Implement MIXING_EXTRUDER and SWITCHING_EXTRUDER

2.0.x
Scott Lahteine 9 years ago
parent 22b4cff423
commit 05da02f0a2

@ -167,37 +167,63 @@ void manage_inactivity(bool ignore_stepper_queue = false);
#define disable_z() NOOP
#endif
#if HAS_E0_ENABLE
#define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e0() NOOP
#define disable_e0() NOOP
#endif
#if (EXTRUDERS > 1) && HAS_E1_ENABLE
#define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON)
#else
#if ENABLED(MIXING_EXTRUDER)
/**
* Mixing steppers synchronize their enable (and direction) together
*/
#if MIXING_STEPPERS > 3
#define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); }
#elif MIXING_STEPPERS > 2
#define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); }
#else
#define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); }
#define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); }
#endif
#define enable_e1() NOOP
#define disable_e1() NOOP
#endif
#if (EXTRUDERS > 2) && HAS_E2_ENABLE
#define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e2() NOOP
#define disable_e2() NOOP
#endif
#if (EXTRUDERS > 3) && HAS_E3_ENABLE
#define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e3() NOOP
#define disable_e3() NOOP
#endif
#else // !MIXING_EXTRUDER
#if HAS_E0_ENABLE
#define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e0() NOOP
#define disable_e0() NOOP
#endif
#if E_STEPPERS > 1 && HAS_E1_ENABLE
#define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e1() NOOP
#define disable_e1() NOOP
#endif
#if E_STEPPERS > 2 && HAS_E2_ENABLE
#define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e2() NOOP
#define disable_e2() NOOP
#endif
#if E_STEPPERS > 3 && HAS_E3_ENABLE
#define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON)
#define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON)
#else
#define enable_e3() NOOP
#define disable_e3() NOOP
#endif
#endif // !MIXING_EXTRUDER
/**
* The axis order in all axis related arrays is X, Y, Z, E
@ -376,6 +402,10 @@ extern uint8_t active_extruder;
void print_heaterstates();
#endif
#if ENABLED(MIXING_EXTRUDER)
extern float mixing_factor[MIXING_STEPPERS];
#endif
void calculate_volumetric_multipliers();
// Buzzer

