Apply shorthand Assembler macros

2.0.x
Scott Lahteine 7 years ago
parent d1b619be52
commit 0436e16fb2

@ -23,6 +23,8 @@
#ifndef _MATH_AVR_H_ #ifndef _MATH_AVR_H_
#define _MATH_AVR_H_ #define _MATH_AVR_H_
#define a(CODE) " " CODE "\n\t"
/** /**
* Optimized math functions for AVR * Optimized math functions for AVR
*/ */
@ -39,41 +41,41 @@
// //
#define MultiU24X32toH16(intRes, longIn1, longIn2) \ #define MultiU24X32toH16(intRes, longIn1, longIn2) \
asm volatile ( \ asm volatile ( \
"clr r26 \n\t" \ A("clr r26") \
"mul %A1, %B2 \n\t" \ A("mul %A1, %B2") \
"mov r27, r1 \n\t" \ A("mov r27, r1") \
"mul %B1, %C2 \n\t" \ A("mul %B1, %C2") \
"movw %A0, r0 \n\t" \ A("movw %A0, r0") \
"mul %C1, %C2 \n\t" \ A("mul %C1, %C2") \
"add %B0, r0 \n\t" \ A("add %B0, r0") \
"mul %C1, %B2 \n\t" \ A("mul %C1, %B2") \
"add %A0, r0 \n\t" \ A("add %A0, r0") \
"adc %B0, r1 \n\t" \ A("adc %B0, r1") \
"mul %A1, %C2 \n\t" \ A("mul %A1, %C2") \
"add r27, r0 \n\t" \ A("add r27, r0") \
"adc %A0, r1 \n\t" \ A("adc %A0, r1") \
"adc %B0, r26 \n\t" \ A("adc %B0, r26") \
"mul %B1, %B2 \n\t" \ A("mul %B1, %B2") \
"add r27, r0 \n\t" \ A("add r27, r0") \
"adc %A0, r1 \n\t" \ A("adc %A0, r1") \
"adc %B0, r26 \n\t" \ A("adc %B0, r26") \
"mul %C1, %A2 \n\t" \ A("mul %C1, %A2") \
"add r27, r0 \n\t" \ A("add r27, r0") \
"adc %A0, r1 \n\t" \ A("adc %A0, r1") \
"adc %B0, r26 \n\t" \ A("adc %B0, r26") \
"mul %B1, %A2 \n\t" \ A("mul %B1, %A2") \
"add r27, r1 \n\t" \ A("add r27, r1") \
"adc %A0, r26 \n\t" \ A("adc %A0, r26") \
"adc %B0, r26 \n\t" \ A("adc %B0, r26") \
"lsr r27 \n\t" \ A("lsr r27") \
"adc %A0, r26 \n\t" \ A("adc %A0, r26") \
"adc %B0, r26 \n\t" \ A("adc %B0, r26") \
"mul %D2, %A1 \n\t" \ A("mul %D2, %A1") \
"add %A0, r0 \n\t" \ A("add %A0, r0") \
"adc %B0, r1 \n\t" \ A("adc %B0, r1") \
"mul %D2, %B1 \n\t" \ A("mul %D2, %B1") \
"add %B0, r0 \n\t" \ A("add %B0, r0") \
"clr r1 \n\t" \ A("clr r1") \
: \ : \
"=&r" (intRes) \ "=&r" (intRes) \
: \ : \
@ -89,16 +91,16 @@
// r27 to store the byte 1 of the 24 bit result // r27 to store the byte 1 of the 24 bit result
#define MultiU16X8toH16(intRes, charIn1, intIn2) \ #define MultiU16X8toH16(intRes, charIn1, intIn2) \
asm volatile ( \ asm volatile ( \
"clr r26 \n\t" \ A("clr r26") \
"mul %A1, %B2 \n\t" \ A("mul %A1, %B2") \
"movw %A0, r0 \n\t" \ A("movw %A0, r0") \
"mul %A1, %A2 \n\t" \ A("mul %A1, %A2") \
"add %A0, r1 \n\t" \ A("add %A0, r1") \
"adc %B0, r26 \n\t" \ A("adc %B0, r26") \
"lsr r0 \n\t" \ A("lsr r0") \
"adc %A0, r26 \n\t" \ A("adc %A0, r26") \
"adc %B0, r26 \n\t" \ A("adc %B0, r26") \
"clr r1 \n\t" \ A("clr r1") \
: \ : \
"=&r" (intRes) \ "=&r" (intRes) \
: \ : \

@ -36,7 +36,7 @@
// state we are when running them // state we are when running them
// A SW memory barrier, to ensure GCC does not overoptimize loops // A SW memory barrier, to ensure GCC does not overoptimize loops
#define sw_barrier() asm volatile("": : :"memory"); #define sw_barrier() __asm__ volatile("": : :"memory");
// (re)initialize UART0 as a monitor output to 250000,n,8,1 // (re)initialize UART0 as a monitor output to 250000,n,8,1
static void TXBegin(void) { static void TXBegin(void) {
@ -230,106 +230,106 @@ void HardFault_HandlerC(unsigned long *sp, unsigned long lr, unsigned long cause
__attribute__((naked)) void NMI_Handler(void) { __attribute__((naked)) void NMI_Handler(void) {
__asm__ __volatile__ ( __asm__ __volatile__ (
".syntax unified \n" ".syntax unified" "\n\t"
" tst lr, #4 \n" A("tst lr, #4")
" ite eq \n" A("ite eq")
" mrseq r0, msp \n" A("mrseq r0, msp")
" mrsne r0, psp \n" A("mrsne r0, psp")
" mov r1,lr \n" A("mov r1,lr")
" mov r2,#0 \n" A("mov r2,#0")
" b HardFault_HandlerC \n" A("b HardFault_HandlerC")
); );
} }
__attribute__((naked)) void HardFault_Handler(void) { __attribute__((naked)) void HardFault_Handler(void) {
__asm__ __volatile__ ( __asm__ __volatile__ (
".syntax unified \n" ".syntax unified" "\n\t"
" tst lr, #4 \n" A("tst lr, #4")
" ite eq \n" A("ite eq")
" mrseq r0, msp \n" A("mrseq r0, msp")
" mrsne r0, psp \n" A("mrsne r0, psp")
" mov r1,lr \n" A("mov r1,lr")
" mov r2,#1 \n" A("mov r2,#1")
" b HardFault_HandlerC \n" A("b HardFault_HandlerC")
); );
} }
__attribute__((naked)) void MemManage_Handler(void) { __attribute__((naked)) void MemManage_Handler(void) {
__asm__ __volatile__ ( __asm__ __volatile__ (
".syntax unified \n" ".syntax unified" "\n\t"
" tst lr, #4 \n" A("tst lr, #4")
" ite eq \n" A("ite eq")
" mrseq r0, msp \n" A("mrseq r0, msp")
" mrsne r0, psp \n" A("mrsne r0, psp")
" mov r1,lr \n" A("mov r1,lr")
" mov r2,#2 \n" A("mov r2,#2")
" b HardFault_HandlerC \n" A("b HardFault_HandlerC")
); );
} }
__attribute__((naked)) void BusFault_Handler(void) { __attribute__((naked)) void BusFault_Handler(void) {
__asm__ __volatile__ ( __asm__ __volatile__ (
".syntax unified \n" ".syntax unified" "\n\t"
" tst lr, #4 \n" A("tst lr, #4")
" ite eq \n" A("ite eq")
" mrseq r0, msp \n" A("mrseq r0, msp")
" mrsne r0, psp \n" A("mrsne r0, psp")
" mov r1,lr \n" A("mov r1,lr")
" mov r2,#3 \n" A("mov r2,#3")
" b HardFault_HandlerC \n" A("b HardFault_HandlerC")
); );
} }
__attribute__((naked)) void UsageFault_Handler(void) { __attribute__((naked)) void UsageFault_Handler(void) {
__asm__ __volatile__ ( __asm__ __volatile__ (
".syntax unified \n" ".syntax unified" "\n\t"
" tst lr, #4 \n" A("tst lr, #4")
" ite eq \n" A("ite eq")
" mrseq r0, msp \n" A("mrseq r0, msp")
" mrsne r0, psp \n" A("mrsne r0, psp")
" mov r1,lr \n" A("mov r1,lr")
" mov r2,#4 \n" A("mov r2,#4")
" b HardFault_HandlerC \n" A("b HardFault_HandlerC")
); );
} }
__attribute__((naked)) void DebugMon_Handler(void) { __attribute__((naked)) void DebugMon_Handler(void) {
__asm__ __volatile__ ( __asm__ __volatile__ (
".syntax unified \n" ".syntax unified" "\n\t"
" tst lr, #4 \n" A("tst lr, #4")
" ite eq \n" A("ite eq")
" mrseq r0, msp \n" A("mrseq r0, msp")
" mrsne r0, psp \n" A("mrsne r0, psp")
" mov r1,lr \n" A("mov r1,lr")
" mov r2,#5 \n" A("mov r2,#5")
" b HardFault_HandlerC \n" A("b HardFault_HandlerC")
); );
} }
/* This is NOT an exception, it is an interrupt handler - Nevertheless, the framing is the same */ /* This is NOT an exception, it is an interrupt handler - Nevertheless, the framing is the same */
__attribute__((naked)) void WDT_Handler(void) { __attribute__((naked)) void WDT_Handler(void) {
__asm__ __volatile__ ( __asm__ __volatile__ (
".syntax unified \n" ".syntax unified" "\n\t"
" tst lr, #4 \n" A("tst lr, #4")
" ite eq \n" A("ite eq")
" mrseq r0, msp \n" A("mrseq r0, msp")
" mrsne r0, psp \n" A("mrsne r0, psp")
" mov r1,lr \n" A("mov r1,lr")
" mov r2,#6 \n" A("mov r2,#6")
" b HardFault_HandlerC \n" A("b HardFault_HandlerC")
); );
} }
__attribute__((naked)) void RSTC_Handler(void) { __attribute__((naked)) void RSTC_Handler(void) {
__asm__ __volatile__ ( __asm__ __volatile__ (
".syntax unified \n" ".syntax unified" "\n\t"
" tst lr, #4 \n" A("tst lr, #4")
" ite eq \n" A("ite eq")
" mrseq r0, msp \n" A("mrseq r0, msp")
" mrsne r0, psp \n" A("mrsne r0, psp")
" mov r1,lr \n" A("mov r1,lr")
" mov r2,#7 \n" A("mov r2,#7")
" b HardFault_HandlerC \n" A("b HardFault_HandlerC")
); );
} }

@ -77,10 +77,10 @@
__asm__ __volatile__( __asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
"loop%=:" "\n\t" L("loop%=")
" subs %[cnt],#1" "\n\t" A("subs %[cnt],#1")
EXTRA_NOP_CYCLES "\n\t" A(EXTRA_NOP_CYCLES)
