Temperature singleton class

2.0.x
Scott Lahteine 9 years ago
parent 142bd3f3e7
commit 084f6b5b44

@ -340,10 +340,6 @@ extern int16_t code_value_short();
extern uint8_t host_keepalive_interval; extern uint8_t host_keepalive_interval;
#endif #endif
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
extern float extrude_min_temp;
#endif
#if FAN_COUNT > 0 #if FAN_COUNT > 0
extern int fanSpeeds[FAN_COUNT]; extern int fanSpeeds[FAN_COUNT];
#endif #endif

@ -544,10 +544,6 @@ static void report_current_position();
} }
#endif #endif
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
float extrude_min_temp = EXTRUDE_MINTEMP;
#endif
#if ENABLED(SDSUPPORT) #if ENABLED(SDSUPPORT)
#include "SdFatUtil.h" #include "SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); } int freeMemory() { return SdFatUtil::FreeRam(); }
@ -816,7 +812,7 @@ void setup() {
lcd_init(); lcd_init();
tp_init(); // Initialize temperature loop thermalManager.init(); // Initialize temperature loop
#if ENABLED(DELTA) || ENABLED(SCARA) #if ENABLED(DELTA) || ENABLED(SCARA)
// Vital to init kinematic equivalent for X0 Y0 Z0 // Vital to init kinematic equivalent for X0 Y0 Z0
@ -3839,7 +3835,7 @@ inline void gcode_M31() {
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLN(time); SERIAL_ECHOLN(time);
lcd_setstatus(time); lcd_setstatus(time);
autotempShutdown(); thermalManager.autotempShutdown();
} }
#if ENABLED(SDSUPPORT) #if ENABLED(SDSUPPORT)
@ -4274,10 +4270,10 @@ inline void gcode_M104() {
if (code_seen('S')) { if (code_seen('S')) {
float temp = code_value(); float temp = code_value();
setTargetHotend(temp, target_extruder); thermalManager.setTargetHotend(temp, target_extruder);
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset); thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
#endif #endif
/** /**
@ -4296,7 +4292,7 @@ inline void gcode_M104() {
*/ */
else print_job_timer.start(); else print_job_timer.start();
if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING); if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
} }
} }
@ -4305,41 +4301,41 @@ inline void gcode_M104() {
void print_heaterstates() { void print_heaterstates() {
#if HAS_TEMP_HOTEND #if HAS_TEMP_HOTEND
SERIAL_PROTOCOLPGM(" T:"); SERIAL_PROTOCOLPGM(" T:");
SERIAL_PROTOCOL_F(degHotend(target_extruder), 1); SERIAL_PROTOCOL_F(thermalManager.degHotend(target_extruder), 1);
SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1); SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(target_extruder), 1);
#endif #endif
#if HAS_TEMP_BED #if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1); SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetBed(), 1); SERIAL_PROTOCOL_F(thermalManager.degTargetBed(), 1);
#endif #endif
#if EXTRUDERS > 1 #if EXTRUDERS > 1
for (int8_t e = 0; e < EXTRUDERS; ++e) { for (int8_t e = 0; e < EXTRUDERS; ++e) {
SERIAL_PROTOCOLPGM(" T"); SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(e); SERIAL_PROTOCOL(e);
SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOL_F(degHotend(e), 1); SERIAL_PROTOCOL_F(thermalManager.degHotend(e), 1);
SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(e), 1); SERIAL_PROTOCOL_F(thermalManager.degTargetHotend(e), 1);
} }
#endif #endif
#if HAS_TEMP_BED #if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" B@:"); SERIAL_PROTOCOLPGM(" B@:");
#ifdef BED_WATTS #ifdef BED_WATTS
SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127); SERIAL_PROTOCOL(((BED_WATTS) * thermalManager.getHeaterPower(-1)) / 127);
SERIAL_PROTOCOLCHAR('W'); SERIAL_PROTOCOLCHAR('W');
#else #else
SERIAL_PROTOCOL(getHeaterPower(-1)); SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1));
#endif #endif
#endif #endif
SERIAL_PROTOCOLPGM(" @:"); SERIAL_PROTOCOLPGM(" @:");
#ifdef EXTRUDER_WATTS #ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127); SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(target_extruder)) / 127);
SERIAL_PROTOCOLCHAR('W'); SERIAL_PROTOCOLCHAR('W');
#else #else
SERIAL_PROTOCOL(getHeaterPower(target_extruder)); SERIAL_PROTOCOL(thermalManager.getHeaterPower(target_extruder));
#endif #endif
#if EXTRUDERS > 1 #if EXTRUDERS > 1
for (int8_t e = 0; e < EXTRUDERS; ++e) { for (int8_t e = 0; e < EXTRUDERS; ++e) {
@ -4347,27 +4343,27 @@ inline void gcode_M104() {
SERIAL_PROTOCOL(e); SERIAL_PROTOCOL(e);
SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOLCHAR(':');
#ifdef EXTRUDER_WATTS #ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127); SERIAL_PROTOCOL(((EXTRUDER_WATTS) * thermalManager.getHeaterPower(e)) / 127);
SERIAL_PROTOCOLCHAR('W'); SERIAL_PROTOCOLCHAR('W');
#else #else
SERIAL_PROTOCOL(getHeaterPower(e)); SERIAL_PROTOCOL(thermalManager.getHeaterPower(e));
#endif #endif
} }
#endif #endif
#if ENABLED(SHOW_TEMP_ADC_VALUES) #if ENABLED(SHOW_TEMP_ADC_VALUES)
#if HAS_TEMP_BED #if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" ADC B:"); SERIAL_PROTOCOLPGM(" ADC B:");
SERIAL_PROTOCOL_F(degBed(), 1); SERIAL_PROTOCOL_F(thermalManager.degBed(), 1);
SERIAL_PROTOCOLPGM("C->"); SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0); SERIAL_PROTOCOL_F(thermalManager.rawBedTemp() / OVERSAMPLENR, 0);
#endif #endif
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T"); SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder); SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1); SERIAL_PROTOCOL_F(thermalManager.degHotend(cur_extruder), 1);
SERIAL_PROTOCOLPGM("C->"); SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0); SERIAL_PROTOCOL_F(thermalManager.rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
} }
#endif #endif
} }
@ -4427,10 +4423,10 @@ inline void gcode_M109() {
bool no_wait_for_cooling = code_seen('S'); bool no_wait_for_cooling = code_seen('S');
if (no_wait_for_cooling || code_seen('R')) { if (no_wait_for_cooling || code_seen('R')) {
float temp = code_value(); float temp = code_value();
setTargetHotend(temp, target_extruder); thermalManager.setTargetHotend(temp, target_extruder);
#if ENABLED(DUAL_X_CARRIAGE) #if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset); thermalManager.setTargetHotend(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset, 1);
#endif #endif
/** /**
@ -4449,7 +4445,7 @@ inline void gcode_M109() {
*/ */
else print_job_timer.start(); else print_job_timer.start();
if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING); if (temp > thermalManager.degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
} }
#if ENABLED(AUTOTEMP) #if ENABLED(AUTOTEMP)
@ -4462,7 +4458,7 @@ inline void gcode_M109() {
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)) #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
#else #else
// Loop until the temperature is very close target // Loop until the temperature is very close target
#define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder)) #define TEMP_CONDITIONS (wants_to_cool ? thermalManager.isCoolingHotend(target_extruder) : thermalManager.isHeatingHotend(target_extruder))
#endif //TEMP_RESIDENCY_TIME > 0 #endif //TEMP_RESIDENCY_TIME > 0
float theTarget = -1; float theTarget = -1;
@ -4473,7 +4469,6 @@ inline void gcode_M109() {
KEEPALIVE_STATE(NOT_BUSY); KEEPALIVE_STATE(NOT_BUSY);
do { do {
now = millis(); now = millis();
if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
next_temp_ms = now + 1000UL; next_temp_ms = now + 1000UL;
@ -4495,9 +4490,9 @@ inline void gcode_M109() {
} }
// Target temperature might be changed during the loop // Target temperature might be changed during the loop
if (theTarget != degTargetHotend(target_extruder)) { if (theTarget != thermalManager.degTargetHotend(target_extruder)) {
theTarget = degTargetHotend(target_extruder); wants_to_cool = thermalManager.isCoolingHotend(target_extruder);
wants_to_cool = isCoolingHotend(target_extruder); theTarget = thermalManager.degTargetHotend(target_extruder);
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher> // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break; if (no_wait_for_cooling && wants_to_cool) break;
@ -4512,7 +4507,7 @@ inline void gcode_M109() {
#if TEMP_RESIDENCY_TIME > 0 #if TEMP_RESIDENCY_TIME > 0
float temp_diff = fabs(theTarget - degHotend(target_extruder)); float temp_diff = fabs(theTarget - thermalManager.degHotend(target_extruder));
if (!residency_start_ms) { if (!residency_start_ms) {
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time. // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
@ -4542,7 +4537,7 @@ inline void gcode_M109() {
LCD_MESSAGEPGM(MSG_BED_HEATING); LCD_MESSAGEPGM(MSG_BED_HEATING);
bool no_wait_for_cooling = code_seen('S'); bool no_wait_for_cooling = code_seen('S');
if (no_wait_for_cooling || code_seen('R')) setTargetBed(code_value()); if (no_wait_for_cooling || code_seen('R')) thermalManager.setTargetBed(code_value());
#if TEMP_BED_RESIDENCY_TIME > 0 #if TEMP_BED_RESIDENCY_TIME > 0
millis_t residency_start_ms = 0; millis_t residency_start_ms = 0;
@ -4550,7 +4545,7 @@ inline void gcode_M109() {
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL)) #define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
#else #else
// Loop until the temperature is very close target // Loop until the temperature is very close target
#define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed()) #define TEMP_BED_CONDITIONS (wants_to_cool ? thermalManager.isCoolingBed() : thermalManager.isHeatingBed())
#endif //TEMP_BED_RESIDENCY_TIME > 0 #endif //TEMP_BED_RESIDENCY_TIME > 0
float theTarget = -1; float theTarget = -1;
@ -4580,16 +4575,16 @@ inline void gcode_M109() {
} }
// Target temperature might be changed during the loop // Target temperature might be changed during the loop
if (theTarget != degTargetBed()) { if (theTarget != thermalManager.degTargetBed()) {
theTarget = degTargetBed(); wants_to_cool = thermalManager.isCoolingBed();
wants_to_cool = isCoolingBed(); theTarget = thermalManager.degTargetBed();
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher> // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
if (no_wait_for_cooling && wants_to_cool) break; if (no_wait_for_cooling && wants_to_cool) break;
// Prevent a wait-forever situation if R is misused i.e. M190 R0 // Prevent a wait-forever situation if R is misused i.e. M190 R0
// Simply don't wait for cooling below 30C // Simply don't wait to cool a bed under 30C
if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break; if (wants_to_cool && theTarget < 30) break;
} }
idle(); idle();
@ -4597,7 +4592,7 @@ inline void gcode_M109() {
#if TEMP_BED_RESIDENCY_TIME > 0 #if TEMP_BED_RESIDENCY_TIME > 0
float temp_diff = fabs(degBed() - degTargetBed()); float temp_diff = fabs(theTarget - thermalManager.degBed());
if (!residency_start_ms) { if (!residency_start_ms) {
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time. // Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
@ -4720,7 +4715,7 @@ inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
*/ */
inline void gcode_M140() { inline void gcode_M140() {
if (DEBUGGING(DRYRUN)) return; if (DEBUGGING(DRYRUN)) return;
if (code_seen('S')) setTargetBed(code_value()); if (code_seen('S')) thermalManager.setTargetBed(code_value());
} }
#if ENABLED(ULTIPANEL) #if ENABLED(ULTIPANEL)
@ -4811,7 +4806,7 @@ inline void gcode_M140() {
* This code should ALWAYS be available for EMERGENCY SHUTDOWN! * This code should ALWAYS be available for EMERGENCY SHUTDOWN!