@ -183,6 +183,9 @@
* M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
* M149 - Set temperature units
* M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
* M163 - Set a single proportion for a mixing extruder. Requires MIXING_EXTRUDER.
* M164 - Save the mix as a virtual extruder. Requires MIXING_EXTRUDER and MIXING_VIRTUAL_TOOLS.
* M165 - Set the proportions for a mixing extruder. Use parameters ABCDHI to set the mixing factors. Requires MIXING_EXTRUDER.
* M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
* M200 - Set filament diameter, D<diameter>, setting E axis units to cubic. (Use S0 to revert to linear units.)
@ -397,17 +400,11 @@ static uint8_t target_extruder;
// Extruder offsets
#if HOTENDS > 1
#ifndef HOTEND_OFFSET_X
#define HOTEND_OFFSET_X { 0 } // X offsets for each extruder
#endif
#ifndef HOTEND_OFFSET_Y
#define HOTEND_OFFSET_Y { 0 } // Y offsets for each extruder
#endif
float hotend_offset[][HOTENDS] = {
HOTEND_OFFSET_X,
HOTEND_OFFSET_Y
#if ENABLED(DUAL_X_CARRIAGE)
, { 0 } // Z offsets for each extruder
#ifdef HOTEND_OFFSET_Z
, HOTEND_OFFSET_Z
#endif
};
#endif
@ -507,6 +504,13 @@ static uint8_t target_extruder;
FilamentChangeMenuResponse filament_change_menu_response;
#endif
#if ENABLED(MIXING_EXTRUDER)
float mixing_factor[MIXING_STEPPERS];
#if MIXING_VIRTUAL_TOOLS > 1
float mixing_virtual_tool_mix[MIXING_VIRTUAL_TOOLS][MIXING_STEPPERS];
#endif
#endif
static bool send_ok[BUFSIZE];
#if HAS_SERVOS
@ -952,6 +956,15 @@ void setup() {
lcd_init();
#endif
#endif
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
// Initialize mixing to 100% color 1
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
mixing_factor[i] = (i == 0) ? 1 : 0;
for (uint8_t t = 0; t < MIXING_VIRTUAL_TOOLS; t++)
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
mixing_virtual_tool_mix[t][i] = mixing_factor[i];
#endif
}
/**
@ -2544,6 +2557,39 @@ static void homeaxis(AxisEnum axis) {
#endif // FWRETRACT
#if ENABLED(MIXING_EXTRUDER)
void normalize_mix() {
float mix_total = 0.0;
for (int i = 0; i < MIXING_STEPPERS; i++) {
float v = mixing_factor[i];
if (v < 0) v = mixing_factor[i] = 0;
mix_total += v;
}
// Scale all values if they don't add up to ~1.0
if (mix_total < 0.9999 || mix_total > 1.0001) {
SERIAL_PROTOCOLLNPGM("Warning: Mix factors must add up to 1.0. Scaling.");
float mix_scale = 1.0 / mix_total;
for (int i = 0; i < MIXING_STEPPERS; i++)
mixing_factor[i] *= mix_scale;
}
}
#if ENABLED(DIRECT_MIXING_IN_G1)
// Get mixing parameters from the GCode
// Factors that are left out are set to 0
// The total "must" be 1.0 (but it will be normalized)
void gcode_get_mix() {
const char* mixing_codes = "ABCDHI";
for (int i = 0; i < MIXING_STEPPERS; i++)
mixing_factor[i] = code_seen(mixing_codes[i]) ? code_value_float() : 0;
normalize_mix();
}
#endif
#endif
/**
* ***************************************************************************
* ***************************** G-CODE HANDLING *****************************
@ -2572,6 +2618,11 @@ void gcode_get_destination() {
if(!DEBUGGING(DRYRUN))
print_job_timer.incFilamentUsed(destination[E_AXIS] - current_position[E_AXIS]);
#endif
// Get ABCDHI mixing factors
#if ENABLED(MIXING_EXTRUDER) && ENABLED(DIRECT_MIXING_IN_G1)
gcode_get_mix();
#endif
}
void unknown_command_error() {
@ -4733,6 +4784,8 @@ inline void gcode_M109() {
KEEPALIVE_STATE(NOT_BUSY);
target_extruder = active_extruder; // for print_heaterstates
do {
// Target temperature might be changed during the loop
if (theTarget != thermalManager.degTargetBed()) {
@ -5258,7 +5311,7 @@ inline void gcode_M200() {
if (volumetric_enabled) {
filament_size[target_extruder] = code_value_linear_units();
// make sure all extruders have some sane value for the filament size
for (int i = 0; i < EXTRUDERS; i++)
for (int i = 0; i < COUNT(filament_size); i++)
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
}
}
@ -5496,7 +5549,7 @@ inline void gcode_M206() {
* T<tool>
* X<xoffset>
* Y<yoffset>
* Z<zoffset> - Available with DUAL_X_CARRIAGE
* Z<zoffset> - Available with DUAL_X_CARRIAGE and SWITCHING_EXTRUDER
*/
inline void gcode_M218() {
if (get_target_extruder_from_command(218)) return;
@ -5504,7 +5557,7 @@ inline void gcode_M206() {
if (code_seen('X')) hotend_offset[X_AXIS][target_extruder] = code_value_axis_units(X_AXIS);
if (code_seen('Y')) hotend_offset[Y_AXIS][target_extruder] = code_value_axis_units(Y_AXIS);
#if ENABLED(DUAL_X_CARRIAGE)
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
if (code_seen('Z')) hotend_offset[Z_AXIS][target_extruder] = code_value_axis_units(Z_AXIS);
#endif
@ -5515,7 +5568,7 @@ inline void gcode_M206() {
SERIAL_ECHO(hotend_offset[X_AXIS][e]);
SERIAL_CHAR(',');
SERIAL_ECHO(hotend_offset[Y_AXIS][e]);
#if ENABLED(DUAL_X_CARRIAGE)
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(SWITCHING_EXTRUDER)
SERIAL_CHAR(',');
SERIAL_ECHO(hotend_offset[Z_AXIS][e]);
#endif
@ -6528,6 +6581,60 @@ inline void gcode_M907() {
#endif // HAS_MICROSTEPS
#if ENABLED(MIXING_EXTRUDER)
/**
* M163: Set a single mix factor for a mixing extruder
* This is called "weight" by some systems.
*
* S[index] The channel index to set
* P[float] The mix value
*
*/
inline void gcode_M163() {
int mix_index = code_seen('S') ? code_value_int() : 0;
float mix_value = code_seen('P') ? code_value_float() : 0.0;
if (mix_index < MIXING_STEPPERS) mixing_factor[mix_index] = mix_value;
}
#if MIXING_VIRTUAL_TOOLS > 1
/**
* M164: Store the current mix factors as a virtual tool.
*
* S[index] The virtual tool to store
*
*/
inline void gcode_M164() {
int tool_index = code_seen('S') ? code_value_int() : 0;
if (tool_index < MIXING_VIRTUAL_TOOLS) {
normalize_mix();
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
mixing_virtual_tool_mix[tool_index][i] = mixing_factor[i];
}
}
#endif
#if ENABLED(DIRECT_MIXING_IN_G1)
/**
* M165: Set multiple mix factors for a mixing extruder.
* Factors that are left out will be set to 0.
* All factors together must add up to 1.0.
*
* A[factor] Mix factor for extruder stepper 1
* B[factor] Mix factor for extruder stepper 2
* C[factor] Mix factor for extruder stepper 3
* D[factor] Mix factor for extruder stepper 4
* H[factor] Mix factor for extruder stepper 5
* I[factor] Mix factor for extruder stepper 6
*
*/
inline void gcode_M165() { gcode_get_mix(); }
#endif
#endif // MIXING_EXTRUDER
/**
* M999: Restart after being stopped
*
@ -6548,6 +6655,20 @@ inline void gcode_M999() {
FlushSerialRequestResend();
}
#if ENABLED(SWITCHING_EXTRUDER)
inline void move_extruder_servo(uint8_t e) {
const int angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
MOVE_SERVO(SWITCHING_EXTRUDER_SERVO_NR, angles[e]);
}
#endif
inline void invalid_extruder_error(const uint8_t &e) {
SERIAL_ECHO_START;
SERIAL_CHAR('T');
SERIAL_PROTOCOL_F(e, DEC);
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
/**
* T0-T3: Switch tool, usually switching extruders
*
@ -6555,264 +6676,314 @@ inline void gcode_M999() {
* S1 Don't move the tool in XY after change
*/
inline void gcode_T(uint8_t tmp_extruder) {
if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_CHAR('T');
SERIAL_PROTOCOL_F(tmp_extruder, DEC);
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
return;
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM(">>> gcode_T");
DEBUG_POS("BEFORE", current_position);
#if ENABLED(MIXING_EXTRUDER) && MIXING_VIRTUAL_TOOLS > 1
if (tmp_extruder >= MIXING_VIRTUAL_TOOLS) {
invalid_extruder_error(tmp_extruder);
return;
}
#endif
#if HOTENDS > 1
// T0-Tnnn: Switch virtual tool by changing the mix
for (uint8_t j = 0; j < MIXING_STEPPERS; j++)
mixing_factor[j] = mixing_virtual_tool_mix[tmp_extruder][j];
float old_feedrate = feedrate;
#else //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
if (code_seen('F')) {
float next_feedrate = code_value_axis_units(X_AXIS);
if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
}
else
feedrate = XY_PROBE_FEEDRATE;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOLNPGM(">>> gcode_T");
DEBUG_POS("BEFORE", current_position);
}
#endif
if (tmp_extruder != active_extruder) {
bool no_move = code_seen('S') && code_value_bool();
if (!no_move && axis_unhomed_error(true, true, true)) {
SERIAL_ECHOLNPGM("No move on toolchange");
no_move = true;
#if HOTENDS > 1
if (tmp_extruder >= EXTRUDERS) {