" bne loop%=" "\n\t" A("bne loop%=")
: [cnt]"+r"(cy) // output: +r means input+output : [cnt]"+r"(cy) // output: +r means input+output
: // input: : // input:
: "cc" // clobbers: : "cc" // clobbers:
@ -141,54 +141,54 @@
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
/* Bit 7 */ /* Bit 7 */
" ubfx %[idx],%[txval],#7,#1" "\n\t" /* Place bit 7 in bit 0 of idx*/ A("ubfx %[idx],%[txval],#7,#1") /* Place bit 7 in bit 0 of idx*/
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[idx],%[txval],#6,#1" "\n\t" /* Place bit 6 in bit 0 of idx*/ A("ubfx %[idx],%[txval],#6,#1") /* Place bit 6 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 6 */ /* Bit 6 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[idx],%[txval],#5,#1" "\n\t" /* Place bit 5 in bit 0 of idx*/ A("ubfx %[idx],%[txval],#5,#1") /* Place bit 5 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 5 */ /* Bit 5 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[idx],%[txval],#4,#1" "\n\t" /* Place bit 4 in bit 0 of idx*/ A("ubfx %[idx],%[txval],#4,#1") /* Place bit 4 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 4 */ /* Bit 4 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[idx],%[txval],#3,#1" "\n\t" /* Place bit 3 in bit 0 of idx*/ A("ubfx %[idx],%[txval],#3,#1") /* Place bit 3 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 3 */ /* Bit 3 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[idx],%[txval],#2,#1" "\n\t" /* Place bit 2 in bit 0 of idx*/ A("ubfx %[idx],%[txval],#2,#1") /* Place bit 2 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 2 */ /* Bit 2 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[idx],%[txval],#1,#1" "\n\t" /* Place bit 1 in bit 0 of idx*/ A("ubfx %[idx],%[txval],#1,#1") /* Place bit 1 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 1 */ /* Bit 1 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[idx],%[txval],#0,#1" "\n\t" /* Place bit 0 in bit 0 of idx*/ A("ubfx %[idx],%[txval],#0,#1") /* Place bit 0 in bit 0 of idx*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 0 */ /* Bit 0 */
" str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[idx],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" nop" "\n\t" /* Result will be 0 */ A("nop") /* Result will be 0 */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
: [idx]"+r"( idx ) : [idx]"+r"( idx )
: [txval]"r"( bout ) , : [txval]"r"( bout ) ,
@ -222,52 +222,52 @@
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
/* bit 7 */ /* bit 7 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#7,#1" "\n\t" /* Store read bit as the bit 7 */ A("bfi %[bin],%[work],#7,#1") /* Store read bit as the bit 7 */
/* bit 6 */ /* bit 6 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#6,#1" "\n\t" /* Store read bit as the bit 6 */ A("bfi %[bin],%[work],#6,#1") /* Store read bit as the bit 6 */
/* bit 5 */ /* bit 5 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#5,#1" "\n\t" /* Store read bit as the bit 5 */ A("bfi %[bin],%[work],#5,#1") /* Store read bit as the bit 5 */
/* bit 4 */ /* bit 4 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#4,#1" "\n\t" /* Store read bit as the bit 4 */ A("bfi %[bin],%[work],#4,#1") /* Store read bit as the bit 4 */
/* bit 3 */ /* bit 3 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#3,#1" "\n\t" /* Store read bit as the bit 3 */ A("bfi %[bin],%[work],#3,#1") /* Store read bit as the bit 3 */
/* bit 2 */ /* bit 2 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#2,#1" "\n\t" /* Store read bit as the bit 2 */ A("bfi %[bin],%[work],#2,#1") /* Store read bit as the bit 2 */
/* bit 1 */ /* bit 1 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#1,#1" "\n\t" /* Store read bit as the bit 1 */ A("bfi %[bin],%[work],#1,#1") /* Store read bit as the bit 1 */
/* bit 0 */ /* bit 0 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#0,#1" "\n\t" /* Store read bit as the bit 0 */ A("bfi %[bin],%[work],#0,#1") /* Store read bit as the bit 0 */
: [bin]"+r"(bin), : [bin]"+r"(bin),
[work]"+r"(work) [work]"+r"(work)
@ -335,60 +335,60 @@
__asm__ __volatile__( __asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
" loop%=:" "\n\t" L("loop%=")
" ldrb.w %[txval], [%[ptr]], #1" "\n\t" /* Load value to send, increment buffer */ A("ldrb.w %[txval], [%[ptr]], #1") /* Load value to send, increment buffer */
" mvn %[txval],%[txval]" "\n\t" /* Negate value */ A("mvn %[txval],%[txval]") /* Negate value */
/* Bit 7 */ /* Bit 7 */
" ubfx %[work],%[txval],#7,#1" "\n\t" /* Place bit 7 in bit 0 of work*/ A("ubfx %[work],%[txval],#7,#1") /* Place bit 7 in bit 0 of work*/
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[work],%[txval],#6,#1" "\n\t" /* Place bit 6 in bit 0 of work*/ A("ubfx %[work],%[txval],#6,#1") /* Place bit 6 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 6 */ /* Bit 6 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[work],%[txval],#5,#1" "\n\t" /* Place bit 5 in bit 0 of work*/ A("ubfx %[work],%[txval],#5,#1") /* Place bit 5 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 5 */ /* Bit 5 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[work],%[txval],#4,#1" "\n\t" /* Place bit 4 in bit 0 of work*/ A("ubfx %[work],%[txval],#4,#1") /* Place bit 4 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 4 */ /* Bit 4 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[work],%[txval],#3,#1" "\n\t" /* Place bit 3 in bit 0 of work*/ A("ubfx %[work],%[txval],#3,#1") /* Place bit 3 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 3 */ /* Bit 3 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[work],%[txval],#2,#1" "\n\t" /* Place bit 2 in bit 0 of work*/ A("ubfx %[work],%[txval],#2,#1") /* Place bit 2 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 2 */ /* Bit 2 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[work],%[txval],#1,#1" "\n\t" /* Place bit 1 in bit 0 of work*/ A("ubfx %[work],%[txval],#1,#1") /* Place bit 1 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 1 */ /* Bit 1 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ubfx %[work],%[txval],#0,#1" "\n\t" /* Place bit 0 in bit 0 of work*/ A("ubfx %[work],%[txval],#0,#1") /* Place bit 0 in bit 0 of work*/
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
/* Bit 0 */ /* Bit 0 */
" str %[mosi_mask],[%[mosi_port], %[work],LSL #2]" "\n\t" /* Access the proper SODR or CODR registers based on that bit */ A("str %[mosi_mask],[%[mosi_port], %[work],LSL #2]") /* Access the proper SODR or CODR registers based on that bit */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" subs %[todo],#1" "\n\t" /* Decrement count of pending words to send, update status */ A("subs %[todo],#1") /* Decrement count of pending words to send, update status */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bne.n loop%=" "\n\t" /* Repeat until done */ A("bne.n loop%=") /* Repeat until done */
: [ptr]"+r" ( ptr ) , : [ptr]"+r" ( ptr ) ,
[todo]"+r" ( todo ) , [todo]"+r" ( todo ) ,
@ -413,59 +413,59 @@
__asm__ __volatile__( __asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
" loop%=:" "\n\t" L("loop%=")
/* bit 7 */ /* bit 7 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#7,#1" "\n\t" /* Store read bit as the bit 7 */ A("bfi %[bin],%[work],#7,#1") /* Store read bit as the bit 7 */
