_SERVOS long.");
if (this->attach(0) >= 0) {
this->write(value);
safe_delay(servo_delay[this->servoIndex]);
if (attach(0) >= 0) {
write(value);
safe_delay(servo_delay[servoIndex]);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
detach();
#endif
}
}

@ -34,12 +34,12 @@ TWIBus::TWIBus() {
#else
Wire.begin(I2C_SLAVE_ADDRESS); // Join the bus as a slave
#endif
this->reset();
reset();
}
void TWIBus::reset() {
this->buffer_s = 0;
this->buffer[0] = 0x00;
buffer_s = 0;
buffer[0] = 0x00;
}
void TWIBus::address(const uint8_t adr) {
@ -47,7 +47,7 @@ void TWIBus::address(const uint8_t adr) {
SERIAL_ECHO_MSG("Bad I2C address (8-127)");
}
this->addr = adr;
addr = adr;
#if ENABLED(DEBUG_TWIBUS)
debug(PSTR("address"), adr);
@ -55,8 +55,8 @@ void TWIBus::address(const uint8_t adr) {
}
void TWIBus::addbyte(const char c) {
if (this->buffer_s >= COUNT(this->buffer)) return;
this->buffer[this->buffer_s++] = c;
if (buffer_s >= COUNT(buffer)) return;
buffer[buffer_s++] = c;
#if ENABLED(DEBUG_TWIBUS)
debug(PSTR("addbyte"), c);
#endif
@ -66,26 +66,26 @@ void TWIBus::addbytes(char src[], uint8_t bytes) {
#if ENABLED(DEBUG_TWIBUS)
debug(PSTR("addbytes"), bytes);
#endif
while (bytes--) this->addbyte(*src++);
while (bytes--) addbyte(*src++);
}
void TWIBus::addstring(char str[]) {
#if ENABLED(DEBUG_TWIBUS)
debug(PSTR("addstring"), str);
#endif
while (char c = *str++) this->addbyte(c);
while (char c = *str++) addbyte(c);
}
void TWIBus::send() {
#if ENABLED(DEBUG_TWIBUS)
debug(PSTR("send"), this->addr);
debug(PSTR("send"), addr);
#endif
Wire.beginTransmission(I2C_ADDRESS(this->addr));
Wire.write(this->buffer, this->buffer_s);
Wire.beginTransmission(I2C_ADDRESS(addr));
Wire.write(buffer, buffer_s);
Wire.endTransmission();
this->reset();
reset();
}
// static
@ -103,22 +103,22 @@ void TWIBus::echodata(uint8_t bytes, const char prefix[], uint8_t adr) {
}
void TWIBus::echobuffer(const char prefix[], uint8_t adr) {
echoprefix(this->buffer_s, prefix, adr);
for (uint8_t i = 0; i < this->buffer_s; i++) SERIAL_CHAR(this->buffer[i]);
echoprefix(buffer_s, prefix, adr);
for (uint8_t i = 0; i < buffer_s; i++) SERIAL_CHAR(buffer[i]);
SERIAL_EOL();
}
bool TWIBus::request(const uint8_t bytes) {
if (!this->addr) return false;
if (!addr) return false;
#if ENABLED(DEBUG_TWIBUS)
debug(PSTR("request"), bytes);
#endif
// requestFrom() is a blocking function
if (Wire.requestFrom(this->addr, bytes) == 0) {
if (Wire.requestFrom(addr, bytes) == 0) {
#if ENABLED(DEBUG_TWIBUS)
debug("request fail", this->addr);
debug("request fail", addr);
#endif
return false;
}
@ -131,12 +131,12 @@ void TWIBus::relay(const uint8_t bytes) {
debug(PSTR("relay"), bytes);
#endif
if (this->request(bytes))
echodata(bytes, PSTR("i2c-reply"), this->addr);
if (request(bytes))
echodata(bytes, PSTR("i2c-reply"), addr);
}
uint8_t TWIBus::capture(char *dst, const uint8_t bytes) {
this->reset();
reset();
uint8_t count = 0;
while (count < bytes && Wire.available())
dst[count++] = Wire.read();
@ -168,13 +168,13 @@ void TWIBus::flush() {
#endif
if (str) {
this->reset();
this->addstring(str);
reset();
addstring(str);
}
Wire.write(this->buffer, this->buffer_s);
Wire.write(buffer, buffer_s);
this->reset();
reset();
}
#endif

@ -218,7 +218,7 @@ class TWIBus {
* If a string is passed, write it into the buffer first.
*/
void reply(char str[]=nullptr);
inline void reply(const char str[]) { this->reply((char*)str); }
inline void reply(const char str[]) { reply((char*)str); }
#endif

@ -52,8 +52,8 @@ class CircularQueue {
* items that can be stored on the queue.
*/
CircularQueue<T, N>() {
this->buffer.size = N;
this->buffer.count = this->buffer.head = this->buffer.tail = 0;
buffer.size = N;
buffer.count = buffer.head = buffer.tail = 0;
}
/**
@ -63,15 +63,15 @@ class CircularQueue {
* @return type T item
*/
T dequeue() {
if (this->isEmpty()) return T();
if (isEmpty()) return T();
uint8_t index = this->buffer.head;
uint8_t index = buffer.head;
--this->buffer.count;
if (++this->buffer.head == this->buffer.size)
this->buffer.head = 0;
--buffer.count;
if (++buffer.head == buffer.size)
buffer.head = 0;
return this->buffer.queue[index];
return buffer.queue[index];
}
/**
@ -82,13 +82,13 @@ class CircularQueue {
* @return true if the operation was successful
*/
bool enqueue(T const &item) {
if (this->isFull()) return false;
if (isFull()) return false;
this->buffer.queue[this->buffer.tail] = item;
buffer.queue[buffer.tail] = item;
++this->buffer.count;
if (++this->buffer.tail == this->buffer.size)
this->buffer.tail = 0;
++buffer.count;
if (++buffer.tail == buffer.size)
buffer.tail = 0;
return true;
}
@ -98,27 +98,21 @@ class CircularQueue {
* @details Returns true if there are no items on the queue, false otherwise.
* @return true if queue is empty
*/
bool isEmpty() {
return this->buffer.count == 0;
}
bool isEmpty() { return buffer.count == 0; }
/**
* @brief Checks if the queue is full
* @details Returns true if the queue is full, false otherwise.
* @return true if queue is full
*/
bool isFull() {
return this->buffer.count == this->buffer.size;
}
bool isFull() { return buffer.count == buffer.size; }
/**
* @brief Gets the queue size
* @details Returns the maximum number of items a queue can have.
* @return the queue size
*/
uint8_t size() {
return this->buffer.size;
}
uint8_t size() { return buffer.size; }
/**
* @brief Gets the next item from the queue without removing it
@ -126,16 +120,12 @@ class CircularQueue {
* or updating the pointers.
* @return first item in the queue
*/
T peek() {
return this->buffer.queue[this->buffer.head];
}
T peek() { return buffer.queue[buffer.head]; }
/**
* @brief Gets the number of items on the queue
* @details Returns the current number of items stored on the queue.
* @return number of items in the queue
*/
uint8_t count() {
return this->buffer.count;
}
uint8_t count() { return buffer.count; }
};

Loading…
Cancel
Save