invalid_extruder_error(tmp_extruder);
return;
}
// Save current position to destination, for use later
set_destination_to_current();
float old_feedrate = feedrate;
#if ENABLED(DUAL_X_CARRIAGE)
if (code_seen('F')) {
float next_feedrate = code_value_axis_units(X_AXIS);
if (next_feedrate > 0.0) old_feedrate = feedrate = next_feedrate;
}
else
feedrate = XY_PROBE_FEEDRATE;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPGM("Dual X Carriage Mode ");
switch (dual_x_carriage_mode) {
case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
}
}
#endif
if (tmp_extruder != active_extruder) {
bool no_move = code_seen('S') && code_value_bool();
if (!no_move && axis_unhomed_error(true, true, true)) {
SERIAL_ECHOLNPGM("No move on toolchange");
no_move = true;
}
// Save current position to destination, for use later
set_destination_to_current();
#if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning()
&& (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
SERIAL_ECHOPGM("Dual X Carriage Mode ");
switch (dual_x_carriage_mode) {
case DXC_DUPLICATION_MODE: SERIAL_ECHOLNPGM("DXC_DUPLICATION_MODE"); break;
case DXC_AUTO_PARK_MODE: SERIAL_ECHOLNPGM("DXC_AUTO_PARK_MODE"); break;
case DXC_FULL_CONTROL_MODE: SERIAL_ECHOLNPGM("DXC_FULL_CONTROL_MODE"); break;
}
}
#endif
// Park old head: 1) raise 2) move to park position 3) lower
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
stepper.synchronize();
}
// apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
active_extruder = tmp_extruder;
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
(delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))
) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Raise to ", current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT); SERIAL_EOL;
SERIAL_ECHOPAIR("MoveX to ", x_home_pos(active_extruder)); SERIAL_EOL;
SERIAL_ECHOPAIR("Lower to ", current_position[Z_AXIS]); SERIAL_EOL;
}
#endif
// Park old head: 1) raise 2) move to park position 3) lower
for (uint8_t i = 0; i < 3; i++)
planner.buffer_line(
i == 0 ? current_position[X_AXIS] : x_home_pos(active_extruder),
current_position[Y_AXIS],
current_position[Z_AXIS] + (i == 2 ? 0 : TOOLCHANGE_PARK_ZLIFT),
current_position[E_AXIS],
planner.max_feedrate[i == 1 ? X_AXIS : Z_AXIS],
active_extruder
);
stepper.synchronize();
}
// This function resets the max/min values - the current position may be overwritten below.
set_axis_is_at_home(X_AXIS);
// apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position[Y_AXIS] -= hotend_offset[Y_AXIS][active_extruder] - hotend_offset[Y_AXIS][tmp_extruder];
current_position[Z_AXIS] -= hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder];
active_extruder = tmp_extruder;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
#endif
// This function resets the max/min values - the current position may be overwritten below.
set_axis_is_at_home(X_AXIS);
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE:
current_position[X_AXIS] = inactive_extruder_x_pos;
inactive_extruder_x_pos = destination[X_AXIS];
break;
case DXC_DUPLICATION_MODE:
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder_parked)
current_position[X_AXIS] = inactive_extruder_x_pos;
else
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
inactive_extruder_x_pos = destination[X_AXIS];
extruder_duplication_enabled = false;
break;
default:
// record raised toolhead position for use by unpark
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
active_extruder_parked = true;
delayed_move_time = 0;
break;
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("New Extruder", current_position);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
SERIAL_EOL;
DEBUG_POS("New extruder (parked)", current_position);
switch (dual_x_carriage_mode) {
case DXC_FULL_CONTROL_MODE:
current_position[X_AXIS] = inactive_extruder_x_pos;
inactive_extruder_x_pos = destination[X_AXIS];
break;
case DXC_DUPLICATION_MODE:
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder_parked)
current_position[X_AXIS] = inactive_extruder_x_pos;
else
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
inactive_extruder_x_pos = destination[X_AXIS];
extruder_duplication_enabled = false;
break;
default:
// record raised toolhead position for use by unpark
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
active_extruder_parked = true;
delayed_move_time = 0;
break;
}
#endif
// No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
#else // !DUAL_X_CARRIAGE
/**
* Set current_position to the position of the new nozzle.
* Offsets are based on linear distance, so we need to get
* the resulting position in coordinate space.
*
* - With grid or 3-point leveling, offset XYZ by a tilted vector
* - With mesh leveling, update Z for the new position
* - Otherwise, just use the raw linear distance
*
* Software endstops are altered here too. Consider a case where:
* E0 at X=0 ... E1 at X=10
* When we switch to E1 now X=10, but E1 can't move left.
* To express this we apply the change in XY to the software endstops.
* E1 can move farther right than E0, so the right limit is extended.
*
* Note that we don't adjust the Z software endstops. Why not?
* Consider a case where Z=0 (here) and switching to E1 makes Z=1
* because the bed is 1mm lower at the new position. As long as
* the first nozzle is out of the way, the carriage should be
* allowed to move 1mm lower. This technically "breaks" the
* Z software endstop. But this is technically correct (and
* there is no viable alternative).
*/
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
// Offset extruder, make sure to apply the bed level rotation matrix
vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
hotend_offset[Y_AXIS][tmp_extruder],
0),
act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
hotend_offset[Y_AXIS][active_extruder],
0),
offset_vec = tmp_offset_vec - act_offset_vec;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
tmp_offset_vec.debug("tmp_offset_vec");
act_offset_vec.debug("act_offset_vec");
offset_vec.debug("offset_vec (BEFORE)");
SERIAL_ECHOPAIR("Active extruder parked: ", active_extruder_parked ? "yes" : "no");
SERIAL_EOL;
DEBUG_POS("New extruder (parked)", current_position);
}
#endif
offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
// No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
#else // !DUAL_X_CARRIAGE
#if ENABLED(SWITCHING_EXTRUDER)
// <0 if the new nozzle is higher, >0 if lower. A bigger raise when lower.
float z_diff = hotend_offset[Z_AXIS][active_extruder] - hotend_offset[Z_AXIS][tmp_extruder],
z_raise = 0.3 + (z_diff > 0.0 ? z_diff : 0.0);
// Always raise by some amount
planner.buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS] + z_raise,
current_position[E_AXIS],
planner.max_feedrate[Z_AXIS],
active_extruder
);
stepper.synchronize();
move_extruder_servo(active_extruder);
delay(500);
// Move back down, if needed
if (z_raise != z_diff) {
planner.buffer_line(
current_position[X_AXIS],
current_position[Y_AXIS],
current_position[Z_AXIS] + z_diff,
current_position[E_AXIS],
planner.max_feedrate[Z_AXIS],
active_extruder
);
stepper.synchronize();
}
#endif
// Adjustments to the current position
float xydiff[2] = { offset_vec.x, offset_vec.y };
current_position[Z_AXIS] += offset_vec.z;
/**
* Set current_position to the position of the new nozzle.
* Offsets are based on linear distance, so we need to get
* the resulting position in coordinate space.
*
* - With grid or 3-point leveling, offset XYZ by a tilted vector
* - With mesh leveling, update Z for the new position
* - Otherwise, just use the raw linear distance
*
* Software endstops are altered here too. Consider a case where:
* E0 at X=0 ... E1 at X=10
* When we switch to E1 now X=10, but E1 can't move left.
* To express this we apply the change in XY to the software endstops.
* E1 can move farther right than E0, so the right limit is extended.
*
* Note that we don't adjust the Z software endstops. Why not?
* Consider a case where Z=0 (here) and switching to E1 makes Z=1
* because the bed is 1mm lower at the new position. As long as
* the first nozzle is out of the way, the carriage should be
* allowed to move 1mm lower. This technically "breaks" the
* Z software endstop. But this is technically correct (and
* there is no viable alternative).
*/