/* bit 6 */ /* bit 6 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#6,#1" "\n\t" /* Store read bit as the bit 6 */ A("bfi %[bin],%[work],#6,#1") /* Store read bit as the bit 6 */
/* bit 5 */ /* bit 5 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#5,#1" "\n\t" /* Store read bit as the bit 5 */ A("bfi %[bin],%[work],#5,#1") /* Store read bit as the bit 5 */
/* bit 4 */ /* bit 4 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#4,#1" "\n\t" /* Store read bit as the bit 4 */ A("bfi %[bin],%[work],#4,#1") /* Store read bit as the bit 4 */
/* bit 3 */ /* bit 3 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#3,#1" "\n\t" /* Store read bit as the bit 3 */ A("bfi %[bin],%[work],#3,#1") /* Store read bit as the bit 3 */
/* bit 2 */ /* bit 2 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#2,#1" "\n\t" /* Store read bit as the bit 2 */ A("bfi %[bin],%[work],#2,#1") /* Store read bit as the bit 2 */
/* bit 1 */ /* bit 1 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#1,#1" "\n\t" /* Store read bit as the bit 1 */ A("bfi %[bin],%[work],#1,#1") /* Store read bit as the bit 1 */
/* bit 0 */ /* bit 0 */
" str %[sck_mask],[%[sck_port]]" "\n\t" /* SODR */ A("str %[sck_mask],[%[sck_port]]") /* SODR */
" ldr %[work],[%[bitband_miso_port]]" "\n\t" /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */ A("ldr %[work],[%[bitband_miso_port]]") /* PDSR on bitband area for required bit: work will be 1 or 0 based on port */
" str %[sck_mask],[%[sck_port],#0x4]" "\n\t" /* CODR */ A("str %[sck_mask],[%[sck_port],#0x4]") /* CODR */
" bfi %[bin],%[work],#0,#1" "\n\t" /* Store read bit as the bit 0 */ A("bfi %[bin],%[work],#0,#1") /* Store read bit as the bit 0 */
" subs %[todo],#1" "\n\t" /* Decrement count of pending words to send, update status */ A("subs %[todo],#1") /* Decrement count of pending words to send, update status */
" strb.w %[bin], [%[ptr]], #1" "\n\t" /* Store read value into buffer, increment buffer pointer */ A("strb.w %[bin], [%[ptr]], #1") /* Store read value into buffer, increment buffer pointer */
" bne.n loop%=" "\n\t" /* Repeat until done */ A("bne.n loop%=") /* Repeat until done */
: [ptr]"+r"(ptr), : [ptr]"+r"(ptr),
[todo]"+r"(todo), [todo]"+r"(todo),

@ -71,8 +71,6 @@ void u8g_SetPILevel_DUE(u8g_t *u8g, uint8_t pin_index, uint8_t level) {
else port->PIO_CODR = mask; else port->PIO_CODR = mask;
} }
#define nop() __asm__ __volatile__("nop;\n\t":::)
void __delay_4cycles(uint32_t cy) __attribute__ ((weak)); void __delay_4cycles(uint32_t cy) __attribute__ ((weak));
FORCE_INLINE void __delay_4cycles(uint32_t cy) { // +1 cycle FORCE_INLINE void __delay_4cycles(uint32_t cy) { // +1 cycle
@ -85,10 +83,10 @@ FORCE_INLINE void __delay_4cycles(uint32_t cy) { // +1 cycle
__asm__ __volatile__( __asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
"loop%=:" "\n\t" L("loop%=")
" subs %[cnt],#1" "\n\t" A("subs %[cnt],#1")
EXTRA_NOP_CYCLES "\n\t" A(EXTRA_NOP_CYCLES)
" bne loop%=" "\n\t" A("bne loop%=")
: [cnt]"+r"(cy) // output: +r means input+output : [cnt]"+r"(cy) // output: +r means input+output
: // input: : // input:
: "cc" // clobbers: : "cc" // clobbers:

@ -291,7 +291,7 @@ static inline __attribute__((always_inline)) uint32_t read_psp(void) {
/* Read the current PSP and return its value as a pointer */ /* Read the current PSP and return its value as a pointer */
uint32_t psp; uint32_t psp;
__asm volatile ( __asm__ volatile (
" mrs %0, psp \n" " mrs %0, psp \n"
: "=r" (psp) : : : "=r" (psp) : :
); );

@ -110,6 +110,9 @@
#define STRINGIFY_(M) #M #define STRINGIFY_(M) #M
#define STRINGIFY(M) STRINGIFY_(M) #define STRINGIFY(M) STRINGIFY_(M)
#define A(CODE) " " CODE "\n\t"
#define L(CODE) CODE ":\n\t"
// Macros for bit masks // Macros for bit masks
#undef _BV #undef _BV
#define _BV(b) (1 << (b)) #define _BV(b) (1 << (b))

@ -639,7 +639,7 @@ class DigitalPin {
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** Nop for timing. */ /** Nop for timing. */
#define nop asm volatile ("nop\n\t") #define nop __asm__ volatile ("nop")
//------------------------------------------------------------------------------ //------------------------------------------------------------------------------
/** Pin Mode for MISO is input.*/ /** Pin Mode for MISO is input.*/
const bool MISO_MODE = false; const bool MISO_MODE = false;

@ -409,7 +409,7 @@ void Planner::init() {
// %8:%7:%6 = interval // %8:%7:%6 = interval
// r31:r30: MUST be those registers, and they must point to the inv_tab // r31:r30: MUST be those registers, and they must point to the inv_tab
" clr %13" "\n\t" // %13 = 0 A("clr %13") // %13 = 0
// Now we must compute // Now we must compute
// result = 0xFFFFFF / d // result = 0xFFFFFF / d
@ -421,122 +421,122 @@ void Planner::init() {
// use Newton-Raphson for the calculation, and will strive to get way less cycles // use Newton-Raphson for the calculation, and will strive to get way less cycles
// for the same result - Using C division, it takes 500cycles to complete . // for the same result - Using C division, it takes 500cycles to complete .
" clr %3" "\n\t" // idx = 0 A("clr %3") // idx = 0
" mov %14,%6" "\n\t" A("mov %14,%6")
" mov %15,%7" "\n\t" A("mov %15,%7")
" mov %16,%8" "\n\t" // nr = interval A("mov %16,%8") // nr = interval
" tst %16" "\n\t" // nr & 0xFF0000 == 0 ? A("tst %16") // nr & 0xFF0000 == 0 ?
" brne 2f" "\n\t" // No, skip this A("brne 2f") // No, skip this
" mov %16,%15" "\n\t" A("mov %16,%15")
" mov %15,%14" "\n\t" // nr <<= 8, %14 not needed A("mov %15,%14") // nr <<= 8, %14 not needed
" subi %3,-8" "\n\t" // idx += 8 A("subi %3,-8") // idx += 8
" tst %16" "\n\t" // nr & 0xFF0000 == 0 ? A("tst %16") // nr & 0xFF0000 == 0 ?
" brne 2f" "\n\t" // No, skip this A("brne 2f") // No, skip this
" mov %16,%15" "\n\t" // nr <<= 8, %14 not needed A("mov %16,%15") // nr <<= 8, %14 not needed
" clr %15" "\n\t" // We clear %14 A("clr %15") // We clear %14
" subi %3,-8" "\n\t" // idx += 8 A("subi %3,-8") // idx += 8
// here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0 // here %16 != 0 and %16:%15 contains at least 9 MSBits, or both %16:%15 are 0
"2:" "\n\t" L("2")
" cpi %16,0x10" "\n\t" // (nr & 0xf00000) == 0 ? A("cpi %16,0x10") // (nr & 0xF00000) == 0 ?
" brcc 3f" "\n\t" // No, skip this A("brcc 3f") // No, skip this
" swap %15" "\n\t" // Swap nibbles A("swap %15") // Swap nibbles
" swap %16" "\n\t" // Swap nibbles. Low nibble is 0 A("swap %16") // Swap nibbles. Low nibble is 0
" mov %14, %15" "\n\t" A("mov %14, %15")
" andi %14,0x0f" "\n\t" // Isolate low nibble A("andi %14,0x0F") // Isolate low nibble
" andi %15,0xf0" "\n\t" // Keep proper nibble in %15 A("andi %15,0xF0") // Keep proper nibble in %15
" or %16, %14" "\n\t" // %16:%15 <<= 4 A("or %16, %14") // %16:%15 <<= 4
" subi %3,-4" "\n\t" // idx += 4 A("subi %3,-4") // idx += 4
"3:" "\n\t" L("3")
" cpi %16,0x40" "\n\t" // (nr & 0xc00000) == 0 ? A("cpi %16,0x40") // (nr & 0xC00000) == 0 ?
" brcc 4f" "\n\t" // No, skip this A("brcc 4f") // No, skip this
" add %15,%15" "\n\t" A("add %15,%15")
" adc %16,%16" "\n\t" A("adc %16,%16")
" add %15,%15" "\n\t" A("add %15,%15")
" adc %16,%16" "\n\t" // %16:%15 <<= 2 A("adc %16,%16") // %16:%15 <<= 2
" subi %3,-2" "\n\t" // idx += 2 A("subi %3,-2") // idx += 2
"4:" "\n\t" L("4")
" cpi %16,0x80" "\n\t" // (nr & 0x800000) == 0 ? A("cpi %16,0x80") // (nr & 0x800000) == 0 ?