*/ */
inline void gcode_M81() { inline void gcode_M81() {
disable_all_heaters(); thermalManager.disable_all_heaters();
stepper.finish_and_disable(); stepper.finish_and_disable();
#if FAN_COUNT > 0 #if FAN_COUNT > 0
#if FAN_COUNT > 1 #if FAN_COUNT > 1
@ -5469,7 +5464,7 @@ inline void gcode_M226() {
NOMORE(lpq_len, LPQ_MAX_LEN); NOMORE(lpq_len, LPQ_MAX_LEN);
#endif #endif
updatePID(); thermalManager.updatePID();
SERIAL_ECHO_START; SERIAL_ECHO_START;
#if ENABLED(PID_PARAMS_PER_EXTRUDER) #if ENABLED(PID_PARAMS_PER_EXTRUDER)
SERIAL_ECHO(" e:"); // specify extruder in serial output SERIAL_ECHO(" e:"); // specify extruder in serial output
@ -5499,18 +5494,19 @@ inline void gcode_M226() {
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
inline void gcode_M304() { inline void gcode_M304() {
if (code_seen('P')) bedKp = code_value(); if (code_seen('P')) thermalManager.bedKp = code_value();
if (code_seen('I')) bedKi = scalePID_i(code_value()); if (code_seen('I')) thermalManager.bedKi = scalePID_i(code_value());
if (code_seen('D')) bedKd = scalePID_d(code_value()); if (code_seen('D')) thermalManager.bedKd = scalePID_d(code_value());
thermalManager.updatePID();
updatePID();
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHO(" p:"); SERIAL_ECHO(" p:");
SERIAL_ECHO(bedKp); SERIAL_ECHO(thermalManager.bedKp);
SERIAL_ECHO(" i:"); SERIAL_ECHO(" i:");
SERIAL_ECHO(unscalePID_i(bedKi)); SERIAL_ECHO(unscalePID_i(thermalManager.bedKi));
SERIAL_ECHO(" d:"); SERIAL_ECHO(" d:");
SERIAL_ECHOLN(unscalePID_d(bedKd)); SERIAL_ECHOLN(unscalePID_d(thermalManager.bedKd));
} }
#endif // PIDTEMPBED #endif // PIDTEMPBED
@ -5567,13 +5563,11 @@ inline void gcode_M226() {
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE) #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
/** /**
* M302: Allow cold extrudes, or set the minimum extrude S<temperature>. * M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
*/ */
inline void gcode_M302() { inline void gcode_M302() {
set_extrude_min_temp(code_seen('S') ? code_value() : 0); thermalManager.extrude_min_temp = code_seen('S') ? code_value() : 0;
} }
#endif // PREVENT_DANGEROUS_EXTRUDE #endif // PREVENT_DANGEROUS_EXTRUDE
@ -5599,7 +5593,7 @@ inline void gcode_M303() {
KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
PID_autotune(temp, e, c, u); thermalManager.PID_autotune(temp, e, c, u);
KEEPALIVE_STATE(IN_HANDLER); KEEPALIVE_STATE(IN_HANDLER);
#else #else
@ -5781,7 +5775,7 @@ inline void gcode_M400() { stepper.synchronize(); }
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY); NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
int temp_ratio = widthFil_to_size_ratio(); int temp_ratio = thermalManager.widthFil_to_size_ratio();
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i) for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
@ -5984,7 +5978,7 @@ inline void gcode_M503() {
*/ */
inline void gcode_M600() { inline void gcode_M600() {
if (degHotend(active_extruder) < extrude_min_temp) { if (thermalManager.tooColdToExtrude(active_extruder)) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600); SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
return; return;
@ -7268,7 +7262,7 @@ void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate,
if (DEBUGGING(DRYRUN)) return; if (DEBUGGING(DRYRUN)) return;
float de = dest_e - curr_e; float de = dest_e - curr_e;
if (de) { if (de) {
if (degHotend(active_extruder) < extrude_min_temp) { if (thermalManager.tooColdToExtrude(active_extruder)) {
curr_e = dest_e; // Behave as if the move really took place, but ignore E part curr_e = dest_e; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START; SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
@ -7565,7 +7559,7 @@ void plan_arc(
millis_t ms = millis(); millis_t ms = millis();
if (ELAPSED(ms, nextMotorCheck)) { if (ELAPSED(ms, nextMotorCheck)) {
nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0 if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled... || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
#if EXTRUDERS > 1 #if EXTRUDERS > 1
|| E1_ENABLE_READ == E_ENABLE_ON || E1_ENABLE_READ == E_ENABLE_ON
@ -7683,9 +7677,9 @@ void plan_arc(
if (ELAPSED(millis(), next_status_led_update_ms)) { if (ELAPSED(millis(), next_status_led_update_ms)) {
next_status_led_update_ms += 500; // Update every 0.5s next_status_led_update_ms += 500; // Update every 0.5s
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder)); max_temp = max(max(max_temp, thermalManager.degHotend(cur_extruder)), thermalManager.degTargetHotend(cur_extruder));
#if HAS_TEMP_BED #if HAS_TEMP_BED
max_temp = max(max(max_temp, degTargetBed()), degBed()); max_temp = max(max(max_temp, thermalManager.degTargetBed()), thermalManager.degBed());
#endif #endif
bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led; bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
if (new_led != red_led) { if (new_led != red_led) {
@ -7726,7 +7720,7 @@ void idle(
bool no_stepper_sleep/*=false*/ bool no_stepper_sleep/*=false*/
#endif #endif
) { ) {
manage_heater(); thermalManager.manage_heater();
manage_inactivity( manage_inactivity(
#if ENABLED(FILAMENTCHANGEENABLE) #if ENABLED(FILAMENTCHANGEENABLE)
no_stepper_sleep no_stepper_sleep
@ -7831,7 +7825,7 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
#if ENABLED(EXTRUDER_RUNOUT_PREVENT) #if ENABLED(EXTRUDER_RUNOUT_PREVENT)
if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)) if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) { if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
bool oldstatus; bool oldstatus;
switch (active_extruder) { switch (active_extruder) {
case 0: case 0:
@ -7914,7 +7908,7 @@ void kill(const char* lcd_msg) {
#endif #endif
cli(); // Stop interrupts cli(); // Stop interrupts
disable_all_heaters(); thermalManager.disable_all_heaters();
disable_all_steppers(); disable_all_steppers();
#if HAS_POWER_SWITCH #if HAS_POWER_SWITCH
@ -8010,7 +8004,7 @@ void kill(const char* lcd_msg) {
#endif // FAST_PWM_FAN #endif // FAST_PWM_FAN
void stop() { void stop() {
disable_all_heaters(); thermalManager.disable_all_heaters();
if (IsRunning()) { if (IsRunning()) {
Running = false; Running = false;
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart

@ -609,7 +609,7 @@ void CardReader::printingHasFinished() {
sdprinting = false; sdprinting = false;
if (SD_FINISHED_STEPPERRELEASE) if (SD_FINISHED_STEPPERRELEASE)
enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND));
autotempShutdown(); thermalManager.autotempShutdown();
} }
} }

@ -95,7 +95,7 @@
* 363 M301 L lpq_len (int) * 363 M301 L lpq_len (int)
* *
* PIDTEMPBED: * PIDTEMPBED:
* 365 M304 PID bedKp, bedKi, bedKd (float x3) * 365 M304 PID thermalManager.bedKp, thermalManager.bedKi, thermalManager.bedKd (float x3)
* *
* DOGLCD: * DOGLCD:
* 377 M250 C lcd_contrast (int) * 377 M250 C lcd_contrast (int)
@ -261,9 +261,9 @@ void Config_StoreSettings() {
#endif // !PIDTEMP #endif // !PIDTEMP
{ {
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