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
// Offset extruder, make sure to apply the bed level rotation matrix
vector_3 tmp_offset_vec = vector_3(hotend_offset[X_AXIS][tmp_extruder],
hotend_offset[Y_AXIS][tmp_extruder],
0),
act_offset_vec = vector_3(hotend_offset[X_AXIS][active_extruder],
hotend_offset[Y_AXIS][active_extruder],
0),
offset_vec = tmp_offset_vec - act_offset_vec;
#else // !AUTO_BED_LEVELING_FEATURE
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
tmp_offset_vec.debug("tmp_offset_vec");
act_offset_vec.debug("act_offset_vec");
offset_vec.debug("offset_vec (BEFORE)");
}
#endif
float xydiff[2] = {
hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
};
offset_vec.apply_rotation(planner.bed_level_matrix.transpose(planner.bed_level_matrix));
#if ENABLED(MESH_BED_LEVELING)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) offset_vec.debug("offset_vec (AFTER)");
#endif
if (mbl.active()) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
#endif
float xpos = RAW_CURRENT_POSITION(X_AXIS),
ypos = RAW_CURRENT_POSITION(Y_AXIS);
current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
SERIAL_EOL;
}
#endif
}
// Adjustments to the current position
float xydiff[2] = { offset_vec.x, offset_vec.y };
current_position[Z_AXIS] += offset_vec.z;
#endif // MESH_BED_LEVELING
#else // !AUTO_BED_LEVELING_FEATURE
#endif // !AUTO_BED_LEVELING_FEATURE
float xydiff[2] = {
hotend_offset[X_AXIS][tmp_extruder] - hotend_offset[X_AXIS][active_extruder],
hotend_offset[Y_AXIS][tmp_extruder] - hotend_offset[Y_AXIS][active_extruder]
};
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
SERIAL_ECHOPAIR(", ", xydiff[X_AXIS]);
SERIAL_ECHOLNPGM(" }");
}
#endif
#if ENABLED(MESH_BED_LEVELING)
// The newly-selected extruder XY is actually at...
current_position[X_AXIS] += xydiff[X_AXIS];
current_position[Y_AXIS] += xydiff[Y_AXIS];
for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
position_shift[i] += xydiff[i];
update_software_endstops((AxisEnum)i);
}
if (mbl.active()) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) SERIAL_ECHOPAIR("Z before MBL: ", current_position[Z_AXIS]);
#endif
float xpos = RAW_CURRENT_POSITION(X_AXIS),
ypos = RAW_CURRENT_POSITION(Y_AXIS);
current_position[Z_AXIS] += mbl.get_z(xpos + xydiff[X_AXIS], ypos + xydiff[Y_AXIS]) - mbl.get_z(xpos, ypos);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR(" after: ", current_position[Z_AXIS]);
SERIAL_EOL;
}
#endif
}
// Set the new active extruder
active_extruder = tmp_extruder;
#endif // MESH_BED_LEVELING
#endif // !DUAL_X_CARRIAGE
#endif // !AUTO_BED_LEVELING_FEATURE
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
SERIAL_ECHOPAIR("Offset Tool XY by { ", xydiff[X_AXIS]);
SERIAL_ECHOPAIR(", ", xydiff[X_AXIS]);
SERIAL_ECHOLNPGM(" }");
}
#endif
// Tell the planner the new "current position"
SYNC_PLAN_POSITION_KINEMATIC();
// The newly-selected extruder XY is actually at...
current_position[X_AXIS] += xydiff[X_AXIS];
current_position[Y_AXIS] += xydiff[Y_AXIS];
for (uint8_t i = X_AXIS; i <= Y_AXIS; i++) {
position_shift[i] += xydiff[i];
update_software_endstops((AxisEnum)i);
}
// Set the new active extruder
active_extruder = tmp_extruder;
#endif // !DUAL_X_CARRIAGE
// Move to the "old position" (move the extruder into place)
if (!no_move && IsRunning()) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
if (DEBUGGING(LEVELING)) DEBUG_POS("Sync After Toolchange", current_position);
#endif
prepare_move_to_destination();
}
} // (tmp_extruder != active_extruder)
// Tell the planner the new "current position"
SYNC_PLAN_POSITION_KINEMATIC();
stepper.synchronize();
// Move to the "old position" (move the extruder into place)
if (!no_move && IsRunning()) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) DEBUG_POS("Move back", destination);
#endif
prepare_move_to_destination();
}
#if ENABLED(EXT_SOLENOID)
disable_all_solenoids();
enable_solenoid_on_active_extruder();
#endif // EXT_SOLENOID
} // (tmp_extruder != active_extruder)
feedrate = old_feedrate;
stepper.synchronize();
#else // !HOTENDS > 1
#if ENABLED(EXT_SOLENOID)
disable_all_solenoids();
enable_solenoid_on_active_extruder();
#endif // EXT_SOLENOID
// Set the new active extruder
active_extruder = tmp_extruder;
feedrate = old_feedrate;
#endif
#else // HOTENDS <= 1
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
DEBUG_POS("AFTER", current_position);
SERIAL_ECHOLNPGM("<<< gcode_T");
}
#endif
// Set the new active extruder
active_extruder = tmp_extruder;
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
SERIAL_PROTOCOLLN((int)active_extruder);
#endif // HOTENDS <= 1
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(LEVELING)) {
DEBUG_POS("AFTER", current_position);
SERIAL_ECHOLNPGM("<<< gcode_T");
}
#endif
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ACTIVE_EXTRUDER);
SERIAL_PROTOCOLLN((int)active_extruder);
#endif //!MIXING_EXTRUDER || MIXING_VIRTUAL_TOOLS <= 1
}
/**
@ -7219,6 +7390,22 @@ void process_next_command() {
#endif //EXPERIMENTAL_I2CBUS
#if ENABLED(MIXING_EXTRUDER)
case 163: // M163 S<int> P<float> set weight for a mixing extruder
gcode_M163();
break;
#if MIXING_VIRTUAL_TOOLS > 1
case 164: // M164 S<int> save current mix as a virtual extruder
gcode_M164();
break;
#endif
#if ENABLED(DIRECT_MIXING_IN_G1)
case 165: // M165 [ABCDHI]<float> set multiple mix weights
gcode_M165();
break;
#endif
#endif
case 200: // M200 D<diameter> Set filament diameter and set E axis units to cubic. (Use S0 to revert to linear units.)
gcode_M200();
break;
@ -8033,14 +8220,14 @@ void prepare_move_to_destination() {
nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || thermalManager.soft_pwm_bed > 0
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
#if EXTRUDERS > 1
#if E_STEPPERS > 1
|| E1_ENABLE_READ == E_ENABLE_ON
#if HAS_X2_ENABLE
|| X2_ENABLE_READ == X_ENABLE_ON
#endif
#if EXTRUDERS > 2
#if E_STEPPERS > 2
|| E2_ENABLE_READ == E_ENABLE_ON
#if EXTRUDERS > 3
#if E_STEPPERS > 3
|| E3_ENABLE_READ == E_ENABLE_ON
#endif
#endif
@ -8303,25 +8490,29 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
#endif
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
if (thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)
&& thermalManager.degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
#if ENABLED(SWITCHING_EXTRUDER)
bool oldstatus = E0_ENABLE_READ;
enable_e0();
#else // !SWITCHING_EXTRUDER
bool oldstatus;
switch (active_extruder) {
case 0:
oldstatus = E0_ENABLE_READ;
enable_e0();
break;
#if EXTRUDERS > 1
#if E_STEPPERS > 1
case 1:
oldstatus = E1_ENABLE_READ;
enable_e1();
break;
#if EXTRUDERS > 2
#if E_STEPPERS > 2
case 2:
oldstatus = E2_ENABLE_READ;
enable_e2();
break;
#if EXTRUDERS > 3
#if E_STEPPERS > 3
case 3:
oldstatus = E3_ENABLE_READ;
enable_e3();
@ -8330,37 +8521,43 @@ void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
#endif
#endif
}
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
(EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
#endif // !SWITCHING_EXTRUDER
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS],
(EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_mm[E_AXIS], active_extruder);
current_position[E_AXIS] = oldepos;
destination[E_AXIS] = oldedes;
planner.set_e_position_mm(oldepos);
previous_cmd_ms = ms; // refresh_cmd_timeout()
stepper.synchronize();
switch (active_extruder) {
case 0:
E0_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 1
case 1:
E1_ENABLE_WRITE(oldstatus);
#if ENABLED(SWITCHING_EXTRUDER)
E0_ENABLE_WRITE(oldstatus);
#else
switch (active_extruder) {
case 0:
E0_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 2
case 2:
E2_ENABLE_WRITE(oldstatus);
#if E_STEPPERS > 1
case 1:
E1_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 3
case 3:
E3_ENABLE_WRITE(oldstatus);
#if E_STEPPERS > 2
case 2:
E2_ENABLE_WRITE(oldstatus);
break;
#if E_STEPPERS > 3
case 3:
E3_ENABLE_WRITE(oldstatus);
break;
#endif
#endif
#endif
#endif
}
}
#endif // !SWITCHING_EXTRUDER
}
#endif
#endif // EXTRUDER_RUNOUT_PREVENT
#if ENABLED(DUAL_X_CARRIAGE)
// handle delayed move timeout
@ -8498,6 +8695,6 @@ float calculate_volumetric_multiplier(float diameter) {
}
void calculate_volumetric_multipliers() {
for (int i = 0; i < EXTRUDERS; i++)
for (int i = 0; i < COUNT(filament_size); i++)
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
}