" brcc 5f" "\n\t" // No, skip this A("brcc 5f") // No, skip this
" add %15,%15" "\n\t" A("add %15,%15")
" adc %16,%16" "\n\t" // %16:%15 <<= 1 A("adc %16,%16") // %16:%15 <<= 1
" inc %3" "\n\t" // idx += 1 A("inc %3") // idx += 1
// Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure // Now %16:%15 contains its MSBit set to 1, or %16:%15 is == 0. We are now absolutely sure
// we have at least 9 MSBits available to enter the initial estimation table // we have at least 9 MSBits available to enter the initial estimation table
"5:" "\n\t" L("5")
" add %15,%15" "\n\t" A("add %15,%15")
" adc %16,%16" "\n\t" // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table) A("adc %16,%16") // %16:%15 = tidx = (nr <<= 1), we lose the top MSBit (always set to 1, %16 is the index into the inverse table)
" add r30,%16" "\n\t" // Only use top 8 bits A("add r30,%16") // Only use top 8 bits
" adc r31,%13" "\n\t" // r31:r30 = inv_tab + (tidx) A("adc r31,%13") // r31:r30 = inv_tab + (tidx)
" lpm %14, Z" "\n\t" // %14 = inv_tab[tidx] A("lpm %14, Z") // %14 = inv_tab[tidx]
" ldi %15, 1" "\n\t" // %15 = 1 %15:%14 = inv_tab[tidx] + 256 A("ldi %15, 1") // %15 = 1 %15:%14 = inv_tab[tidx] + 256
// We must scale the approximation to the proper place // We must scale the approximation to the proper place
" clr %16" "\n\t" // %16 will always be 0 here A("clr %16") // %16 will always be 0 here
" subi %3,8" "\n\t" // idx == 8 ? A("subi %3,8") // idx == 8 ?
" breq 6f" "\n\t" // yes, no need to scale A("breq 6f") // yes, no need to scale
" brcs 7f" "\n\t" // If C=1, means idx < 8, result was negative! A("brcs 7f") // If C=1, means idx < 8, result was negative!
// idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8] // idx > 8, now %3 = idx - 8. We must perform a left shift. idx range:[1-8]
" sbrs %3,0" "\n\t" // shift by 1bit position? A("sbrs %3,0") // shift by 1bit position?
" rjmp 8f" "\n\t" // No A("rjmp 8f") // No
" add %14,%14" "\n\t" A("add %14,%14")
" adc %15,%15" "\n\t" // %15:16 <<= 1 A("adc %15,%15") // %15:16 <<= 1
"8:" "\n\t" L("8")
" sbrs %3,1" "\n\t" // shift by 2bit position? A("sbrs %3,1") // shift by 2bit position?
" rjmp 9f" "\n\t" // No A("rjmp 9f") // No
" add %14,%14" "\n\t" A("add %14,%14")
" adc %15,%15" "\n\t" A("adc %15,%15")
" add %14,%14" "\n\t" A("add %14,%14")
" adc %15,%15" "\n\t" // %15:16 <<= 1 A("adc %15,%15") // %15:16 <<= 1
"9:" "\n\t" L("9")
" sbrs %3,2" "\n\t" // shift by 4bits position? A("sbrs %3,2") // shift by 4bits position?
" rjmp 16f" "\n\t" // No A("rjmp 16f") // No
" swap %15" "\n\t" // Swap nibbles. lo nibble of %15 will always be 0 A("swap %15") // Swap nibbles. lo nibble of %15 will always be 0
" swap %14" "\n\t" // Swap nibbles A("swap %14") // Swap nibbles
" mov %12,%14" "\n\t" A("mov %12,%14")
" andi %12,0x0f" "\n\t" // isolate low nibble A("andi %12,0x0F") // isolate low nibble
" andi %14,0xf0" "\n\t" // and clear it A("andi %14,0xF0") // and clear it
" or %15,%12" "\n\t" // %15:%16 <<= 4 A("or %15,%12") // %15:%16 <<= 4
"16:" "\n\t" L("16")
" sbrs %3,3" "\n\t" // shift by 8bits position? A("sbrs %3,3") // shift by 8bits position?
" rjmp 6f" "\n\t" // No, we are done A("rjmp 6f") // No, we are done
" mov %16,%15" "\n\t" A("mov %16,%15")
" mov %15,%14" "\n\t" A("mov %15,%14")
" clr %14" "\n\t" A("clr %14")
" jmp 6f" "\n\t" A("jmp 6f")
// idx < 8, now %3 = idx - 8. Get the count of bits // idx < 8, now %3 = idx - 8. Get the count of bits
"7:" "\n\t" L("7")
" neg %3" "\n\t" // %3 = -idx = count of bits to move right. idx range:[1...8] A("neg %3") // %3 = -idx = count of bits to move right. idx range:[1...8]
" sbrs %3,0" "\n\t" // shift by 1 bit position ? A("sbrs %3,0") // shift by 1 bit position ?
" rjmp 10f" "\n\t" // No, skip it A("rjmp 10f") // No, skip it
" asr %15" "\n\t" // (bit7 is always 0 here) A("asr %15") // (bit7 is always 0 here)
" ror %14" "\n\t" A("ror %14")
"10:" "\n\t" L("10")
" sbrs %3,1" "\n\t" // shift by 2 bit position ? A("sbrs %3,1") // shift by 2 bit position ?
" rjmp 11f" "\n\t" // No, skip it A("rjmp 11f") // No, skip it
" asr %15" "\n\t" // (bit7 is always 0 here) A("asr %15") // (bit7 is always 0 here)
" ror %14" "\n\t" A("ror %14")
" asr %15" "\n\t" // (bit7 is always 0 here) A("asr %15") // (bit7 is always 0 here)
" ror %14" "\n\t" A("ror %14")
"11:" "\n\t" L("11")
" sbrs %3,2" "\n\t" // shift by 4 bit position ? A("sbrs %3,2") // shift by 4 bit position ?
" rjmp 12f" "\n\t" // No, skip it A("rjmp 12f") // No, skip it
" swap %15" "\n\t" // Swap nibbles A("swap %15") // Swap nibbles
" andi %14, 0xf0" "\n\t" // Lose the lowest nibble A("andi %14, 0xF0") // Lose the lowest nibble
" swap %14" "\n\t" // Swap nibbles. Upper nibble is 0 A("swap %14") // Swap nibbles. Upper nibble is 0
" or %14,%15" "\n\t" // Pass nibble from upper byte A("or %14,%15") // Pass nibble from upper byte
" andi %15, 0x0f" "\n\t" // And get rid of that nibble A("andi %15, 0x0F") // And get rid of that nibble
"12:" "\n\t" L("12")
" sbrs %3,3" "\n\t" // shift by 8 bit position ? A("sbrs %3,3") // shift by 8 bit position ?