EEPROM_WRITE_VAR(i, dummy); EEPROM_WRITE_VAR(i, dummy); // Kp
dummy = 0.0f; dummy = 0.0f;
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy); // Ki, Kd, Kc
} }
} // Extruders Loop } // Extruders Loop
@ -274,13 +274,14 @@ void Config_StoreSettings() {
EEPROM_WRITE_VAR(i, lpq_len); EEPROM_WRITE_VAR(i, lpq_len);
#if DISABLED(PIDTEMPBED) #if DISABLED(PIDTEMPBED)
float bedKp = DUMMY_PID_VALUE, bedKi = DUMMY_PID_VALUE, bedKd = DUMMY_PID_VALUE; dummy = DUMMY_PID_VALUE;
for (uint8_t q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
#else
EEPROM_WRITE_VAR(i, thermalManager.bedKp);
EEPROM_WRITE_VAR(i, thermalManager.bedKi);
EEPROM_WRITE_VAR(i, thermalManager.bedKd);
#endif #endif
EEPROM_WRITE_VAR(i, bedKp);
EEPROM_WRITE_VAR(i, bedKi);
EEPROM_WRITE_VAR(i, bedKd);
#if DISABLED(HAS_LCD_CONTRAST) #if DISABLED(HAS_LCD_CONTRAST)
const int lcd_contrast = 32; const int lcd_contrast = 32;
#endif #endif
@ -450,20 +451,17 @@ void Config_RetrieveSettings() {
#endif #endif
EEPROM_READ_VAR(i, lpq_len); EEPROM_READ_VAR(i, lpq_len);
#if DISABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
float bedKp, bedKi, bedKd; EEPROM_READ_VAR(i, dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) {
thermalManager.bedKp = dummy;
EEPROM_READ_VAR(i, thermalManager.bedKi);
EEPROM_READ_VAR(i, thermalManager.bedKd);
}
#else
for (uint8_t q=3; q--;) EEPROM_READ_VAR(i, dummy); // bedKp, bedKi, bedKd
#endif #endif
EEPROM_READ_VAR(i, dummy); // bedKp
if (dummy != DUMMY_PID_VALUE) {
bedKp = dummy; UNUSED(bedKp);
EEPROM_READ_VAR(i, bedKi);
EEPROM_READ_VAR(i, bedKd);
}
else {
for (uint8_t q=2; q--;) EEPROM_READ_VAR(i, dummy); // bedKi, bedKd
}
#if DISABLED(HAS_LCD_CONTRAST) #if DISABLED(HAS_LCD_CONTRAST)
int lcd_contrast; int lcd_contrast;
#endif #endif
@ -502,8 +500,8 @@ void Config_RetrieveSettings() {
} }
calculate_volumetric_multipliers(); calculate_volumetric_multipliers();
// Call updatePID (similar to when we have processed M301) // Call thermalManager.updatePID (similar to when we have processed M301)
updatePID(); thermalManager.updatePID();
// Report settings retrieved and length // Report settings retrieved and length
SERIAL_ECHO_START; SERIAL_ECHO_START;
@ -602,14 +600,14 @@ void Config_ResetDefault() {
#if ENABLED(PID_ADD_EXTRUSION_RATE) #if ENABLED(PID_ADD_EXTRUSION_RATE)
lpq_len = 20; // default last-position-queue size lpq_len = 20; // default last-position-queue size
#endif #endif
// call updatePID (similar to when we have processed M301) // call thermalManager.updatePID (similar to when we have processed M301)
updatePID(); thermalManager.updatePID();
#endif // PIDTEMP #endif // PIDTEMP
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
bedKp = DEFAULT_bedKp; thermalManager.bedKp = DEFAULT_bedKp;
bedKi = scalePID_i(DEFAULT_bedKi); thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
bedKd = scalePID_d(DEFAULT_bedKd); thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
#endif #endif
#if ENABLED(FWRETRACT) #if ENABLED(FWRETRACT)
@ -835,9 +833,9 @@ void Config_PrintSettings(bool forReplay) {
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
CONFIG_ECHO_START; CONFIG_ECHO_START;
SERIAL_ECHOPAIR(" M304 P", bedKp); SERIAL_ECHOPAIR(" M304 P", thermalManager.bedKp);
SERIAL_ECHOPAIR(" I", unscalePID_i(bedKi)); SERIAL_ECHOPAIR(" I", unscalePID_i(thermalManager.bedKi));
SERIAL_ECHOPAIR(" D", unscalePID_d(bedKd)); SERIAL_ECHOPAIR(" D", unscalePID_d(thermalManager.bedKd));
SERIAL_EOL; SERIAL_EOL;
#endif #endif

@ -294,13 +294,13 @@ FORCE_INLINE void _draw_heater_status(int x, int heater) {
const bool isBed = false; const bool isBed = false;
#endif #endif
_draw_centered_temp((isBed ? degTargetBed() : degTargetHotend(heater)) + 0.5, x, 7); _draw_centered_temp((isBed ? thermalManager.degTargetBed() : thermalManager.degTargetHotend(heater)) + 0.5, x, 7);
_draw_centered_temp((isBed ? degBed() : degHotend(heater)) + 0.5, x, 28); _draw_centered_temp((isBed ? thermalManager.degBed() : thermalManager.degHotend(heater)) + 0.5, x, 28);
int h = isBed ? 7 : 8, int h = isBed ? 7 : 8,
y = isBed ? 18 : 17; y = isBed ? 18 : 17;
if (isBed ? isHeatingBed() : isHeatingHotend(heater)) { if (isBed ? thermalManager.isHeatingBed() : thermalManager.isHeatingHotend(heater)) {
u8g.setColorIndex(0); // white on black u8g.setColorIndex(0); // white on black
u8g.drawBox(x + h, y, 2, 2); u8g.drawBox(x + h, y, 2, 2);
u8g.setColorIndex(1); // black on white u8g.setColorIndex(1); // black on white

@ -153,7 +153,7 @@ void Endstops::report_state() {
card.sdprinting = false; card.sdprinting = false;
card.closefile(); card.closefile();
stepper.quick_stop(); stepper.quick_stop();
disable_all_heaters(); // switch off all heaters. thermalManager.disable_all_heaters(); // switch off all heaters.
} }
#endif #endif
} }

@ -304,7 +304,7 @@ void Planner::recalculate() {
static float oldt = 0; static float oldt = 0;
if (!autotemp_enabled) return; if (!autotemp_enabled) return;
if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero. if (thermalManager.degTargetHotend(0) + 2 < autotemp_min) return; // probably temperature set to zero.
float high = 0.0; float high = 0.0;
for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) { for (uint8_t b = block_buffer_tail; b != block_buffer_head; b = next_block_index(b)) {
@ -322,7 +322,7 @@ void Planner::recalculate() {
t += (AUTOTEMP_OLDWEIGHT) * oldt; t += (AUTOTEMP_OLDWEIGHT) * oldt;
} }
oldt = t; oldt = t;
setTargetHotend0(t); thermalManager.setTargetHotend(t, 0);
} }
#endif //AUTOTEMP #endif //AUTOTEMP
@ -489,11 +489,12 @@ void Planner::check_axes_activity() {
// The target position of the tool in absolute steps // The target position of the tool in absolute steps
// Calculate target position in absolute steps // Calculate target position in absolute steps
//this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow
long target[NUM_AXIS]; long target[NUM_AXIS] = {
target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]); lround(x * axis_steps_per_unit[X_AXIS]),
target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]); lround(y * axis_steps_per_unit[Y_AXIS]),
target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]); lround(z * axis_steps_per_unit[Z_AXIS]),
target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); lround(e * axis_steps_per_unit[E_AXIS])
};
long dx = target[X_AXIS] - position[X_AXIS], long dx = target[X_AXIS] - position[X_AXIS],
dy = target[Y_AXIS] - position[Y_AXIS], dy = target[Y_AXIS] - position[Y_AXIS],
@ -507,7 +508,7 @@ void Planner::check_axes_activity() {
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE) #if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
if (de) { if (de) {
if (degHotend(extruder) < extrude_min_temp) { if (thermalManager.tooColdToExtrude(extruder)) {
position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part
de = 0; // no difference de = 0; // no difference
SERIAL_ECHO_START; SERIAL_ECHO_START;
@ -788,7 +789,7 @@ void Planner::check_axes_activity() {
// If the index has changed (must have gone forward)... // If the index has changed (must have gone forward)...