@ -349,7 +349,7 @@ void Config_StoreSettings() {
// Save filament sizes
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
if (q < EXTRUDERS) dummy = filament_size[q];
if (q < COUNT(filament_size)) dummy = filament_size[q];
EEPROM_WRITE_VAR(i, dummy);
}
@ -531,7 +531,7 @@ void Config_RetrieveSettings() {
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
EEPROM_READ_VAR(i, dummy);
if (q < EXTRUDERS) filament_size[q] = dummy;
if (q < COUNT(filament_size)) filament_size[q] = dummy;
}
if (eeprom_checksum == stored_checksum) {

@ -251,6 +251,9 @@
#ifndef MSG_PID_C
#define MSG_PID_C "PID-C"
#endif
#ifndef MSG_SELECT
#define MSG_SELECT "Select"
#endif
#ifndef MSG_E1
#define MSG_E1 " E1"
#endif

@ -285,6 +285,17 @@
#define _H3_PINS HEATER_3_PIN, EXTRUDER_3_AUTO_FAN_PIN, marlinAnalogInputToDigitalPin(TEMP_3_PIN),
#endif
#endif
#elif ENABLED(MIXING_EXTRUDER)
#undef _E1_PINS
#define _E1_PINS E1_STEP_PIN, E1_DIR_PIN, E1_ENABLE_PIN,
#if MIXING_STEPPERS > 2
#undef _E2_PINS
#define _E2_PINS E2_STEP_PIN, E2_DIR_PIN, E2_ENABLE_PIN,
#if MIXING_STEPPERS > 3
#undef _E3_PINS
#define _E3_PINS E3_STEP_PIN, E3_DIR_PIN, E3_ENABLE_PIN,
#endif
#endif
#endif
#define BED_PINS HEATER_BED_PIN, marlinAnalogInputToDigitalPin(TEMP_BED_PIN),
@ -374,15 +385,15 @@
// The X2 axis, if any, should be the next open extruder port
#if ENABLED(DUAL_X_CARRIAGE) || ENABLED(X_DUAL_STEPPER_DRIVERS)
#ifndef X2_STEP_PIN
#define X2_STEP_PIN _EPIN(EXTRUDERS, STEP)
#define X2_DIR_PIN _EPIN(EXTRUDERS, DIR)
#define X2_ENABLE_PIN _EPIN(EXTRUDERS, ENABLE)
#define X2_STEP_PIN _EPIN(E_STEPPERS, STEP)
#define X2_DIR_PIN _EPIN(E_STEPPERS, DIR)
#define X2_ENABLE_PIN _EPIN(E_STEPPERS, ENABLE)
#endif
#undef _X2_PINS
#define _X2_PINS X2_STEP_PIN, X2_DIR_PIN, X2_ENABLE_PIN,
#define Y2_E_INDEX INCREMENT(EXTRUDERS)
#define Y2_E_INDEX INCREMENT(E_STEPPERS)
#else
#define Y2_E_INDEX EXTRUDERS
#define Y2_E_INDEX E_STEPPERS
#endif
// The Y2 axis, if any, should be the next open extruder port

@ -28,8 +28,8 @@
#error "Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu."
#endif
#if EXTRUDERS > 2 || HOTENDS > 2
#error "Mega Controller supports up to 2 extruders. Comment this line to keep going."
#if E_STEPPERS > 2 || HOTENDS > 2
#error "Mega Controller supports up to 2 hotends / E-steppers. Comment this line to keep going."
#endif
#define BOARD_NAME "Mega Controller"

@ -28,8 +28,8 @@
#error "Oops! Make sure you have 'Arduino Mega' selected from the 'Tools -> Boards' menu."
#endif
#if EXTRUDERS > 3 || HOTENDS > 3
#error "RUMBA supports up to 3 extruders. Comment this line to keep going."
#if E_STEPPERS > 3 || HOTENDS > 3
#error "RUMBA supports up to 3 hotends / E-steppers. Comment this line to keep going."
#endif
#define DEFAULT_MACHINE_NAME "Rumba"

@ -629,6 +629,12 @@ void Planner::check_axes_activity() {
// Bail if this is a zero-length block
if (block->step_event_count <= dropsegments) return;
// For a mixing extruder, get a magnified step_event_count for each
#if ENABLED(MIXING_EXTRUDER)
for (uint8_t i = 0; i < MIXING_STEPPERS; i++)
block->mix_event_count[i] = (mixing_factor[i] < 0.0001) ? 0 : block->step_event_count / mixing_factor[i];
#endif
#if FAN_COUNT > 0
for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i];
#endif

@ -58,6 +58,10 @@ typedef struct {
long steps[NUM_AXIS]; // Step count along each axis
unsigned long step_event_count; // The number of step events required to complete this block
#if ENABLED(MIXING_EXTRUDER)
unsigned long mix_event_count[MIXING_STEPPERS]; // Scaled step_event_count for the mixing steppers
#endif
long accelerate_until, // The index of the step event on which to stop acceleration
decelerate_after, // The index of the step event on which to start decelerating
acceleration_rate; // The acceleration rate used for acceleration calculation