" rjmp 6f" "\n\t" // No, skip it A("rjmp 6f") // No, skip it
" mov %14,%15" "\n\t" A("mov %14,%15")
" clr %15" "\n\t" A("clr %15")
"6:" "\n\t" // %16:%15:%14 = initial estimation of 0x1000000 / d L("6") // %16:%15:%14 = initial estimation of 0x1000000 / d
// Now, we must refine the estimation present on %16:%15:%14 using 1 iteration // Now, we must refine the estimation present on %16:%15:%14 using 1 iteration
// of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough // of Newton-Raphson. As it has a quadratic convergence, 1 iteration is enough
@ -549,36 +549,36 @@ void Planner::init() {
// %3:%2:%1:%0 = working accumulator // %3:%2:%1:%0 = working accumulator
// Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive // Compute 1<<25 - x*d. Result should never exceed 25 bits and should always be positive
" clr %0" "\n\t" A("clr %0")
" clr %1" "\n\t" A("clr %1")
" clr %2" "\n\t" A("clr %2")
" ldi %3,2" "\n\t" // %3:%2:%1:%0 = 0x2000000 A("ldi %3,2") // %3:%2:%1:%0 = 0x2000000
" mul %6,%14" "\n\t" // r1:r0 = LO(d) * LO(x) A("mul %6,%14") // r1:r0 = LO(d) * LO(x)
" sub %0,r0" "\n\t" A("sub %0,r0")
" sbc %1,r1" "\n\t" A("sbc %1,r1")
" sbc %2,%13" "\n\t" A("sbc %2,%13")
" sbc %3,%13" "\n\t" // %3:%2:%1:%0 -= LO(d) * LO(x) A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
" mul %7,%14" "\n\t" // r1:r0 = MI(d) * LO(x) A("mul %7,%14") // r1:r0 = MI(d) * LO(x)
" sub %1,r0" "\n\t" A("sub %1,r0")
" sbc %2,r1" "\n\t" A("sbc %2,r1" )
" sbc %3,%13" "\n\t" // %3:%2:%1:%0 -= MI(d) * LO(x) << 8 A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
" mul %8,%14" "\n\t" // r1:r0 = HI(d) * LO(x) A("mul %8,%14") // r1:r0 = HI(d) * LO(x)
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16 A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
" mul %6,%15" "\n\t" // r1:r0 = LO(d) * MI(x) A("mul %6,%15") // r1:r0 = LO(d) * MI(x)
" sub %1,r0" "\n\t" A("sub %1,r0")
" sbc %2,r1" "\n\t" A("sbc %2,r1")
" sbc %3,%13" "\n\t" // %3:%2:%1:%0 -= LO(d) * MI(x) << 8 A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
" mul %7,%15" "\n\t" // r1:r0 = MI(d) * MI(x) A("mul %7,%15") // r1:r0 = MI(d) * MI(x)
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" // %3:%2:%1:%0 -= MI(d) * MI(x) << 16 A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
" mul %8,%15" "\n\t" // r1:r0 = HI(d) * MI(x) A("mul %8,%15") // r1:r0 = HI(d) * MI(x)
" sub %3,r0" "\n\t" // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24 A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
" mul %6,%16" "\n\t" // r1:r0 = LO(d) * HI(x) A("mul %6,%16") // r1:r0 = LO(d) * HI(x)
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" // %3:%2:%1:%0 -= LO(d) * HI(x) << 16 A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
" mul %7,%16" "\n\t" // r1:r0 = MI(d) * HI(x) A("mul %7,%16") // r1:r0 = MI(d) * HI(x)
" sub %3,r0" "\n\t" // %3:%2:%1:%0 -= MI(d) * HI(x) << 24 A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
// %3:%2:%1:%0 = (1<<25) - x*d [169] // %3:%2:%1:%0 = (1<<25) - x*d [169]
// We need to multiply that result by x, and we are only interested in the top 24bits of that multiply // We need to multiply that result by x, and we are only interested in the top 24bits of that multiply
@ -588,62 +588,62 @@ void Planner::init() {
// %13 = 0 // %13 = 0
// result = %11:%10:%9:%5:%4 // result = %11:%10:%9:%5:%4
" mul %14,%0" "\n\t" // r1:r0 = LO(x) * LO(acc) A("mul %14,%0") // r1:r0 = LO(x) * LO(acc)
" mov %4,r1" "\n\t" A("mov %4,r1")
" clr %5" "\n\t" A("clr %5")
" clr %9" "\n\t" A("clr %9")
" clr %10" "\n\t" A("clr %10")
" clr %11" "\n\t" // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8 A("clr %11") // %11:%10:%9:%5:%4 = LO(x) * LO(acc) >> 8
" mul %15,%0" "\n\t" // r1:r0 = MI(x) * LO(acc) A("mul %15,%0") // r1:r0 = MI(x) * LO(acc)
" add %4,r0" "\n\t" A("add %4,r0")
" adc %5,r1" "\n\t" A("adc %5,r1")
" adc %9,%13" "\n\t" A("adc %9,%13")
" adc %10,%13" "\n\t" A("adc %10,%13")
" adc %11,%13" "\n\t" // %11:%10:%9:%5:%4 += MI(x) * LO(acc) A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc)
" mul %16,%0" "\n\t" // r1:r0 = HI(x) * LO(acc) A("mul %16,%0") // r1:r0 = HI(x) * LO(acc)
" add %5,r0" "\n\t" A("add %5,r0")
" adc %9,r1" "\n\t" A("adc %9,r1")
" adc %10,%13" "\n\t" A("adc %10,%13")
" adc %11,%13" "\n\t" // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8 A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * LO(acc) << 8
" mul %14,%1" "\n\t" // r1:r0 = LO(x) * MIL(acc) A("mul %14,%1") // r1:r0 = LO(x) * MIL(acc)
" add %4,r0" "\n\t" A("add %4,r0")
" adc %5,r1" "\n\t" A("adc %5,r1")
" adc %9,%13" "\n\t" A("adc %9,%13")
" adc %10,%13" "\n\t" A("adc %10,%13")
" adc %11,%13" "\n\t" // %11:%10:%9:%5:%4 = LO(x) * MIL(acc) A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIL(acc)
" mul %15,%1" "\n\t" // r1:r0 = MI(x) * MIL(acc) A("mul %15,%1") // r1:r0 = MI(x) * MIL(acc)
" add %5,r0" "\n\t" A("add %5,r0")
" adc %9,r1" "\n\t" A("adc %9,r1")
" adc %10,%13" "\n\t" A("adc %10,%13")
" adc %11,%13" "\n\t" // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8 A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 8
" mul %16,%1" "\n\t" // r1:r0 = HI(x) * MIL(acc) A("mul %16,%1") // r1:r0 = HI(x) * MIL(acc)
" add %9,r0" "\n\t" A("add %9,r0")
" adc %10,r1" "\n\t" A("adc %10,r1")
" adc %11,%13" "\n\t" // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16 A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIL(acc) << 16
" mul %14,%2" "\n\t" // r1:r0 = LO(x) * MIH(acc) A("mul %14,%2") // r1:r0 = LO(x) * MIH(acc)
" add %5,r0" "\n\t" A("add %5,r0")
" adc %9,r1" "\n\t" A("adc %9,r1")
" adc %10,%13" "\n\t" A("adc %10,%13")
" adc %11,%13" "\n\t" // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8 A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * MIH(acc) << 8
" mul %15,%2" "\n\t" // r1:r0 = MI(x) * MIH(acc) A("mul %15,%2") // r1:r0 = MI(x) * MIH(acc)
" add %9,r0" "\n\t" A("add %9,r0")
" adc %10,r1" "\n\t" A("adc %10,r1")
" adc %11,%13" "\n\t" // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16 A("adc %11,%13") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 16
" mul %16,%2" "\n\t" // r1:r0 = HI(x) * MIH(acc) A("mul %16,%2") // r1:r0 = HI(x) * MIH(acc)
" add %10,r0" "\n\t" A("add %10,r0")
" adc %11,r1" "\n\t" // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24 A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * MIH(acc) << 24
" mul %14,%3" "\n\t" // r1:r0 = LO(x) * HI(acc) A("mul %14,%3") // r1:r0 = LO(x) * HI(acc)
" add %9,r0" "\n\t" A("add %9,r0")
" adc %10,r1" "\n\t" A("adc %10,r1")
" adc %11,%13" "\n\t" // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16 A("adc %11,%13") // %11:%10:%9:%5:%4 = LO(x) * HI(acc) << 16
" mul %15,%3" "\n\t" // r1:r0 = MI(x) * HI(acc) A("mul %15,%3") // r1:r0 = MI(x) * HI(acc)
" add %10,r0" "\n\t" A("add %10,r0")
" adc %11,r1" "\n\t" // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24 A("adc %11,r1") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 24
" mul %16,%3" "\n\t" // r1:r0 = HI(x) * HI(acc) A("mul %16,%3") // r1:r0 = HI(x) * HI(acc)
" add %11,r0" "\n\t" // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32 A("add %11,r0") // %11:%10:%9:%5:%4 += MI(x) * HI(acc) << 32
// At this point, %11:%10:%9 contains the new estimation of x. // At this point, %11:%10:%9 contains the new estimation of x.