if (filwidth_delay_index1 != filwidth_delay_index2) { if (filwidth_delay_index1 != filwidth_delay_index2) {
filwidth_e_count = 0; // Reset the E movement counter filwidth_e_count = 0; // Reset the E movement counter
int8_t meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char int8_t meas_sample = thermalManager.widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char
do { do {
filwidth_delay_index2 = (filwidth_delay_index2 + 1) % MMD_CM; // The next unused slot filwidth_delay_index2 = (filwidth_delay_index2 + 1) % MMD_CM; // The next unused slot
measurement_delay[filwidth_delay_index2] = meas_sample; // Store the measurement measurement_delay[filwidth_delay_index2] = meas_sample; // Store the measurement

@ -21,24 +21,8 @@
*/ */
/** /**
temperature.cpp - temperature control * temperature.cpp - temperature control
Part of Marlin */
Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "Marlin.h" #include "Marlin.h"
#include "ultralcd.h" #include "ultralcd.h"
@ -50,144 +34,10 @@
#include "watchdog.h" #include "watchdog.h"
#endif #endif
//===========================================================================
//================================== macros =================================
//===========================================================================
#ifdef K1 // Defined in Configuration.h in the PID settings #ifdef K1 // Defined in Configuration.h in the PID settings
#define K2 (1.0-K1) #define K2 (1.0-K1)
#endif #endif
#if ENABLED(PIDTEMPBED) || ENABLED(PIDTEMP)
#define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
#endif
//===========================================================================
//============================= public variables ============================
//===========================================================================
int target_temperature[4] = { 0 };
int target_temperature_bed = 0;
int current_temperature_raw[4] = { 0 };
float current_temperature[4] = { 0.0 };
int current_temperature_bed_raw = 0;
float current_temperature_bed = 0.0;
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
int redundant_temperature_raw = 0;
float redundant_temperature = 0.0;
#endif
#if ENABLED(PIDTEMPBED)
float bedKp = DEFAULT_bedKp;
float bedKi = (DEFAULT_bedKi* PID_dT);
float bedKd = (DEFAULT_bedKd / PID_dT);
#endif //PIDTEMPBED
#if ENABLED(FAN_SOFT_PWM)
unsigned char fanSpeedSoftPwm[FAN_COUNT];
#endif
unsigned char soft_pwm_bed;
#if ENABLED(BABYSTEPPING)
volatile int babystepsTodo[3] = { 0 };
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
#endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || ENABLED(THERMAL_PROTECTION_BED)
enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway };
void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
static TRState thermal_runaway_state_machine[4] = { TRReset, TRReset, TRReset, TRReset };
static millis_t thermal_runaway_timer[4]; // = {0,0,0,0};
#endif
#if ENABLED(THERMAL_PROTECTION_BED) && TEMP_SENSOR_BED != 0
static TRState thermal_runaway_bed_state_machine = TRReset;
static millis_t thermal_runaway_bed_timer;
#endif
#endif
//===========================================================================
//============================ private variables ============================
//===========================================================================
static volatile bool temp_meas_ready = false;
#if ENABLED(PIDTEMP)
//static cannot be external:
static float temp_iState[EXTRUDERS] = { 0 };
static float temp_dState[EXTRUDERS] = { 0 };
static float pTerm[EXTRUDERS];
static float iTerm[EXTRUDERS];
static float dTerm[EXTRUDERS];
#if ENABLED(PID_ADD_EXTRUSION_RATE)
static float cTerm[EXTRUDERS];
static long last_position[EXTRUDERS];
static long lpq[LPQ_MAX_LEN];
static int lpq_ptr = 0;
#endif
//int output;
static float pid_error[EXTRUDERS];
static float temp_iState_min[EXTRUDERS];
static float temp_iState_max[EXTRUDERS];
static bool pid_reset[EXTRUDERS];
#endif //PIDTEMP
#if ENABLED(PIDTEMPBED)
//static cannot be external:
static float temp_iState_bed = { 0 };
static float temp_dState_bed = { 0 };
static float pTerm_bed;
static float iTerm_bed;
static float dTerm_bed;
//int output;
static float pid_error_bed;
static float temp_iState_min_bed;
static float temp_iState_max_bed;
#else //PIDTEMPBED
static millis_t next_bed_check_ms;
#endif //PIDTEMPBED
static unsigned char soft_pwm[EXTRUDERS];
#if ENABLED(FAN_SOFT_PWM)
static unsigned char soft_pwm_fan[FAN_COUNT];
#endif
#if HAS_AUTO_FAN
static millis_t next_auto_fan_check_ms;
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
float Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_Kp);
float Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS1((DEFAULT_Ki) * (PID_dT));
float Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS1((DEFAULT_Kd) / (PID_dT));
#if ENABLED(PID_ADD_EXTRUSION_RATE)
float Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_Kc);
#endif // PID_ADD_EXTRUSION_RATE
#else //PID_PARAMS_PER_EXTRUDER
float Kp = DEFAULT_Kp;
float Ki = (DEFAULT_Ki) * (PID_dT);
float Kd = (DEFAULT_Kd) / (PID_dT);
#if ENABLED(PID_ADD_EXTRUSION_RATE)
float Kc = DEFAULT_Kc;
#endif // PID_ADD_EXTRUSION_RATE
#endif // PID_PARAMS_PER_EXTRUDER
#endif //PIDTEMP
// Init min and max temp with extreme values to prevent false errors during startup
static int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
static int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
static int minttemp[EXTRUDERS] = { 0 };
static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(16383);
#ifdef BED_MINTEMP
static int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
static int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
static void* heater_ttbl_map[2] = {(void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE }; static void* heater_ttbl_map[2] = {(void*)HEATER_0_TEMPTABLE, (void*)HEATER_1_TEMPTABLE };
static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN }; static uint8_t heater_ttbllen_map[2] = { HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN };
@ -196,39 +46,11 @@ static int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(16383);
static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN); static uint8_t heater_ttbllen_map[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_TEMPTABLE_LEN, HEATER_1_TEMPTABLE_LEN, HEATER_2_TEMPTABLE_LEN, HEATER_3_TEMPTABLE_LEN);
#endif #endif
static float analog2temp(int raw, uint8_t e); Temperature thermalManager;
static float analog2tempBed(int raw);
static void updateTemperaturesFromRawValues();
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
int watch_target_temp[EXTRUDERS] = { 0 };
millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
#endif
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
int watch_target_bed_temp = 0;
millis_t watch_bed_next_ms = 0;
#endif
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
static int meas_shift_index; //used to point to a delayed sample in buffer for filament width sensor
#endif
#if ENABLED(HEATER_0_USES_MAX6675)
static int read_max6675();
#endif
//===========================================================================
//================================ Functions ================================
//===========================================================================
#if HAS_PID_HEATING #if HAS_PID_HEATING
void PID_autotune(float temp, int extruder, int ncycles, bool set_result/*=false*/) { void Temperature::PID_autotune(float temp, int extruder, int ncycles, bool set_result/*=false*/) {
float input = 0.0; float input = 0.0;
int cycles = 0; int cycles = 0;
bool heating = true; bool heating = true;
@ -242,7 +64,7 @@ static void updateTemperaturesFromRawValues();
float max = 0, min = 10000; float max = 0, min = 10000;
#if HAS_AUTO_FAN #if HAS_AUTO_FAN
millis_t next_auto_fan_check_ms = temp_ms + 2500UL; next_auto_fan_check_ms = temp_ms + 2500UL;
#endif #endif
if (false if (false
@ -459,9 +281,37 @@ static void updateTemperaturesFromRawValues();
} }
} }
#endif // PIDTEMP #endif // HAS_PID_HEATING
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
float Temperature::Kp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_Kp),
Temperature::Ki[EXTRUDERS] = ARRAY_BY_EXTRUDERS1((DEFAULT_Ki) * (PID_dT)),
Temperature::Kd[EXTRUDERS] = ARRAY_BY_EXTRUDERS1((DEFAULT_Kd) / (PID_dT));
void updatePID() { #if ENABLED(PID_ADD_EXTRUSION_RATE)
float Temperature::Kc[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_Kc);
#endif
#else
float Temperature::Kp = DEFAULT_Kp,
Temperature::Ki = (DEFAULT_Ki) * (PID_dT),
Temperature::Kd = (DEFAULT_Kd) / (PID_dT);
#if ENABLED(PID_ADD_EXTRUSION_RATE)
float Temperature::Kc = DEFAULT_Kc;
#endif
#endif
#endif
Temperature::Temperature() { }
void Temperature::updatePID() {
#if ENABLED(PIDTEMP) #if ENABLED(PIDTEMP)
for (int e = 0; e < EXTRUDERS; e++) { for (int e = 0; e < EXTRUDERS; e++) {
temp_iState_max[e] = (PID_INTEGRAL_DRIVE_MAX) / PID_PARAM(Ki, e); temp_iState_max[e] = (PID_INTEGRAL_DRIVE_MAX) / PID_PARAM(Ki, e);
@ -475,85 +325,41 @@ void updatePID() {
#endif #endif
} }
int getHeaterPower(int heater) { int Temperature::getHeaterPower(int heater) {
return heater < 0 ? soft_pwm_bed : soft_pwm[heater]; return heater < 0 ? soft_pwm_bed : soft_pwm[heater];
} }
#if HAS_AUTO_FAN #if HAS_AUTO_FAN
void setExtruderAutoFanState(int pin, bool state) { void Temperature::checkExtruderAutoFans() {
unsigned char newFanSpeed = (state != 0) ? EXTRUDER_AUTO_FAN_SPEED : 0; const uint8_t fanPin[] = { EXTRUDER_0_AUTO_FAN_PIN, EXTRUDER_1_AUTO_FAN_PIN, EXTRUDER_2_AUTO_FAN_PIN, EXTRUDER_3_AUTO_FAN_PIN };
// this idiom allows both digital and PWM fan outputs (see M42 handling). const int fanBit[] = { 0,
digitalWrite(pin, newFanSpeed); EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN ? 0 : 1,
analogWrite(pin, newFanSpeed); EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN ? 0 :
} EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN ? 1 : 2,
EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN ? 0 :
void checkExtruderAutoFans() { EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN ? 1 :
uint8_t fanState = 0; EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN ? 2 : 3
};
// which fan pins need to be turned on? uint8_t fanState = 0;
#if HAS_AUTO_FAN_0 for (int f = 0; f <= 3; f++) {
if (current_temperature[0] > EXTRUDER_AUTO_FAN_TEMPERATURE) if (current_temperature[f] > EXTRUDER_AUTO_FAN_TEMPERATURE)
fanState |= 1; SBI(fanState, fanBit[f]);
#endif
#if HAS_AUTO_FAN_1
if (current_temperature[1] > EXTRUDER_AUTO_FAN_TEMPERATURE) {
if (EXTRUDER_1_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else
fanState |= 2;
} }
#endif for (int f = 0; f <= 3; f++) {
#if HAS_AUTO_FAN_2 unsigned char newFanSpeed = TEST(fanState, f) ? EXTRUDER_AUTO_FAN_SPEED : 0;
if (current_temperature[2] > EXTRUDER_AUTO_FAN_TEMPERATURE) { // this idiom allows both digital and PWM fan outputs (see M42 handling).