@ -95,13 +95,13 @@ volatile unsigned long Stepper::step_events_completed = 0; // The number of step
volatile unsigned char Stepper::eISR_Rate = 200; // Keep the ISR at a low rate until needed
#if ENABLED(LIN_ADVANCE)
volatile int Stepper::e_steps[EXTRUDERS];
volatile int Stepper::e_steps[E_STEPPERS];
int Stepper::extruder_advance_k = LIN_ADVANCE_K,
Stepper::final_estep_rate,
Stepper::current_estep_rate[EXTRUDERS],
Stepper::current_adv_steps[EXTRUDERS];
Stepper::current_estep_rate[E_STEPPERS],
Stepper::current_adv_steps[E_STEPPERS];
#else
long Stepper::e_steps[EXTRUDERS],
long Stepper::e_steps[E_STEPPERS],
Stepper::final_advance = 0,
Stepper::old_advance = 0,
Stepper::advance_rate,
@ -114,6 +114,10 @@ long Stepper::acceleration_time, Stepper::deceleration_time;
volatile long Stepper::count_position[NUM_AXIS] = { 0 };
volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
#if ENABLED(MIXING_EXTRUDER)
long Stepper::counter_M[MIXING_STEPPERS];
#endif
unsigned short Stepper::acc_step_rate; // needed for deceleration start point
uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
unsigned short Stepper::OCR1A_nominal;
@ -179,7 +183,9 @@ volatile long Stepper::endstops_trigsteps[3];
#define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v)
#endif
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
#if DISABLED(MIXING_EXTRUDER)
#define E_APPLY_STEP(v,Q) E_STEP_WRITE(v)
#endif
// intRes = longIn1 * longIn2 >> 24
// uses:
@ -322,8 +328,15 @@ void Stepper::isr() {
if (current_block) {
current_block->busy = true;
trapezoid_generator_reset();
counter_X = -(current_block->step_event_count >> 1);
counter_Y = counter_Z = counter_E = counter_X;
// Initialize Bresenham counters to 1/2 the ceiling
counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1);
#if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP(i)
counter_M[i] = -(current_block->mix_event_count[i] >> 1);
#endif
step_events_completed = 0;
#if ENABLED(Z_LATE_ENABLE)
@ -335,7 +348,7 @@ void Stepper::isr() {
#endif
// #if ENABLED(ADVANCE)
// e_steps[current_block->active_extruder] = 0;
// e_steps[TOOL_E_INDEX] = 0;
// #endif
}
else {
@ -343,7 +356,7 @@ void Stepper::isr() {
}
}
if (current_block != NULL) {
if (current_block) {
// Update endstops state, if enabled
#if HAS_BED_PROBE
@ -363,25 +376,67 @@ void Stepper::isr() {
counter_E += current_block->steps[E_AXIS];
if (counter_E > 0) {
counter_E -= current_block->step_event_count;
count_position[E_AXIS] += count_direction[E_AXIS];
e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
#if DISABLED(MIXING_EXTRUDER)
// Don't step E here for mixing extruder
count_position[E_AXIS] += count_direction[E_AXIS];
e_steps[TOOL_E_INDEX] += motor_direction(E_AXIS) ? -1 : 1;
#endif
}
#if ENABLED(MIXING_EXTRUDER)
// Step mixing steppers proportionally
long dir = motor_direction(E_AXIS) ? -1 : 1;
MIXING_STEPPERS_LOOP(j) {
counter_m[j] += current_block->steps[E_AXIS];
if (counter_m[j] > 0) {
counter_m[j] -= current_block->mix_event_count[j];
e_steps[j] += dir;
}
}
#endif
if (current_block->use_advance_lead) {
int delta_adv_steps; //Maybe a char would be enough?
delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[current_block->active_extruder]) >> 9) - current_adv_steps[current_block->active_extruder];
e_steps[current_block->active_extruder] += delta_adv_steps;
current_adv_steps[current_block->active_extruder] += delta_adv_steps;
int delta_adv_steps = (((long)extruder_advance_k * current_estep_rate[TOOL_E_INDEX]) >> 9) - current_adv_steps[TOOL_E_INDEX];
#if ENABLED(MIXING_EXTRUDER)
// Mixing extruders apply advance lead proportionally
MIXING_STEPPERS_LOOP(j) {
int steps = delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j];
e_steps[j] += steps;
current_adv_steps[j] += steps;
}
#else
// For most extruders, advance the single E stepper
e_steps[TOOL_E_INDEX] += delta_adv_steps;
current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
#endif
}
#elif ENABLED(ADVANCE)
// Always count the unified E axis
counter_E += current_block->steps[E_AXIS];
if (counter_E > 0) {
counter_E -= current_block->step_event_count;
e_steps[current_block->active_extruder] += motor_direction(E_AXIS) ? -1 : 1;
#if DISABLED(MIXING_EXTRUDER)
// Don't step E here for mixing extruder
e_steps[TOOL_E_INDEX] += motor_direction(E_AXIS) ? -1 : 1;
#endif
}
#if ENABLED(MIXING_EXTRUDER)
// Step mixing steppers proportionally
long dir = motor_direction(E_AXIS) ? -1 : 1;
MIXING_STEPPERS_LOOP(j) {
counter_m[j] += current_block->steps[E_AXIS];
if (counter_m[j] > 0) {
counter_m[j] -= current_block->mix_event_count[j];
e_steps[j] += dir;
}
}
#endif // MIXING_EXTRUDER
#endif // ADVANCE or LIN_ADVANCE
#define _COUNTER(AXIS) counter_## AXIS
@ -395,9 +450,22 @@ void Stepper::isr() {
STEP_ADD(X);
STEP_ADD(Y);
STEP_ADD(Z);
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
STEP_ADD(E);
#endif
#if ENABLED(MIXING_EXTRUDER)
// Keep updating the single E axis
counter_E += current_block->steps[E_AXIS];
// Tick the counters used for this mix
MIXING_STEPPERS_LOOP(j) {
// Step mixing steppers (proportionally)
counter_M[j] += current_block->steps[E_AXIS];
// Step when the counter goes over zero
if (counter_M[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN);
}
#else // !MIXING_EXTRUDER
STEP_ADD(E);
#endif
#endif // !ADVANCE && !LIN_ADVANCE
#define STEP_IF_COUNTER(AXIS) \
if (_COUNTER(AXIS) > 0) { \
@ -409,17 +477,32 @@ void Stepper::isr() {
STEP_IF_COUNTER(X);
STEP_IF_COUNTER(Y);
STEP_IF_COUNTER(Z);
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE)
STEP_IF_COUNTER(E);
#endif
#if ENABLED(MIXING_EXTRUDER)
// Always step the single E axis
if (counter_E > 0) {
counter_E -= current_block->step_event_count;
count_position[E_AXIS] += count_direction[E_AXIS];
}
MIXING_STEPPERS_LOOP(j) {
if (counter_M[j] > 0) {
counter_M[j] -= current_block->mix_event_count[j];
En_STEP_WRITE(j, INVERT_E_STEP_PIN);
}
}
#else // !MIXING_EXTRUDER
STEP_IF_COUNTER(E);
#endif
#endif // !ADVANCE && !LIN_ADVANCE
step_events_completed++;
if (step_events_completed >= current_block->step_event_count) break;
}
#if ENABLED(LIN_ADVANCE)
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
// If we have esteps to execute, fire the next ISR "now"
if (e_steps[current_block->active_extruder]) OCR0A = TCNT0 + 2;
if (e_steps[TOOL_E_INDEX]) OCR0A = TCNT0 + 2;
#endif
// Calculate new timer value
@ -440,21 +523,41 @@ void Stepper::isr() {
#if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead)
current_estep_rate[current_block->active_extruder] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
current_estep_rate[TOOL_E_INDEX] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
if (current_block->use_advance_lead) {
#if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP(j)
current_estep_rate[j] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
#else
current_estep_rate[TOOL_E_INDEX] = ((unsigned long)acc_step_rate * current_block->e_speed_multiplier8) >> 8;
#endif
}
#elif ENABLED(ADVANCE)
advance += advance_rate * step_loops;
//NOLESS(advance, current_block->advance);
long advance_whole = advance >> 8,
advance_factor = advance_whole - old_advance;
// Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >> 8) - old_advance);
old_advance = advance >> 8;
#if ENABLED(MIXING_EXTRUDER)
// ...for mixing steppers proportionally
MIXING_STEPPERS_LOOP(j)
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
#else
// ...for the active extruder
e_steps[TOOL_E_INDEX] += advance_factor;
#endif
old_advance = advance_whole;
#endif // ADVANCE or LIN_ADVANCE
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[current_block->active_extruder]);
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
#endif
}
else if (step_events_completed > (unsigned long)current_block->decelerate_after) {
@ -474,8 +577,14 @@ void Stepper::isr() {
#if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead)
current_estep_rate[current_block->active_extruder] = ((unsigned long)step_rate * current_block->e_speed_multiplier8) >> 8;
if (current_block->use_advance_lead) {
#if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP(j)
current_estep_rate[j] = ((unsigned long)step_rate * current_block->e_speed_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 8;
#else
current_estep_rate[TOOL_E_INDEX] = ((unsigned long)step_rate * current_block->e_speed_multiplier8) >> 8;
#endif
}
#elif ENABLED(ADVANCE)
@ -483,14 +592,22 @@ void Stepper::isr() {
NOLESS(advance, final_advance);
// Do E steps + advance steps
uint32_t advance_whole = advance >> 8;
e_steps[current_block->active_extruder] += advance_whole - old_advance;
long advance_whole = advance >> 8,
advance_factor = advance_whole - old_advance;
#if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP(j)
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
#else
e_steps[TOOL_E_INDEX] += advance_factor;
#endif
old_advance = advance_whole;
#endif // ADVANCE or LIN_ADVANCE
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[current_block->active_extruder]);
eISR_Rate = (timer >> 2) * step_loops / abs(e_steps[TOOL_E_INDEX]);
#endif
}
else {
@ -498,9 +615,9 @@ void Stepper::isr() {
#if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead)
current_estep_rate[current_block->active_extruder] = final_estep_rate;
current_estep_rate[TOOL_E_INDEX] = final_estep_rate;
eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[current_block->active_extruder]);
eISR_Rate = (OCR1A_nominal >> 2) * step_loops_nominal / abs(e_steps[TOOL_E_INDEX]);
#endif
@ -537,7 +654,7 @@ void Stepper::isr() {
E## INDEX ##_DIR_WRITE(INVERT_E## INDEX ##_DIR); \
e_steps[INDEX]++; \
} \
else if (e_steps[INDEX] > 0) { \
else { \
E## INDEX ##_DIR_WRITE(!INVERT_E## INDEX ##_DIR); \
e_steps[INDEX]--; \
} \
@ -547,11 +664,11 @@ void Stepper::isr() {
// Step all E steppers that have steps
for (uint8_t i = 0; i < step_loops; i++) {
STEP_E_ONCE(0);
#if EXTRUDERS > 1
#if E_STEPPERS > 1
STEP_E_ONCE(1);
#if EXTRUDERS > 2
#if E_STEPPERS > 2
STEP_E_ONCE(2);
#if EXTRUDERS > 3
#if E_STEPPERS > 3
STEP_E_ONCE(3);
#endif
#endif
@ -730,18 +847,12 @@ void Stepper::init() {
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
#if ENABLED(LIN_ADVANCE)
for (int i = 0; i < EXTRUDERS; i++) {
e_steps[i] = 0;
for (int i = 0; i < E_STEPPERS; i++) {
e_steps[i] = 0;
#if ENABLED(LIN_ADVANCE)
current_adv_steps[i] = 0;
}
#elif ENABLED(ADVANCE)
for (uint8_t i = 0; i < EXTRUDERS; i++) e_steps[i] = 0;
#endif
#endif
}
#if defined(TCCR0A) && defined(WGM01)
CBI(TCCR0A, WGM01);