@ -651,54 +651,54 @@ void Planner::init() {
// (1<<24) - x*d // (1<<24) - x*d
// %11:%10:%9 = x // %11:%10:%9 = x
// %8:%7:%6 = d = interval" "\n\t" // %8:%7:%6 = d = interval" "\n\t"
" ldi %3,1" "\n\t" A("ldi %3,1")
" clr %2" "\n\t" A("clr %2")
" clr %1" "\n\t" A("clr %1")
" clr %0" "\n\t" // %3:%2:%1:%0 = 0x1000000 A("clr %0") // %3:%2:%1:%0 = 0x1000000
" mul %6,%9" "\n\t" // r1:r0 = LO(d) * LO(x) A("mul %6,%9") // r1:r0 = LO(d) * LO(x)
" sub %0,r0" "\n\t" A("sub %0,r0")
" sbc %1,r1" "\n\t" A("sbc %1,r1")
" sbc %2,%13" "\n\t" A("sbc %2,%13")
" sbc %3,%13" "\n\t" // %3:%2:%1:%0 -= LO(d) * LO(x) A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * LO(x)
" mul %7,%9" "\n\t" // r1:r0 = MI(d) * LO(x) A("mul %7,%9") // r1:r0 = MI(d) * LO(x)
" sub %1,r0" "\n\t" A("sub %1,r0")
" sbc %2,r1" "\n\t" A("sbc %2,r1")
" sbc %3,%13" "\n\t" // %3:%2:%1:%0 -= MI(d) * LO(x) << 8 A("sbc %3,%13") // %3:%2:%1:%0 -= MI(d) * LO(x) << 8
" mul %8,%9" "\n\t" // r1:r0 = HI(d) * LO(x) A("mul %8,%9") // r1:r0 = HI(d) * LO(x)
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16 A("sbc %3,r1") // %3:%2:%1:%0 -= MIL(d) * LO(x) << 16
" mul %6,%10" "\n\t" // r1:r0 = LO(d) * MI(x) A("mul %6,%10") // r1:r0 = LO(d) * MI(x)
" sub %1,r0" "\n\t" A("sub %1,r0")
" sbc %2,r1" "\n\t" A("sbc %2,r1")
" sbc %3,%13" "\n\t" // %3:%2:%1:%0 -= LO(d) * MI(x) << 8 A("sbc %3,%13") // %3:%2:%1:%0 -= LO(d) * MI(x) << 8
" mul %7,%10" "\n\t" // r1:r0 = MI(d) * MI(x) A("mul %7,%10") // r1:r0 = MI(d) * MI(x)
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" // %3:%2:%1:%0 -= MI(d) * MI(x) << 16 A("sbc %3,r1") // %3:%2:%1:%0 -= MI(d) * MI(x) << 16
" mul %8,%10" "\n\t" // r1:r0 = HI(d) * MI(x) A("mul %8,%10") // r1:r0 = HI(d) * MI(x)
" sub %3,r0" "\n\t" // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24 A("sub %3,r0") // %3:%2:%1:%0 -= MIL(d) * MI(x) << 24
" mul %6,%11" "\n\t" // r1:r0 = LO(d) * HI(x) A("mul %6,%11") // r1:r0 = LO(d) * HI(x)
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" // %3:%2:%1:%0 -= LO(d) * HI(x) << 16 A("sbc %3,r1") // %3:%2:%1:%0 -= LO(d) * HI(x) << 16
" mul %7,%11" "\n\t" // r1:r0 = MI(d) * HI(x) A("mul %7,%11") // r1:r0 = MI(d) * HI(x)
" sub %3,r0" "\n\t" // %3:%2:%1:%0 -= MI(d) * HI(x) << 24 A("sub %3,r0") // %3:%2:%1:%0 -= MI(d) * HI(x) << 24
// %3:%2:%1:%0 = r = (1<<24) - x*d // %3:%2:%1:%0 = r = (1<<24) - x*d
// %8:%7:%6 = d = interval // %8:%7:%6 = d = interval
// Perform the final correction // Perform the final correction
" sub %0,%6" "\n\t" A("sub %0,%6")
" sbc %1,%7" "\n\t" A("sbc %1,%7")
" sbc %2,%8" "\n\t" // r -= d A("sbc %2,%8") // r -= d
" brcs 14f" "\n\t" // if ( r >= d) A("brcs 14f") // if ( r >= d)
// %11:%10:%9 = x // %11:%10:%9 = x
" ldi %3,1" "\n\t" A("ldi %3,1")
" add %9,%3" "\n\t" A("add %9,%3")
" adc %10,%13" "\n\t" A("adc %10,%13")
" adc %11,%13" "\n\t" // x++ A("adc %11,%13") // x++
"14:" "\n\t" L("14")
// Estimation is done. %11:%10:%9 = x // Estimation is done. %11:%10:%9 = x
" clr __zero_reg__" "\n\t" // Make C runtime happy A("clr __zero_reg__") // Make C runtime happy
// [211 cycles total] // [211 cycles total]
: "=r" (r2), : "=r" (r2),
"=r" (r3), "=r" (r3),

@ -581,68 +581,68 @@ void Stepper::set_directions() {
/* %10 (must be high register!)*/ /* %10 (must be high register!)*/
/* Store initial velocity*/ /* Store initial velocity*/
" sts bezier_F, %0" "\n\t" A("sts bezier_F, %0")
" sts bezier_F+1, %1" "\n\t" A("sts bezier_F+1, %1")
" sts bezier_F+2, %10" "\n\t" /* bezier_F = %10:%1:%0 = v0 */ A("sts bezier_F+2, %10") /* bezier_F = %10:%1:%0 = v0 */
/* Get delta speed */ /* Get delta speed */
" ldi %2,-1" "\n\t" /* %2 = 0xff, means A_negative = true */ A("ldi %2,-1") /* %2 = 0xFF, means A_negative = true */
" clr %8" "\n\t" /* %8 = 0 */ A("clr %8") /* %8 = 0 */
" sub %0,%3" "\n\t" A("sub %0,%3")
" sbc %1,%4" "\n\t" A("sbc %1,%4")
" sbc %10,%5" "\n\t" /* v0 -= v1, C=1 if result is negative */ A("sbc %10,%5") /* v0 -= v1, C=1 if result is negative */
" brcc 1f" "\n\t" /* branch if result is positive (C=0), that means v0 >= v1 */ A("brcc 1f") /* branch if result is positive (C=0), that means v0 >= v1 */
/* Result was negative, get the absolute value*/ /* Result was negative, get the absolute value*/
" com %10" "\n\t" A("com %10")
" com %1" "\n\t" A("com %1")
" neg %0" "\n\t" A("neg %0")
" sbc %1,%2" "\n\t" A("sbc %1,%2")
" sbc %10,%2" "\n\t" /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */ A("sbc %10,%2") /* %10:%1:%0 +1 -> %10:%1:%0 = -(v0 - v1) = (v1 - v0) */
" clr %2" "\n\t" /* %2 = 0, means A_negative = false */ A("clr %2") /* %2 = 0, means A_negative = false */
/* Store negative flag*/ /* Store negative flag*/
"1:" "\n\t" L("1")
" sts A_negative, %2" "\n\t" /* Store negative flag */ A("sts A_negative, %2") /* Store negative flag */
/* Compute coefficients A,B and C [20 cycles worst case]*/ /* Compute coefficients A,B and C [20 cycles worst case]*/
" ldi %9,6" "\n\t" /* %9 = 6 */ A("ldi %9,6") /* %9 = 6 */
" mul %0,%9" "\n\t" /* r1:r0 = 6*LO(v0-v1) */ A("mul %0,%9") /* r1:r0 = 6*LO(v0-v1) */
" sts bezier_A, r0" "\n\t" A("sts bezier_A, r0")
" mov %6,r1" "\n\t" A("mov %6,r1")
" clr %7" "\n\t" /* %7:%6:r0 = 6*LO(v0-v1) */ A("clr %7") /* %7:%6:r0 = 6*LO(v0-v1) */
" mul %1,%9" "\n\t" /* r1:r0 = 6*MI(v0-v1) */ A("mul %1,%9") /* r1:r0 = 6*MI(v0-v1) */
" add %6,r0" "\n\t" A("add %6,r0")
" adc %7,r1" "\n\t" /* %7:%6:?? += 6*MI(v0-v1) << 8 */ A("adc %7,r1") /* %7:%6:?? += 6*MI(v0-v1) << 8 */
" mul %10,%9" "\n\t" /* r1:r0 = 6*HI(v0-v1) */ A("mul %10,%9") /* r1:r0 = 6*HI(v0-v1) */
" add %7,r0" "\n\t" /* %7:%6:?? += 6*HI(v0-v1) << 16 */ A("add %7,r0") /* %7:%6:?? += 6*HI(v0-v1) << 16 */
" sts bezier_A+1, %6" "\n\t" A("sts bezier_A+1, %6")
" sts bezier_A+2, %7" "\n\t" /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */ A("sts bezier_A+2, %7") /* bezier_A = %7:%6:?? = 6*(v0-v1) [35 cycles worst] */
" ldi %9,15" "\n\t" /* %9 = 15 */ A("ldi %9,15") /* %9 = 15 */
" mul %0,%9" "\n\t" /* r1:r0 = 5*LO(v0-v1) */ A("mul %0,%9") /* r1:r0 = 5*LO(v0-v1) */
" sts bezier_B, r0" "\n\t" A("sts bezier_B, r0")
" mov %6,r1" "\n\t" A("mov %6,r1")
" clr %7" "\n\t" /* %7:%6:?? = 5*LO(v0-v1) */ A("clr %7") /* %7:%6:?? = 5*LO(v0-v1) */
" mul %1,%9" "\n\t" /* r1:r0 = 5*MI(v0-v1) */ A("mul %1,%9") /* r1:r0 = 5*MI(v0-v1) */
" add %6,r0" "\n\t" A("add %6,r0")
" adc %7,r1" "\n\t" /* %7:%6:?? += 5*MI(v0-v1) << 8 */ A("adc %7,r1") /* %7:%6:?? += 5*MI(v0-v1) << 8 */
" mul %10,%9" "\n\t" /* r1:r0 = 5*HI(v0-v1) */ A("mul %10,%9") /* r1:r0 = 5*HI(v0-v1) */
" add %7,r0" "\n\t" /* %7:%6:?? += 5*HI(v0-v1) << 16 */ A("add %7,r0") /* %7:%6:?? += 5*HI(v0-v1) << 16 */
" sts bezier_B+1, %6" "\n\t" A("sts bezier_B+1, %6")
" sts bezier_B+2, %7" "\n\t" /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */ A("sts bezier_B+2, %7") /* bezier_B = %7:%6:?? = 5*(v0-v1) [50 cycles worst] */
" ldi %9,10" "\n\t" /* %9 = 10 */ A("ldi %9,10") /* %9 = 10 */
" mul %0,%9" "\n\t" /* r1:r0 = 10*LO(v0-v1) */ A("mul %0,%9") /* r1:r0 = 10*LO(v0-v1) */
" sts bezier_C, r0" "\n\t" A("sts bezier_C, r0")
" mov %6,r1" "\n\t" A("mov %6,r1")
" clr %7" "\n\t" /* %7:%6:?? = 10*LO(v0-v1) */ A("clr %7") /* %7:%6:?? = 10*LO(v0-v1) */
" mul %1,%9" "\n\t" /* r1:r0 = 10*MI(v0-v1) */ A("mul %1,%9") /* r1:r0 = 10*MI(v0-v1) */
" add %6,r0" "\n\t" A("add %6,r0")
" adc %7,r1" "\n\t" /* %7:%6:?? += 10*MI(v0-v1) << 8 */ A("adc %7,r1") /* %7:%6:?? += 10*MI(v0-v1) << 8 */
" mul %10,%9" "\n\t" /* r1:r0 = 10*HI(v0-v1) */ A("mul %10,%9") /* r1:r0 = 10*HI(v0-v1) */
" add %7,r0" "\n\t" /* %7:%6:?? += 10*HI(v0-v1) << 16 */ A("add %7,r0") /* %7:%6:?? += 10*HI(v0-v1) << 16 */
" sts bezier_C+1, %6" "\n\t" A("sts bezier_C+1, %6")
" sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */ " sts bezier_C+2, %7" /* bezier_C = %7:%6:?? = 10*(v0-v1) [65 cycles worst] */
: "+r" (r2), : "+r" (r2),
"+d" (r3), "+d" (r3),
@ -674,358 +674,358 @@ void Stepper::set_directions() {
__asm__ __volatile( __asm__ __volatile(
/* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/ /* umul24x24to16hi(t, bezier_AV, curr_step); t: Range 0 - 1^16 = 16 bits*/
" lds %9,bezier_AV" "\n\t" /* %9 = LO(AV)*/ A("lds %9,bezier_AV") /* %9 = LO(AV)*/
" mul %9,%2" "\n\t" /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/ A("mul %9,%2") /* r1:r0 = LO(bezier_AV)*LO(curr_step)*/
" mov %7,r1" "\n\t" /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/ A("mov %7,r1") /* %7 = LO(bezier_AV)*LO(curr_step) >> 8*/
" clr %8" "\n\t" /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/ A("clr %8") /* %8:%7 = LO(bezier_AV)*LO(curr_step) >> 8*/
" lds %10,bezier_AV+1" "\n\t" /* %10 = MI(AV)*/ A("lds %10,bezier_AV+1") /* %10 = MI(AV)*/
" mul %10,%2" "\n\t" /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/ A("mul %10,%2") /* r1:r0 = MI(bezier_AV)*LO(curr_step)*/
" add %7,r0" "\n\t" A("add %7,r0")
" adc %8,r1" "\n\t" /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/ A("adc %8,r1") /* %8:%7 += MI(bezier_AV)*LO(curr_step)*/
" lds r1,bezier_AV+2" "\n\t" /* r11 = HI(AV)*/ A("lds r1,bezier_AV+2") /* r11 = HI(AV)*/