if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN) digitalWrite(fanPin[f], newFanSpeed);
fanState |= 1; analogWrite(fanPin[f], newFanSpeed);
else if (EXTRUDER_2_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
fanState |= 2;
else
fanState |= 4;
}
#endif
#if HAS_AUTO_FAN_3
if (current_temperature[3] > EXTRUDER_AUTO_FAN_TEMPERATURE) {
if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_0_AUTO_FAN_PIN)
fanState |= 1;
else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_1_AUTO_FAN_PIN)
fanState |= 2;
else if (EXTRUDER_3_AUTO_FAN_PIN == EXTRUDER_2_AUTO_FAN_PIN)
fanState |= 4;
else
fanState |= 8;
} }
#endif }
// update extruder auto fan states
#if HAS_AUTO_FAN_0
setExtruderAutoFanState(EXTRUDER_0_AUTO_FAN_PIN, (fanState & 1) != 0);
#endif
#if HAS_AUTO_FAN_1
if (EXTRUDER_1_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_1_AUTO_FAN_PIN, (fanState & 2) != 0);
#endif
#if HAS_AUTO_FAN_2
if (EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_2_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_2_AUTO_FAN_PIN, (fanState & 4) != 0);
#endif
#if HAS_AUTO_FAN_3
if (EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_0_AUTO_FAN_PIN
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_1_AUTO_FAN_PIN
&& EXTRUDER_3_AUTO_FAN_PIN != EXTRUDER_2_AUTO_FAN_PIN)
setExtruderAutoFanState(EXTRUDER_3_AUTO_FAN_PIN, (fanState & 8) != 0);
#endif
}
#endif // HAS_AUTO_FAN #endif // HAS_AUTO_FAN
// //
// Temperature Error Handlers // Temperature Error Handlers
// //
inline void _temp_error(int e, const char* serial_msg, const char* lcd_msg) { void Temperature::_temp_error(int e, const char* serial_msg, const char* lcd_msg) {
static bool killed = false; static bool killed = false;
if (IsRunning()) { if (IsRunning()) {
SERIAL_ERROR_START; SERIAL_ERROR_START;
@ -572,14 +378,14 @@ inline void _temp_error(int e, const char* serial_msg, const char* lcd_msg) {
#endif #endif
} }
void max_temp_error(uint8_t e) { void Temperature::max_temp_error(uint8_t e) {
_temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP)); _temp_error(e, PSTR(MSG_T_MAXTEMP), PSTR(MSG_ERR_MAXTEMP));
} }
void min_temp_error(uint8_t e) { void Temperature::min_temp_error(uint8_t e) {
_temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP)); _temp_error(e, PSTR(MSG_T_MINTEMP), PSTR(MSG_ERR_MINTEMP));
} }
float get_pid_output(int e) { float Temperature::get_pid_output(int e) {
float pid_output; float pid_output;
#if ENABLED(PIDTEMP) #if ENABLED(PIDTEMP)
#if DISABLED(PID_OPENLOOP) #if DISABLED(PID_OPENLOOP)
@ -658,7 +464,7 @@ float get_pid_output(int e) {
} }
#if ENABLED(PIDTEMPBED) #if ENABLED(PIDTEMPBED)
float get_pid_output_bed() { float Temperature::get_pid_output_bed() {
float pid_output; float pid_output;
#if DISABLED(PID_OPENLOOP) #if DISABLED(PID_OPENLOOP)
pid_error_bed = target_temperature_bed - current_temperature_bed; pid_error_bed = target_temperature_bed - current_temperature_bed;
@ -710,7 +516,7 @@ float get_pid_output(int e) {
* - Apply filament width to the extrusion rate (may move) * - Apply filament width to the extrusion rate (may move)
* - Update the heated bed PID output value * - Update the heated bed PID output value
*/ */
void manage_heater() { void Temperature::manage_heater() {
if (!temp_meas_ready) return; if (!temp_meas_ready) return;
@ -811,7 +617,7 @@ void manage_heater() {
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
#if ENABLED(THERMAL_PROTECTION_BED) #if HAS_THERMALLY_PROTECTED_BED
thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS); thermal_runaway_protection(&thermal_runaway_bed_state_machine, &thermal_runaway_bed_timer, current_temperature_bed, target_temperature_bed, -1, THERMAL_PROTECTION_BED_PERIOD, THERMAL_PROTECTION_BED_HYSTERESIS);
#endif #endif
@ -846,9 +652,10 @@ void manage_heater() {
} }
#define PGM_RD_W(x) (short)pgm_read_word(&x) #define PGM_RD_W(x) (short)pgm_read_word(&x)
// Derived from RepRap FiveD extruder::getTemperature() // Derived from RepRap FiveD extruder::getTemperature()
// For hot end temperature measurement. // For hot end temperature measurement.
static float analog2temp(int raw, uint8_t e) { float Temperature::analog2temp(int raw, uint8_t e) {
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
if (e > EXTRUDERS) if (e > EXTRUDERS)
#else #else
@ -891,7 +698,7 @@ static float analog2temp(int raw, uint8_t e) {
// Derived from RepRap FiveD extruder::getTemperature() // Derived from RepRap FiveD extruder::getTemperature()
// For bed temperature measurement. // For bed temperature measurement.
static float analog2tempBed(int raw) { float Temperature::analog2tempBed(int raw) {
#if ENABLED(BED_USES_THERMISTOR) #if ENABLED(BED_USES_THERMISTOR)
float celsius = 0; float celsius = 0;
byte i; byte i;
@ -923,18 +730,22 @@ static float analog2tempBed(int raw) {
#endif #endif
} }
/* Called to get the raw values into the the actual temperatures. The raw values are created in interrupt context, /**
and this function is called from normal context as it is too slow to run in interrupts and will block the stepper routine otherwise */ * Get the raw values into the actual temperatures.
static void updateTemperaturesFromRawValues() { * The raw values are created in interrupt context,
* and this function is called from normal context
* as it would block the stepper routine.
*/
void Temperature::updateTemperaturesFromRawValues() {
#if ENABLED(HEATER_0_USES_MAX6675) #if ENABLED(HEATER_0_USES_MAX6675)
current_temperature_raw[0] = read_max6675(); current_temperature_raw[0] = read_max6675();
#endif #endif
for (uint8_t e = 0; e < EXTRUDERS; e++) { for (uint8_t e = 0; e < EXTRUDERS; e++) {
current_temperature[e] = analog2temp(current_temperature_raw[e], e); current_temperature[e] = Temperature::analog2temp(current_temperature_raw[e], e);
} }
current_temperature_bed = analog2tempBed(current_temperature_bed_raw); current_temperature_bed = Temperature::analog2tempBed(current_temperature_bed_raw);
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT) #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
redundant_temperature = analog2temp(redundant_temperature_raw, 1); redundant_temperature = Temperature::analog2temp(redundant_temperature_raw, 1);
#endif #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
filament_width_meas = analog2widthFil(); filament_width_meas = analog2widthFil();
@ -954,13 +765,13 @@ static void updateTemperaturesFromRawValues() {
#if ENABLED(FILAMENT_WIDTH_SENSOR) #if ENABLED(FILAMENT_WIDTH_SENSOR)
// Convert raw Filament Width to millimeters // Convert raw Filament Width to millimeters
float analog2widthFil() { float Temperature::analog2widthFil() {
return current_raw_filwidth / 16383.0 * 5.0; return current_raw_filwidth / 16383.0 * 5.0;
//return current_raw_filwidth; //return current_raw_filwidth;
} }
// Convert raw Filament Width to a ratio // Convert raw Filament Width to a ratio
int widthFil_to_size_ratio() { int Temperature::widthFil_to_size_ratio() {
float temp = filament_width_meas; float temp = filament_width_meas;
if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out if (temp < MEASURED_LOWER_LIMIT) temp = filament_width_nominal; //assume sensor cut out
else NOMORE(temp, MEASURED_UPPER_LIMIT); else NOMORE(temp, MEASURED_UPPER_LIMIT);
@ -974,7 +785,8 @@ static void updateTemperaturesFromRawValues() {
* Initialize the temperature manager * Initialize the temperature manager
* The manager is implemented by periodic calls to manage_heater() * The manager is implemented by periodic calls to manage_heater()
*/ */
void tp_init() { void Temperature::init() {
#if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1)) #if MB(RUMBA) && ((TEMP_SENSOR_0==-1)||(TEMP_SENSOR_1==-1)||(TEMP_SENSOR_2==-1)||(TEMP_SENSOR_BED==-1))
//disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector //disable RUMBA JTAG in case the thermocouple extension is plugged on top of JTAG connector
MCUCR = _BV(JTD); MCUCR = _BV(JTD);
@ -1189,7 +1001,7 @@ void tp_init() {
* their target temperature by a configurable margin. * their target temperature by a configurable margin.