@ -107,15 +107,15 @@ class Stepper {
static unsigned char old_OCR0A;
static volatile unsigned char eISR_Rate;
#if ENABLED(LIN_ADVANCE)
static volatile int e_steps[EXTRUDERS];
static volatile int e_steps[E_STEPPERS];
static int extruder_advance_k;
static int final_estep_rate;
static int current_estep_rate[EXTRUDERS]; // Actual extruder speed [steps/s]
static int current_adv_steps[EXTRUDERS]; // The amount of current added esteps due to advance.
static int current_estep_rate[E_STEPPERS]; // Actual extruder speed [steps/s]
static int current_adv_steps[E_STEPPERS]; // The amount of current added esteps due to advance.
// i.e., the current amount of pressure applied
// to the spring (=filament).
#else
static long e_steps[EXTRUDERS];
static long e_steps[E_STEPPERS];
static long advance_rate, advance, final_advance;
static long old_advance;
#endif
@ -147,6 +147,16 @@ class Stepper {
//
static volatile signed char count_direction[NUM_AXIS];
//
// Mixing extruder mix counters
//
#if ENABLED(MIXING_EXTRUDER)
static long counter_M[MIXING_STEPPERS];
#define MIXING_STEPPERS_LOOP(VAR) \
for (uint8_t VAR = 0; VAR < MIXING_STEPPERS; VAR++) \
if (current_block->mix_event_count[VAR])
#endif
public:
//
@ -315,12 +325,25 @@ class Stepper {
}
#if ENABLED(ADVANCE)
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
// Do E steps + advance steps
e_steps[current_block->active_extruder] += ((advance >>8) - old_advance);
old_advance = advance >>8;
#if ENABLED(MIXING_EXTRUDER)
long advance_factor = (advance >> 8) - old_advance;
// ...for mixing steppers proportionally
MIXING_STEPPERS_LOOP(j)
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
#else
// ...for the active extruder
e_steps[TOOL_E_INDEX] += ((advance >> 8) - old_advance);
#endif
old_advance = advance >> 8;
#endif
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);

@ -182,26 +182,42 @@
#define E3_ENABLE_WRITE(STATE) WRITE(E3_ENABLE_PIN,STATE)
#define E3_ENABLE_READ READ(E3_ENABLE_PIN)
#if EXTRUDERS > 3
#define E_STEP_WRITE(v) {switch(current_block->active_extruder){case 3:E3_STEP_WRITE(v);break;case 2:E2_STEP_WRITE(v);break;case 1:E1_STEP_WRITE(v);break;default:E0_STEP_WRITE(v);}}
#define NORM_E_DIR() {switch(current_block->active_extruder){case 3:E3_DIR_WRITE(!INVERT_E3_DIR);break;case 2:E2_DIR_WRITE(!INVERT_E2_DIR);break;case 1:E1_DIR_WRITE(!INVERT_E1_DIR);break;default:E0_DIR_WRITE(!INVERT_E0_DIR);}}
#define REV_E_DIR() {switch(current_block->active_extruder){case 3:E3_DIR_WRITE(INVERT_E3_DIR);break;case 2:E2_DIR_WRITE(INVERT_E2_DIR);break;case 1:E1_DIR_WRITE(INVERT_E1_DIR);break;default:E0_DIR_WRITE(INVERT_E0_DIR);}}
#if ENABLED(SWITCHING_EXTRUDER)
#define E_STEP_WRITE(v) E0_STEP_WRITE(v)
#define NORM_E_DIR() E0_DIR_WRITE(current_block->active_extruder ? INVERT_E0_DIR : !INVERT_E0_DIR)
#define REV_E_DIR() E0_DIR_WRITE(current_block->active_extruder ? !INVERT_E0_DIR : INVERT_E0_DIR)
#elif EXTRUDERS > 3
#define E_STEP_WRITE(v) { switch (current_block->active_extruder) { case 0: E0_STEP_WRITE(v); break; case 1: E1_STEP_WRITE(v); break; case 2: E2_STEP_WRITE(v); break; case 3: E3_STEP_WRITE(v); } }
#define NORM_E_DIR() { switch (current_block->active_extruder) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(!INVERT_E3_DIR); } }
#define REV_E_DIR() { switch (current_block->active_extruder) { case 0: E0_DIR_WRITE(INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(INVERT_E2_DIR); break; case 3: E3_DIR_WRITE(INVERT_E3_DIR); } }
#elif EXTRUDERS > 2
#define E_STEP_WRITE(v) {switch(current_block->active_extruder){case 2:E2_STEP_WRITE(v);break;case 1:E1_STEP_WRITE(v);break;default:E0_STEP_WRITE(v);}}
#define NORM_E_DIR() {switch(current_block->active_extruder){case 2:E2_DIR_WRITE(!INVERT_E2_DIR);break;case 1:E1_DIR_WRITE(!INVERT_E1_DIR);break;default:E0_DIR_WRITE(!INVERT_E0_DIR);}}
#define REV_E_DIR() {switch(current_block->active_extruder){case 2:E2_DIR_WRITE(INVERT_E2_DIR);break;case 1:E1_DIR_WRITE(INVERT_E1_DIR);break;default:E0_DIR_WRITE(INVERT_E0_DIR);}}
#define E_STEP_WRITE(v) { switch (current_block->active_extruder) { case 0: E0_STEP_WRITE(v); break; case 1: E1_STEP_WRITE(v); break; case 2: E2_STEP_WRITE(v); } }
#define NORM_E_DIR() { switch (current_block->active_extruder) { case 0: E0_DIR_WRITE(!INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(!INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(!INVERT_E2_DIR); } }
#define REV_E_DIR() { switch (current_block->active_extruder) { case 0: E0_DIR_WRITE(INVERT_E0_DIR); break; case 1: E1_DIR_WRITE(INVERT_E1_DIR); break; case 2: E2_DIR_WRITE(INVERT_E2_DIR); } }
#elif EXTRUDERS > 1
#define _E_STEP_WRITE(v) {if(current_block->active_extruder==1){E1_STEP_WRITE(v);}else{E0_STEP_WRITE(v);}}
#define _NORM_E_DIR() {if(current_block->active_extruder==1){E1_DIR_WRITE(!INVERT_E1_DIR);}else{E0_DIR_WRITE(!INVERT_E0_DIR);}}
#define _REV_E_DIR() {if(current_block->active_extruder==1){E1_DIR_WRITE(INVERT_E1_DIR);}else{E0_DIR_WRITE(INVERT_E0_DIR);}}
#if DISABLED(DUAL_X_CARRIAGE)
#define E_STEP_WRITE(v) _E_STEP_WRITE(v)
#define NORM_E_DIR() _NORM_E_DIR()
#define REV_E_DIR() _REV_E_DIR()
#define E_STEP_WRITE(v) { if (current_block->active_extruder == 0) { E0_STEP_WRITE(v); } else { E1_STEP_WRITE(v); } }
#define NORM_E_DIR() { if (current_block->active_extruder == 0) { E0_DIR_WRITE(!INVERT_E0_DIR); } else { E1_DIR_WRITE(!INVERT_E1_DIR); } }
#define REV_E_DIR() { if (current_block->active_extruder == 0) { E0_DIR_WRITE(INVERT_E0_DIR); } else { E1_DIR_WRITE(INVERT_E1_DIR); } }
#else
#define E_STEP_WRITE(v) { if (extruder_duplication_enabled) { E0_STEP_WRITE(v); E1_STEP_WRITE(v); } else if (current_block->active_extruder == 0) { E0_STEP_WRITE(v); } else { E1_STEP_WRITE(v); } }
#define NORM_E_DIR() { if (extruder_duplication_enabled) { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); } else if (current_block->active_extruder == 0) { E0_DIR_WRITE(!INVERT_E0_DIR); } else { E1_DIR_WRITE(!INVERT_E1_DIR); } }
#define REV_E_DIR() { if (extruder_duplication_enabled) { E0_DIR_WRITE(INVERT_E0_DIR); E1_DIR_WRITE(INVERT_E1_DIR); } else if (current_block->active_extruder == 0) { E0_DIR_WRITE(INVERT_E0_DIR); } else { E1_DIR_WRITE(INVERT_E1_DIR); } }
#endif
#elif ENABLED(MIXING_EXTRUDER)
#define E_STEP_WRITE(v) NOOP /* not used for mixing extruders! */
#if MIXING_STEPPERS > 3
#define En_STEP_WRITE(n,v) { switch (n) { case 0: E0_STEP_WRITE(v); break; case 1: E1_STEP_WRITE(v); break; case 2: E2_STEP_WRITE(v); break; case 3: E3_STEP_WRITE(v); } }
#define NORM_E_DIR() { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); E2_DIR_WRITE(!INVERT_E2_DIR); E3_DIR_WRITE(!INVERT_E3_DIR); }
#define REV_E_DIR() { E0_DIR_WRITE( INVERT_E0_DIR); E1_DIR_WRITE( INVERT_E1_DIR); E2_DIR_WRITE( INVERT_E2_DIR); E3_DIR_WRITE( INVERT_E3_DIR); }
#elif MIXING_STEPPERS > 2
#define En_STEP_WRITE(n,v) { switch (n) { case 0: E0_STEP_WRITE(v); break; case 1: E1_STEP_WRITE(v); break; case 2: E2_STEP_WRITE(v); } }
#define NORM_E_DIR() { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); E2_DIR_WRITE(!INVERT_E2_DIR); }
#define REV_E_DIR() { E0_DIR_WRITE( INVERT_E0_DIR); E1_DIR_WRITE( INVERT_E1_DIR); E2_DIR_WRITE( INVERT_E2_DIR); }
#else
#define E_STEP_WRITE(v) {if(extruder_duplication_enabled){E0_STEP_WRITE(v);E1_STEP_WRITE(v);}else _E_STEP_WRITE(v);}
#define NORM_E_DIR() {if(extruder_duplication_enabled){E0_DIR_WRITE(!INVERT_E0_DIR);E1_DIR_WRITE(!INVERT_E1_DIR);}else _NORM_E_DIR();}
#define REV_E_DIR() {if(extruder_duplication_enabled){E0_DIR_WRITE(INVERT_E0_DIR);E1_DIR_WRITE(INVERT_E1_DIR);}else _REV_E_DIR();}
#define En_STEP_WRITE(n,v) { switch (n) { case 0: E0_STEP_WRITE(v); break; case 1: E1_STEP_WRITE(v); } }
#define NORM_E_DIR() { E0_DIR_WRITE(!INVERT_E0_DIR); E1_DIR_WRITE(!INVERT_E1_DIR); }
#define REV_E_DIR() { E0_DIR_WRITE( INVERT_E0_DIR); E1_DIR_WRITE( INVERT_E1_DIR); }
#endif
#else
#define E_STEP_WRITE(v) E0_STEP_WRITE(v)