" mul r1,%2" "\n\t" /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/ A("mul r1,%2") /* r1:r0 = HI(bezier_AV)*LO(curr_step)*/
" add %8,r0" "\n\t" /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/ A("add %8,r0") /* %8:%7 += HI(bezier_AV)*LO(curr_step) << 8*/
" mul %9,%3" "\n\t" /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/ A("mul %9,%3") /* r1:r0 = LO(bezier_AV)*MI(curr_step)*/
" add %7,r0" "\n\t" A("add %7,r0")
" adc %8,r1" "\n\t" /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/ A("adc %8,r1") /* %8:%7 += LO(bezier_AV)*MI(curr_step)*/
" mul %10,%3" "\n\t" /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/ A("mul %10,%3") /* r1:r0 = MI(bezier_AV)*MI(curr_step)*/
" add %8,r0" "\n\t" /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/ A("add %8,r0") /* %8:%7 += LO(bezier_AV)*MI(curr_step) << 8*/
" mul %9,%4" "\n\t" /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/ A("mul %9,%4") /* r1:r0 = LO(bezier_AV)*HI(curr_step)*/
" add %8,r0" "\n\t" /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/ A("add %8,r0") /* %8:%7 += LO(bezier_AV)*HI(curr_step) << 8*/
/* %8:%7 = t*/ /* %8:%7 = t*/
/* uint16_t f = t;*/ /* uint16_t f = t;*/
" mov %5,%7" "\n\t" /* %6:%5 = f*/ A("mov %5,%7") /* %6:%5 = f*/
" mov %6,%8" "\n\t" A("mov %6,%8")
/* %6:%5 = f*/ /* %6:%5 = f*/
/* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */ /* umul16x16to16hi(f, f, t); / Range 16 bits (unsigned) [17] */
" mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
" mov %9,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/ A("mov %9,r1") /* store MIL(LO(f) * LO(t)) in %9, we need it for rounding*/
" clr %10" "\n\t" /* %10 = 0*/ A("clr %10") /* %10 = 0*/
" clr %11" "\n\t" /* %11 = 0*/ A("clr %11") /* %11 = 0*/
" mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
" add %9,r0" "\n\t" /* %9 += LO(LO(f) * HI(t))*/ A("add %9,r0") /* %9 += LO(LO(f) * HI(t))*/
" adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
" add %9,r0" "\n\t" /* %9 += LO(HI(f) * LO(t))*/ A("add %9,r0") /* %9 += LO(HI(f) * LO(t))*/
" adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t)) */ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t)) */
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
" add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
" adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
" mov %5,%10" "\n\t" /* %6:%5 = */ A("mov %5,%10") /* %6:%5 = */
" mov %6,%11" "\n\t" /* f = %10:%11*/ A("mov %6,%11") /* f = %10:%11*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
" mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
" mov %1,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
" clr %10" "\n\t" /* %10 = 0*/ A("clr %10") /* %10 = 0*/
" clr %11" "\n\t" /* %11 = 0*/ A("clr %11") /* %11 = 0*/
" mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
" add %1,r0" "\n\t" /* %1 += LO(LO(f) * HI(t))*/ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
" adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
" add %1,r0" "\n\t" /* %1 += LO(HI(f) * LO(t))*/ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
" adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t))*/ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
" add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
" adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
" mov %5,%10" "\n\t" /* %6:%5 =*/ A("mov %5,%10") /* %6:%5 =*/
" mov %6,%11" "\n\t" /* f = %10:%11*/ A("mov %6,%11") /* f = %10:%11*/
/* [15 +17*2] = [49]*/ /* [15 +17*2] = [49]*/
/* %4:%3:%2 will be acc from now on*/ /* %4:%3:%2 will be acc from now on*/
/* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/ /* uint24_t acc = bezier_F; / Range 20 bits (unsigned)*/
" clr %9" "\n\t" /* "decimal place we get for free"*/ A("clr %9") /* "decimal place we get for free"*/
" lds %2,bezier_F" "\n\t" A("lds %2,bezier_F")
" lds %3,bezier_F+1" "\n\t" A("lds %3,bezier_F+1")
" lds %4,bezier_F+2" "\n\t" /* %4:%3:%2 = acc*/ A("lds %4,bezier_F+2") /* %4:%3:%2 = acc*/
/* if (A_negative) {*/ /* if (A_negative) {*/
" lds r0,A_negative" "\n\t" A("lds r0,A_negative")
" or r0,%0" "\n\t" /* Is flag signalling negative? */ A("or r0,%0") /* Is flag signalling negative? */
" brne 3f" "\n\t" /* If yes, Skip next instruction if A was negative*/ A("brne 3f") /* If yes, Skip next instruction if A was negative*/
" rjmp 1f" "\n\t" /* Otherwise, jump */ A("rjmp 1f") /* Otherwise, jump */
/* uint24_t v; */ /* uint24_t v; */
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */ /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29] */
/* acc -= v; */ /* acc -= v; */
"3:" "\n\t" L("3")
" lds %10, bezier_C" "\n\t" /* %10 = LO(bezier_C)*/ A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
" mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_C) * LO(f)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
" sub %9,r1" "\n\t" A("sub %9,r1")
" sbc %2,%0" "\n\t" A("sbc %2,%0")
" sbc %3,%0" "\n\t" A("sbc %3,%0")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_C) * LO(f))*/
" lds %11, bezier_C+1" "\n\t" /* %11 = MI(bezier_C)*/ A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
" mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_C) * LO(f)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
" sub %9,r0" "\n\t" A("sub %9,r0")
" sbc %2,r1" "\n\t" A("sbc %2,r1")
" sbc %3,%0" "\n\t" A("sbc %3,%0")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * LO(f)*/
" lds %1, bezier_C+2" "\n\t" /* %1 = HI(bezier_C)*/ A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
" mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_C) * LO(f)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" A("sbc %3,r1")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 8*/
" mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_C) * MI(f)*/ A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
" sub %9,r0" "\n\t" A("sub %9,r0")
" sbc %2,r1" "\n\t" A("sbc %2,r1")
" sbc %3,%0" "\n\t" A("sbc %3,%0")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_C) * MI(f)*/
" mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_C) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" A("sbc %3,r1")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_C) * MI(f) << 8*/
" mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_C) * LO(f)*/ A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
" sub %3,r0" "\n\t" A("sub %3,r0")
" sbc %4,r1" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/ A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_C) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
" mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
" mov %1,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
" clr %10" "\n\t" /* %10 = 0*/ A("clr %10") /* %10 = 0*/
" clr %11" "\n\t" /* %11 = 0*/ A("clr %11") /* %11 = 0*/
" mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
" add %1,r0" "\n\t" /* %1 += LO(LO(f) * HI(t))*/ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
" adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
" add %1,r0" "\n\t" /* %1 += LO(HI(f) * LO(t))*/ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
" adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t))*/ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
" add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
" adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
" mov %5,%10" "\n\t" /* %6:%5 =*/ A("mov %5,%10") /* %6:%5 =*/
" mov %6,%11" "\n\t" /* f = %10:%11*/ A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/ /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
/* acc += v; */ /* acc += v; */
" lds %10, bezier_B" "\n\t" /* %10 = LO(bezier_B)*/ A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
" mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_B) * LO(f)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
" add %9,r1" "\n\t" A("add %9,r1")
" adc %2,%0" "\n\t" A("adc %2,%0")
" adc %3,%0" "\n\t" A("adc %3,%0")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/ A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_B) * LO(f))*/
" lds %11, bezier_B+1" "\n\t" /* %11 = MI(bezier_B)*/ A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
" mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_B) * LO(f)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
" add %9,r0" "\n\t" A("add %9,r0")
" adc %2,r1" "\n\t" A("adc %2,r1")
" adc %3,%0" "\n\t" A("adc %3,%0")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * LO(f)*/
" lds %1, bezier_B+2" "\n\t" /* %1 = HI(bezier_B)*/ A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
" mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_B) * LO(f)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
" add %2,r0" "\n\t" A("add %2,r0")
" adc %3,r1" "\n\t" A("adc %3,r1")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/ A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 8*/
" mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_B) * MI(f)*/ A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