* This is called when the temperature is set. (M104, M109) * This is called when the temperature is set. (M104, M109)
*/ */
void start_watching_heater(int e) { void Temperature::start_watching_heater(int e) {
if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) { if (degHotend(e) < degTargetHotend(e) - (WATCH_TEMP_INCREASE + TEMP_HYSTERESIS + 1)) {
watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE; watch_target_temp[e] = degHotend(e) + WATCH_TEMP_INCREASE;
watch_heater_next_ms[e] = millis() + (WATCH_TEMP_PERIOD) * 1000UL; watch_heater_next_ms[e] = millis() + (WATCH_TEMP_PERIOD) * 1000UL;
@ -1205,7 +1017,7 @@ void tp_init() {
* their target temperature by a configurable margin. * their target temperature by a configurable margin.
* This is called when the temperature is set. (M140, M190) * This is called when the temperature is set. (M140, M190)
*/ */
void start_watching_bed() { void Temperature::start_watching_bed() {
if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) { if (degBed() < degTargetBed() - (WATCH_BED_TEMP_INCREASE + TEMP_BED_HYSTERESIS + 1)) {
watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE; watch_target_bed_temp = degBed() + WATCH_BED_TEMP_INCREASE;
watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL; watch_bed_next_ms = millis() + (WATCH_BED_TEMP_PERIOD) * 1000UL;
@ -1215,9 +1027,9 @@ void tp_init() {
} }
#endif #endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || ENABLED(THERMAL_PROTECTION_BED) #if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) { void Temperature::thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc) {
static float tr_target_temperature[EXTRUDERS + 1] = { 0.0 }; static float tr_target_temperature[EXTRUDERS + 1] = { 0.0 };
@ -1273,7 +1085,7 @@ void tp_init() {
#endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED #endif // THERMAL_PROTECTION_HOTENDS || THERMAL_PROTECTION_BED
void disable_all_heaters() { void Temperature::disable_all_heaters() {
for (int i = 0; i < EXTRUDERS; i++) setTargetHotend(0, i); for (int i = 0; i < EXTRUDERS; i++) setTargetHotend(0, i);
setTargetBed(0); setTargetBed(0);
@ -1327,9 +1139,9 @@ void disable_all_heaters() {
#define MAX6675_DISCARD_BITS 3 #define MAX6675_DISCARD_BITS 3
#endif #endif
static millis_t next_max6675_ms = 0; int Temperature::read_max6675() {
static int read_max6675() { static millis_t next_max6675_ms = 0;
millis_t ms = millis(); millis_t ms = millis();
@ -1392,10 +1204,10 @@ enum TempState {
StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle StartupDelay // Startup, delay initial temp reading a tiny bit so the hardware can settle
}; };
static unsigned long raw_temp_value[4] = { 0 }; /**
static unsigned long raw_temp_bed_value = 0; * Get raw temperatures
*/
static void set_current_temp_raw() { void Temperature::set_current_temp_raw() {
#if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675) #if HAS_TEMP_0 && DISABLED(HEATER_0_USES_MAX6675)
current_temperature_raw[0] = raw_temp_value[0]; current_temperature_raw[0] = raw_temp_value[0];
#endif #endif
@ -1423,7 +1235,9 @@ static void set_current_temp_raw() {
* - Check new temperature values for MIN/MAX errors * - Check new temperature values for MIN/MAX errors
* - Step the babysteps value for each axis towards 0 * - Step the babysteps value for each axis towards 0
*/ */
ISR(TIMER0_COMPB_vect) { ISR(TIMER0_COMPB_vect) { thermalManager.isr(); }
void Temperature::isr() {
static unsigned char temp_count = 0; static unsigned char temp_count = 0;
static TempState temp_state = StartupDelay; static TempState temp_state = StartupDelay;
@ -1845,11 +1659,3 @@ ISR(TIMER0_COMPB_vect) {
} }
#endif //BABYSTEPPING #endif //BABYSTEPPING
} }
#if ENABLED(PIDTEMP)
// Apply the scale factors to the PID values
float scalePID_i(float i) { return i * PID_dT; }
float unscalePID_i(float i) { return i / PID_dT; }
float scalePID_d(float d) { return d / PID_dT; }
float unscalePID_d(float d) { return d * PID_dT; }
#endif //PIDTEMP

@ -21,182 +21,331 @@
*/ */
/** /**
temperature.h - temperature controller * temperature.h - temperature controller
Part of Marlin */
Copyright (c) 2011 Erik van der Zalm
Grbl is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
Grbl is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef TEMPERATURE_H #ifndef TEMPERATURE_H
#define TEMPERATURE_H #define TEMPERATURE_H
#include "Marlin.h" #include "Marlin.h"
#include "planner.h" #include "planner.h"
#if ENABLED(PID_ADD_EXTRUSION_RATE) #if ENABLED(PID_ADD_EXTRUSION_RATE)
#include "stepper.h" #include "stepper.h"
#endif #endif
// public functions #ifndef SOFT_PWM_SCALE
void tp_init(); //initialize the heating #define SOFT_PWM_SCALE 0
void manage_heater(); //it is critical that this is called periodically. #endif
#if ENABLED(FILAMENT_WIDTH_SENSOR) class Temperature {
// For converting raw Filament Width to milimeters
float analog2widthFil();
// For converting raw Filament Width to an extrusion ratio public:
int widthFil_to_size_ratio();
#endif
// low level conversion routines int current_temperature_raw[EXTRUDERS] = { 0 };
// do not use these routines and variables outside of temperature.cpp float current_temperature[EXTRUDERS] = { 0.0 };
extern int target_temperature[4]; int target_temperature[EXTRUDERS] = { 0 };
extern float current_temperature[4];
#if ENABLED(SHOW_TEMP_ADC_VALUES)
extern int current_temperature_raw[4];
extern int current_temperature_bed_raw;
#endif
extern int target_temperature_bed;
extern float current_temperature_bed;
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
extern float redundant_temperature;
#endif
#if HAS_CONTROLLERFAN int current_temperature_bed_raw = 0;
extern unsigned char soft_pwm_bed; float current_temperature_bed = 0.0;
#endif int target_temperature_bed = 0;
#if ENABLED(FAN_SOFT_PWM) #if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
extern unsigned char fanSpeedSoftPwm[FAN_COUNT]; float redundant_temperature = 0.0;
#endif #endif
#if ENABLED(PIDTEMP) unsigned char soft_pwm_bed;
#if ENABLED(PID_PARAMS_PER_EXTRUDER) #if ENABLED(FAN_SOFT_PWM)
extern float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS]; // one param per extruder unsigned char fanSpeedSoftPwm[FAN_COUNT];
#if ENABLED(PID_ADD_EXTRUSION_RATE)
extern float Kc[EXTRUDERS];
#endif #endif
#define PID_PARAM(param, e) param[e] // use macro to point to array value
#else #if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
extern float Kp, Ki, Kd; // one param per extruder - saves 20 or 36 bytes of ram (inc array pointer) #define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
#if ENABLED(PID_ADD_EXTRUSION_RATE)
extern float Kc;
#endif #endif
#define PID_PARAM(param, e) param // use macro to point directly to value
#endif // PID_PARAMS_PER_EXTRUDER
float scalePID_i(float i);
float scalePID_d(float d);
float unscalePID_i(float i);
float unscalePID_d(float d);
#endif #if ENABLED(PIDTEMP)
#if ENABLED(PIDTEMPBED) #if ENABLED(PID_PARAMS_PER_EXTRUDER)
extern float bedKp, bedKi, bedKd;
#endif
#if ENABLED(BABYSTEPPING) static float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS];
extern volatile int babystepsTodo[3]; #if ENABLED(PID_ADD_EXTRUSION_RATE)
#endif float Kc[EXTRUDERS];
#endif
#define PID_PARAM(param, e) Temperature::param[e]
//high level conversion routines, for use outside of temperature.cpp #else
//inline so that there is no performance decrease.
//deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; } static float Kp, Ki, Kd;
FORCE_INLINE float degBed() { return current_temperature_bed; } #if ENABLED(PID_ADD_EXTRUSION_RATE)
static float Kc;
#endif
#define PID_PARAM(param, e) Temperature::param
#if ENABLED(SHOW_TEMP_ADC_VALUES) #endif // PID_PARAMS_PER_EXTRUDER
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
#endif
FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; } // Apply the scale factors to the PID values
FORCE_INLINE float degTargetBed() { return target_temperature_bed; } #define scalePID_i(i) ( (i) * PID_dT )
#define unscalePID_i(i) ( (i) / PID_dT )
#define scalePID_d(d) ( (d) / PID_dT )
#define unscalePID_d(d) ( (d) * PID_dT )
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0 #endif
void start_watching_heater(int e = 0);
#endif
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0 #if ENABLED(PIDTEMPBED)
void start_watching_bed(); float bedKp = DEFAULT_bedKp,
#endif bedKi = ((DEFAULT_bedKi) * PID_dT),
bedKd = ((DEFAULT_bedKd) / PID_dT);
#endif
FORCE_INLINE void setTargetHotend(const float& celsius, uint8_t extruder) { #if ENABLED(BABYSTEPPING)
target_temperature[extruder] = celsius; volatile int babystepsTodo[3] = { 0 };
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0 #endif
start_watching_heater(extruder);
#endif
}
FORCE_INLINE void setTargetBed(const float& celsius) {
target_temperature_bed = celsius;
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
start_watching_bed();
#endif
}
FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
#define HOTEND_ROUTINES(NR) \
FORCE_INLINE float degHotend##NR() { return degHotend(NR); } \
FORCE_INLINE float degTargetHotend##NR() { return degTargetHotend(NR); } \
FORCE_INLINE void setTargetHotend##NR(const float c) { setTargetHotend(c, NR); } \
FORCE_INLINE bool isHeatingHotend##NR() { return isHeatingHotend(NR); } \
FORCE_INLINE bool isCoolingHotend##NR() { return isCoolingHotend(NR); }
HOTEND_ROUTINES(0);
#if EXTRUDERS > 1
HOTEND_ROUTINES(1);
#else
#define setTargetHotend1(c) do{}while(0)
#endif
#if EXTRUDERS > 2
HOTEND_ROUTINES(2);
#else
#define setTargetHotend2(c) do{}while(0)
#endif
#if EXTRUDERS > 3
HOTEND_ROUTINES(3);
#else
#define setTargetHotend3(c) do{}while(0)
#endif
int getHeaterPower(int heater); #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
void disable_all_heaters(); int watch_target_temp[EXTRUDERS] = { 0 };
void updatePID(); millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
#endif
#if ENABLED(PIDTEMP) #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_BED_TEMP_PERIOD > 0
void PID_autotune(float temp, int extruder, int ncycles, bool set_result=false); int watch_target_bed_temp = 0;
#endif millis_t watch_bed_next_ms = 0;
#endif
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
float extrude_min_temp = EXTRUDE_MINTEMP;
FORCE_INLINE bool tooColdToExtrude(uint8_t e) { return degHotend(e) < extrude_min_temp; }
#else
FORCE_INLINE bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
#endif
private:
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
int redundant_temperature_raw = 0;
float redundant_temperature = 0.0;
#endif
volatile bool temp_meas_ready = false;
#if ENABLED(PIDTEMP)
float temp_iState[EXTRUDERS] = { 0 };
float temp_dState[EXTRUDERS] = { 0 };
float pTerm[EXTRUDERS];
float iTerm[EXTRUDERS];
float dTerm[EXTRUDERS];
#if ENABLED(PID_ADD_EXTRUSION_RATE)
float cTerm[EXTRUDERS];
long last_position[EXTRUDERS];
long lpq[LPQ_MAX_LEN];
int lpq_ptr = 0;
#endif
float pid_error[EXTRUDERS];
float temp_iState_min[EXTRUDERS];
float temp_iState_max[EXTRUDERS];
bool pid_reset[EXTRUDERS];
#endif
#if ENABLED(PIDTEMPBED)
float temp_iState_bed = { 0 };
float temp_dState_bed = { 0 };
float pTerm_bed;
float iTerm_bed;
float dTerm_bed;
float pid_error_bed;
float temp_iState_min_bed;
float temp_iState_max_bed;
#else
millis_t next_bed_check_ms;
#endif
void setExtruderAutoFanState(int pin, bool state); unsigned long raw_temp_value[4] = { 0 };
void checkExtruderAutoFans(); unsigned long raw_temp_bed_value = 0;
// Init min and max temp with extreme values to prevent false errors during startup
int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
int minttemp[EXTRUDERS] = { 0 };
int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(16383);
#ifdef BED_MINTEMP
int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
int meas_shift_index; // Index of a delayed sample in buffer
#endif
#if HAS_AUTO_FAN
millis_t next_auto_fan_check_ms;
#endif
unsigned char soft_pwm[EXTRUDERS];
#if ENABLED(FAN_SOFT_PWM)
unsigned char soft_pwm_fan[FAN_COUNT];
#endif
FORCE_INLINE void autotempShutdown() { #if ENABLED(FILAMENT_WIDTH_SENSOR)
#if ENABLED(AUTOTEMP) int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
if (planner.autotemp_enabled) { #endif
planner.autotemp_enabled = false;
if (degTargetHotend(active_extruder) > planner.autotemp_min) public:
setTargetHotend(0, active_extruder);
/**
* Static (class) methods
*/
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
/**
* Instance Methods
*/
Temperature();
void init();
/**
* Called from the Temperature ISR
*/
void isr();
/**
* Call periodically to manage heaters
*/
void manage_heater();
#if ENABLED(FILAMENT_WIDTH_SENSOR)
float analog2widthFil(); // Convert raw Filament Width to millimeters
int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
FORCE_INLINE float degBed() { return current_temperature_bed; }
#if ENABLED(SHOW_TEMP_ADC_VALUES)
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
#endif
FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
void start_watching_heater(int e = 0);
#endif
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
void start_watching_bed();
#endif
FORCE_INLINE void setTargetHotend(const float& celsius, uint8_t extruder) {
target_temperature[extruder] = celsius;
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
start_watching_heater(extruder);
#endif
}
FORCE_INLINE void setTargetBed(const float& celsius) {
target_temperature_bed = celsius;
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
start_watching_bed();
#endif
} }
#endif
} FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
/**
* The software PWM power for a heater
*/
int getHeaterPower(int heater);
/**
* Switch off all heaters, set all target temperatures to 0
*/
void disable_all_heaters();
/**
* Perform auto-tuning for hotend or bed in response to M303
*/
#if HAS_PID_HEATING
void PID_autotune(float temp, int extruder, int ncycles, bool set_result=false);
#endif
/**
* Update the temp manager when PID values change
*/
void updatePID();
FORCE_INLINE void autotempShutdown() {
#if ENABLED(AUTOTEMP)
if (planner.autotemp_enabled) {
planner.autotemp_enabled = false;
if (degTargetHotend(active_extruder) > planner.autotemp_min)
setTargetHotend(0, active_extruder);
}
#endif
}
private:
void set_current_temp_raw();
void updateTemperaturesFromRawValues();
#if ENABLED(HEATER_0_USES_MAX6675)
int read_max6675();
#endif
void setExtruderAutoFanState(int pin, bool state);
void checkExtruderAutoFans();
float get_pid_output(int e);
#if ENABLED(PIDTEMPBED)
float get_pid_output_bed();
#endif
void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
void min_temp_error(uint8_t e);
void max_temp_error(uint8_t e);
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
typedef enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
TRState thermal_runaway_state_machine[EXTRUDERS] = { TRReset };
millis_t thermal_runaway_timer[EXTRUDERS] = { 0 };
#endif
#if HAS_THERMALLY_PROTECTED_BED
TRState thermal_runaway_bed_state_machine = TRReset;
millis_t thermal_runaway_bed_timer;
#endif
#endif // THERMAL_PROTECTION
};
extern Temperature thermalManager;
#endif // TEMPERATURE_H #endif // TEMPERATURE_H

@ -479,7 +479,7 @@ inline void line_to_current(AxisEnum axis) {
stepper.quick_stop(); stepper.quick_stop();
card.sdprinting = false; card.sdprinting = false;
card.closefile(); card.closefile();
autotempShutdown(); thermalManager.autotempShutdown();
cancel_heatup = true; cancel_heatup = true;
lcd_setstatus(MSG_PRINT_ABORTED, true); lcd_setstatus(MSG_PRINT_ABORTED, true);
} }
@ -605,16 +605,16 @@ void lcd_set_home_offsets() {
*/ */
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0 #if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
void watch_temp_callback_E0() { start_watching_heater(0); } void watch_temp_callback_E0() { thermalManager.start_watching_heater(0); }
#endif #endif
#if EXTRUDERS > 1 && TEMP_SENSOR_1 != 0 #if EXTRUDERS > 1 && TEMP_SENSOR_1 != 0
void watch_temp_callback_E1() { start_watching_heater(1); } void watch_temp_callback_E1() { thermalManager.start_watching_heater(1); }
#endif // EXTRUDERS > 1 #endif // EXTRUDERS > 1
#if EXTRUDERS > 2 && TEMP_SENSOR_2 != 0 #if EXTRUDERS > 2 && TEMP_SENSOR_2 != 0
void watch_temp_callback_E2() { start_watching_heater(2); } void watch_temp_callback_E2() { thermalManager.start_watching_heater(2); }
#endif // EXTRUDERS > 2 #endif // EXTRUDERS > 2
#if EXTRUDERS > 3 && TEMP_SENSOR_3 != 0 #if EXTRUDERS > 3 && TEMP_SENSOR_3 != 0
void watch_temp_callback_E3() { start_watching_heater(3); } void watch_temp_callback_E3() { thermalManager.start_watching_heater(3); }
#endif // EXTRUDERS > 3 #endif // EXTRUDERS > 3
#else #else
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
@ -633,7 +633,7 @@ void lcd_set_home_offsets() {