@ -1365,7 +1365,7 @@ void kill_screen(const char* lcd_msg) {
#endif
static void lcd_move_z() { _lcd_move_xyz(PSTR(MSG_MOVE_Z), Z_AXIS, sw_endstop_min[Z_AXIS], sw_endstop_max[Z_AXIS]); }
static void lcd_move_e(
#if EXTRUDERS > 1
#if E_STEPPERS > 1
int8_t eindex = -1
#endif
) {
@ -1375,7 +1375,7 @@ void kill_screen(const char* lcd_msg) {
current_position[E_AXIS] += float((int32_t)encoderPosition) * move_menu_scale;
encoderPosition = 0;
manual_move_to_current(E_AXIS
#if EXTRUDERS > 1
#if E_STEPPERS > 1
, eindex
#endif
);
@ -1383,34 +1383,34 @@ void kill_screen(const char* lcd_msg) {
}
if (lcdDrawUpdate) {
PGM_P pos_label;
#if EXTRUDERS == 1
#if E_STEPPERS == 1
pos_label = PSTR(MSG_MOVE_E);
#else
switch (eindex) {
default: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E1); break;
case 1: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E2); break;
#if EXTRUDERS > 2
#if E_STEPPERS > 2
case 2: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E3); break;
#if EXTRUDERS > 3
#if E_STEPPERS > 3
case 3: pos_label = PSTR(MSG_MOVE_E MSG_MOVE_E4); break;
#endif //EXTRUDERS > 3
#endif //EXTRUDERS > 2
#endif
#endif
}
#endif //EXTRUDERS > 1
#endif
lcd_implementation_drawedit(pos_label, ftostr41sign(current_position[E_AXIS]));
}
}
#if EXTRUDERS > 1
#if E_STEPPERS > 1
static void lcd_move_e0() { lcd_move_e(0); }
static void lcd_move_e1() { lcd_move_e(1); }
#if EXTRUDERS > 2
#if E_STEPPERS > 2
static void lcd_move_e2() { lcd_move_e(2); }
#if EXTRUDERS > 3
#if E_STEPPERS > 3
static void lcd_move_e3() { lcd_move_e(3); }
#endif
#endif
#endif // EXTRUDERS > 1
#endif
/**
*
@ -1432,20 +1432,29 @@ void kill_screen(const char* lcd_msg) {
MENU_ITEM(submenu, MSG_MOVE_X, lcd_move_x);
MENU_ITEM(submenu, MSG_MOVE_Y, lcd_move_y);
}
if (move_menu_scale < 10.0) {
if (_MOVE_XYZ_ALLOWED) MENU_ITEM(submenu, MSG_MOVE_Z, lcd_move_z);
#if EXTRUDERS == 1
#if ENABLED(SWITCHING_EXTRUDER)
if (active_extruder)
MENU_ITEM(gcode, MSG_SELECT MSG_E1, PSTR("T0"));
else
MENU_ITEM(gcode, MSG_SELECT MSG_E2, PSTR("T1"));
#endif
#if E_STEPPERS == 1
MENU_ITEM(submenu, MSG_MOVE_E, lcd_move_e);
#else
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E1, lcd_move_e0);
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E2, lcd_move_e1);
#if EXTRUDERS > 2
#if E_STEPPERS > 2
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E3, lcd_move_e2);
#if EXTRUDERS > 3
#if E_STEPPERS > 3
MENU_ITEM(submenu, MSG_MOVE_E MSG_MOVE_E4, lcd_move_e3);
#endif
#endif
#endif // EXTRUDERS > 1
#endif
}
END_MENU();
}

Loading…
Cancel
Save