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0 #if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
void watch_temp_callback_bed() { start_watching_bed(); } void watch_temp_callback_bed() { thermalManager.start_watching_bed(); }
#endif #endif
#else #else
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
@ -670,22 +670,22 @@ static void lcd_tune_menu() {
// //
#if EXTRUDERS == 1 #if EXTRUDERS == 1
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif #endif
#else //EXTRUDERS > 1 #else //EXTRUDERS > 1
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif #endif
#if TEMP_SENSOR_1 != 0 #if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &thermalManager.target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1);
#endif #endif
#if EXTRUDERS > 2 #if EXTRUDERS > 2
#if TEMP_SENSOR_2 != 0 #if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &thermalManager.target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2);
#endif #endif
#if EXTRUDERS > 3 #if EXTRUDERS > 3
#if TEMP_SENSOR_3 != 0 #if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &thermalManager.target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3);
#endif #endif
#endif // EXTRUDERS > 3 #endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2 #endif // EXTRUDERS > 2
@ -695,7 +695,7 @@ static void lcd_tune_menu() {
// Bed: // Bed:
// //
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15, watch_temp_callback_bed);
#endif #endif
// //
@ -768,9 +768,9 @@ static void lcd_tune_menu() {
* *
*/ */
void _lcd_preheat(int endnum, const float temph, const float tempb, const int fan) { void _lcd_preheat(int endnum, const float temph, const float tempb, const int fan) {
if (temph > 0) setTargetHotend(temph, endnum); if (temph > 0) thermalManager.setTargetHotend(temph, endnum);
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
setTargetBed(tempb); thermalManager.setTargetBed(tempb);
#else #else
UNUSED(tempb); UNUSED(tempb);
#endif #endif
@ -805,19 +805,27 @@ void _lcd_preheat(int endnum, const float temph, const float tempb, const int fa
void lcd_preheat_pla0123() { void lcd_preheat_pla0123() {
#if EXTRUDERS > 1 #if EXTRUDERS > 1
setTargetHotend0(plaPreheatHotendTemp); thermalManager.setTargetHotend(plaPreheatHotendTemp, 1);
setTargetHotend1(plaPreheatHotendTemp); #if EXTRUDERS > 2
setTargetHotend2(plaPreheatHotendTemp); thermalManager.setTargetHotend(plaPreheatHotendTemp, 2);
#if EXTRUDERS > 3
thermalManager.setTargetHotend(plaPreheatHotendTemp, 3);
#endif
#endif
#endif #endif
_lcd_preheat(EXTRUDERS - 1, plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed); lcd_preheat_pla0();
} }
void lcd_preheat_abs0123() { void lcd_preheat_abs0123() {
#if EXTRUDERS > 1 #if EXTRUDERS > 1
setTargetHotend0(absPreheatHotendTemp); thermalManager.setTargetHotend(absPreheatHotendTemp, 1);
setTargetHotend1(absPreheatHotendTemp); #if EXTRUDERS > 2
setTargetHotend2(absPreheatHotendTemp); thermalManager.setTargetHotend(absPreheatHotendTemp, 2);
#if EXTRUDERS > 3
thermalManager.setTargetHotend(absPreheatHotendTemp, 3);
#endif
#endif
#endif #endif
_lcd_preheat(EXTRUDERS - 1, absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed); lcd_preheat_abs0();
} }
#endif // EXTRUDERS > 1 #endif // EXTRUDERS > 1
@ -879,7 +887,7 @@ void lcd_cooldown() {
#if FAN_COUNT > 0 #if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0; for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
#endif #endif
disable_all_heaters(); thermalManager.disable_all_heaters();
lcd_return_to_status(); lcd_return_to_status();
} }
@ -1414,14 +1422,14 @@ static void lcd_control_menu() {
UNUSED(e); UNUSED(e);
#endif #endif
PID_PARAM(Ki, e) = scalePID_i(raw_Ki); PID_PARAM(Ki, e) = scalePID_i(raw_Ki);
updatePID(); thermalManager.updatePID();
} }
void copy_and_scalePID_d(int e) { void copy_and_scalePID_d(int e) {
#if DISABLED(PID_PARAMS_PER_EXTRUDER) #if DISABLED(PID_PARAMS_PER_EXTRUDER)
UNUSED(e); UNUSED(e);
#endif #endif
PID_PARAM(Kd, e) = scalePID_d(raw_Kd); PID_PARAM(Kd, e) = scalePID_d(raw_Kd);
updatePID(); thermalManager.updatePID();
} }
#define _PIDTEMP_BASE_FUNCTIONS(eindex) \ #define _PIDTEMP_BASE_FUNCTIONS(eindex) \
void copy_and_scalePID_i_E ## eindex() { copy_and_scalePID_i(eindex); } \ void copy_and_scalePID_i_E ## eindex() { copy_and_scalePID_i(eindex); } \
@ -1469,22 +1477,22 @@ static void lcd_control_temperature_menu() {
// //
#if EXTRUDERS == 1 #if EXTRUDERS == 1
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif #endif
#else //EXTRUDERS > 1 #else //EXTRUDERS > 1
#if TEMP_SENSOR_0 != 0 #if TEMP_SENSOR_0 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N1, &thermalManager.target_temperature[0], 0, HEATER_0_MAXTEMP - 15, watch_temp_callback_E0);
#endif #endif
#if TEMP_SENSOR_1 != 0 #if TEMP_SENSOR_1 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N2, &thermalManager.target_temperature[1], 0, HEATER_1_MAXTEMP - 15, watch_temp_callback_E1);
#endif #endif
#if EXTRUDERS > 2 #if EXTRUDERS > 2
#if TEMP_SENSOR_2 != 0 #if TEMP_SENSOR_2 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N3, &thermalManager.target_temperature[2], 0, HEATER_2_MAXTEMP - 15, watch_temp_callback_E2);
#endif #endif
#if EXTRUDERS > 3 #if EXTRUDERS > 3
#if TEMP_SENSOR_3 != 0 #if TEMP_SENSOR_3 != 0
MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3); MENU_MULTIPLIER_ITEM_EDIT_CALLBACK(int3, MSG_NOZZLE MSG_N4, &thermalManager.target_temperature[3], 0, HEATER_3_MAXTEMP - 15, watch_temp_callback_E3);
#endif #endif
#endif // EXTRUDERS > 3 #endif // EXTRUDERS > 3
#endif // EXTRUDERS > 2 #endif // EXTRUDERS > 2
@ -1494,7 +1502,7 @@ static void lcd_control_temperature_menu() {
// Bed: // Bed:
// //
#if TEMP_SENSOR_BED != 0 #if TEMP_SENSOR_BED != 0
MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &target_temperature_bed, 0, BED_MAXTEMP - 15); MENU_MULTIPLIER_ITEM_EDIT(int3, MSG_BED, &thermalManager.target_temperature_bed, 0, BED_MAXTEMP - 15);
#endif #endif
// //

@ -633,7 +633,7 @@ static void lcd_implementation_status_screen() {
// //
// Hotend 0 Temperature // Hotend 0 Temperature
// //
LCD_TEMP_ONLY(degHotend(0), degTargetHotend(0)); LCD_TEMP_ONLY(thermalManager.degHotend(0), thermalManager.degTargetHotend(0));
// //
// Hotend 1 or Bed Temperature // Hotend 1 or Bed Temperature
@ -643,10 +643,10 @@ static void lcd_implementation_status_screen() {
lcd.setCursor(8, 0); lcd.setCursor(8, 0);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
lcd.print(LCD_STR_THERMOMETER[0]); lcd.print(LCD_STR_THERMOMETER[0]);
LCD_TEMP_ONLY(degHotend(1), degTargetHotend(1)); LCD_TEMP_ONLY(thermalManager.degHotend(1), thermalManager.degTargetHotend(1));
#else #else
lcd.print(LCD_STR_BEDTEMP[0]); lcd.print(LCD_STR_BEDTEMP[0]);
LCD_TEMP_ONLY(degBed(), degTargetBed()); LCD_TEMP_ONLY(thermalManager.degBed(), thermalManager.degTargetBed());
#endif #endif
#endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 #endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
@ -656,7 +656,7 @@ static void lcd_implementation_status_screen() {
// //
// Hotend 0 Temperature // Hotend 0 Temperature
// //
LCD_TEMP(degHotend(0), degTargetHotend(0), LCD_STR_THERMOMETER[0]); LCD_TEMP(thermalManager.degHotend(0), thermalManager.degTargetHotend(0), LCD_STR_THERMOMETER[0]);
// //
// Hotend 1 or Bed Temperature // Hotend 1 or Bed Temperature
@ -664,9 +664,9 @@ static void lcd_implementation_status_screen() {
#if EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 #if EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
lcd.setCursor(10, 0); lcd.setCursor(10, 0);
#if EXTRUDERS > 1 #if EXTRUDERS > 1
LCD_TEMP(degHotend(1), degTargetHotend(1), LCD_STR_THERMOMETER[0]); LCD_TEMP(thermalManager.degHotend(1), thermalManager.degTargetHotend(1), LCD_STR_THERMOMETER[0]);
#else #else
LCD_TEMP(degBed(), degTargetBed(), LCD_STR_BEDTEMP[0]); LCD_TEMP(thermalManager.degBed(), thermalManager.degTargetBed(), LCD_STR_BEDTEMP[0]);
#endif #endif
#endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0 #endif // EXTRUDERS > 1 || TEMP_SENSOR_BED != 0
@ -702,7 +702,7 @@ static void lcd_implementation_status_screen() {
// If we both have a 2nd extruder and a heated bed, // If we both have a 2nd extruder and a heated bed,
// show the heated bed temp on the left, // show the heated bed temp on the left,
// since the first line is filled with extruder temps // since the first line is filled with extruder temps
LCD_TEMP(degBed(), degTargetBed(), LCD_STR_BEDTEMP[0]); LCD_TEMP(thermalManager.degBed(), thermalManager.degTargetBed(), LCD_STR_BEDTEMP[0]);
#else #else
// Before homing the axis letters are blinking 'X' <-> '?'. // Before homing the axis letters are blinking 'X' <-> '?'.
@ -925,9 +925,9 @@ void lcd_implementation_drawedit(const char* pstr, const char* value=NULL) {
static uint8_t ledsprev = 0; static uint8_t ledsprev = 0;
uint8_t leds = 0; uint8_t leds = 0;
if (target_temperature_bed > 0) leds |= LED_A; if (thermalManager.degTargetBed() > 0) leds |= LED_A;
if (target_temperature[0] > 0) leds |= LED_B; if (thermalManager.degTargetHotend(0) > 0) leds |= LED_B;
#if FAN_COUNT > 0 #if FAN_COUNT > 0
if (0 if (0
@ -944,7 +944,7 @@ void lcd_implementation_drawedit(const char* pstr, const char* value=NULL) {
#endif // FAN_COUNT > 0 #endif // FAN_COUNT > 0
#if EXTRUDERS > 1 #if EXTRUDERS > 1
if (target_temperature[1] > 0) leds |= LED_C; if (thermalManager.degTargetHotend(1) > 0) leds |= LED_C;
#endif #endif
if (leds != ledsprev) { if (leds != ledsprev) {

Loading…
Cancel
Save