" add %9,r0" "\n\t" A("add %9,r0")
" adc %2,r1" "\n\t" A("adc %2,r1")
" adc %3,%0" "\n\t" A("adc %3,%0")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/ A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_B) * MI(f)*/
" mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_B) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
" add %2,r0" "\n\t" A("add %2,r0")
" adc %3,r1" "\n\t" A("adc %3,r1")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_B) * MI(f) << 8*/
" mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_B) * LO(f)*/ A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
" add %3,r0" "\n\t" A("add %3,r0")
" adc %4,r1" "\n\t" /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/ A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_B) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
" mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
" mov %1,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
" clr %10" "\n\t" /* %10 = 0*/ A("clr %10") /* %10 = 0*/
" clr %11" "\n\t" /* %11 = 0*/ A("clr %11") /* %11 = 0*/
" mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
" add %1,r0" "\n\t" /* %1 += LO(LO(f) * HI(t))*/ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
" adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
" add %1,r0" "\n\t" /* %1 += LO(HI(f) * LO(t))*/ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
" adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t))*/ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
" add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
" adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
" mov %5,%10" "\n\t" /* %6:%5 =*/ A("mov %5,%10") /* %6:%5 =*/
" mov %6,%11" "\n\t" /* f = %10:%11*/ A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/ /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
/* acc -= v; */ /* acc -= v; */
" lds %10, bezier_A" "\n\t" /* %10 = LO(bezier_A)*/ A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
" mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_A) * LO(f)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
" sub %9,r1" "\n\t" A("sub %9,r1")
" sbc %2,%0" "\n\t" A("sbc %2,%0")
" sbc %3,%0" "\n\t" A("sbc %3,%0")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_A) * LO(f))*/
" lds %11, bezier_A+1" "\n\t" /* %11 = MI(bezier_A)*/ A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
" mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_A) * LO(f)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
" sub %9,r0" "\n\t" A("sub %9,r0")
" sbc %2,r1" "\n\t" A("sbc %2,r1")
" sbc %3,%0" "\n\t" A("sbc %3,%0")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * LO(f)*/
" lds %1, bezier_A+2" "\n\t" /* %1 = HI(bezier_A)*/ A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
" mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_A) * LO(f)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" A("sbc %3,r1")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 8*/
" mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_A) * MI(f)*/ A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
" sub %9,r0" "\n\t" A("sub %9,r0")
" sbc %2,r1" "\n\t" A("sbc %2,r1")
" sbc %3,%0" "\n\t" A("sbc %3,%0")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_A) * MI(f)*/
" mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_A) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" A("sbc %3,r1")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_A) * MI(f) << 8*/
" mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_A) * LO(f)*/ A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
" sub %3,r0" "\n\t" A("sub %3,r0")
" sbc %4,r1" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/ A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_A) * LO(f) << 16*/
" jmp 2f" "\n\t" /* Done!*/ A("jmp 2f") /* Done!*/
"1:" "\n\t" L("1")
/* uint24_t v; */ /* uint24_t v; */
/* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/ /* umul16x24to24hi(v, f, bezier_C); / Range 21bits [29]*/
/* acc += v; */ /* acc += v; */
" lds %10, bezier_C" "\n\t" /* %10 = LO(bezier_C)*/ A("lds %10, bezier_C") /* %10 = LO(bezier_C)*/
" mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_C) * LO(f)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_C) * LO(f)*/
" add %9,r1" "\n\t" A("add %9,r1")
" adc %2,%0" "\n\t" A("adc %2,%0")
" adc %3,%0" "\n\t" A("adc %3,%0")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/ A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_C) * LO(f))*/
" lds %11, bezier_C+1" "\n\t" /* %11 = MI(bezier_C)*/ A("lds %11, bezier_C+1") /* %11 = MI(bezier_C)*/
" mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_C) * LO(f)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
" add %9,r0" "\n\t" A("add %9,r0")
" adc %2,r1" "\n\t" A("adc %2,r1")
" adc %3,%0" "\n\t" A("adc %3,%0")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * LO(f)*/
" lds %1, bezier_C+2" "\n\t" /* %1 = HI(bezier_C)*/ A("lds %1, bezier_C+2") /* %1 = HI(bezier_C)*/
" mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_C) * LO(f)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_C) * LO(f)*/
" add %2,r0" "\n\t" A("add %2,r0")
" adc %3,r1" "\n\t" A("adc %3,r1")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/ A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 8*/
" mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_C) * MI(f)*/ A("mul %10,%6") /* r1:r0 = LO(bezier_C) * MI(f)*/
" add %9,r0" "\n\t" A("add %9,r0")
" adc %2,r1" "\n\t" A("adc %2,r1")
" adc %3,%0" "\n\t" A("adc %3,%0")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/ A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_C) * MI(f)*/
" mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_C) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_C) * MI(f)*/
" add %2,r0" "\n\t" A("add %2,r0")
" adc %3,r1" "\n\t" A("adc %3,r1")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_C) * MI(f) << 8*/
" mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_C) * LO(f)*/ A("mul %1,%6") /* r1:r0 = HI(bezier_C) * LO(f)*/
" add %3,r0" "\n\t" A("add %3,r0")
" adc %4,r1" "\n\t" /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/ A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_C) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^3 (unsigned) [17]*/
" mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
" mov %1,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
" clr %10" "\n\t" /* %10 = 0*/ A("clr %10") /* %10 = 0*/
" clr %11" "\n\t" /* %11 = 0*/ A("clr %11") /* %11 = 0*/
" mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
" add %1,r0" "\n\t" /* %1 += LO(LO(f) * HI(t))*/ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
" adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
" add %1,r0" "\n\t" /* %1 += LO(HI(f) * LO(t))*/ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
" adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t))*/ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
" add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
" adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
" mov %5,%10" "\n\t" /* %6:%5 =*/ A("mov %5,%10") /* %6:%5 =*/
" mov %6,%11" "\n\t" /* f = %10:%11*/ A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/ /* umul16x24to24hi(v, f, bezier_B); / Range 22bits [29]*/
/* acc -= v;*/ /* acc -= v;*/
" lds %10, bezier_B" "\n\t" /* %10 = LO(bezier_B)*/ A("lds %10, bezier_B") /* %10 = LO(bezier_B)*/
" mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_B) * LO(f)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_B) * LO(f)*/
" sub %9,r1" "\n\t" A("sub %9,r1")
" sbc %2,%0" "\n\t" A("sbc %2,%0")
" sbc %3,%0" "\n\t" A("sbc %3,%0")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(LO(bezier_B) * LO(f))*/
" lds %11, bezier_B+1" "\n\t" /* %11 = MI(bezier_B)*/ A("lds %11, bezier_B+1") /* %11 = MI(bezier_B)*/
" mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_B) * LO(f)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
" sub %9,r0" "\n\t" A("sub %9,r0")
" sbc %2,r1" "\n\t" A("sbc %2,r1")
" sbc %3,%0" "\n\t" A("sbc %3,%0")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * LO(f)*/
" lds %1, bezier_B+2" "\n\t" /* %1 = HI(bezier_B)*/ A("lds %1, bezier_B+2") /* %1 = HI(bezier_B)*/
" mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_B) * LO(f)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_B) * LO(f)*/
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" A("sbc %3,r1")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 8*/
" mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_B) * MI(f)*/ A("mul %10,%6") /* r1:r0 = LO(bezier_B) * MI(f)*/
" sub %9,r0" "\n\t" A("sub %9,r0")
" sbc %2,r1" "\n\t" A("sbc %2,r1")
" sbc %3,%0" "\n\t" A("sbc %3,%0")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= LO(bezier_B) * MI(f)*/
" mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_B) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_B) * MI(f)*/
" sub %2,r0" "\n\t" A("sub %2,r0")
" sbc %3,r1" "\n\t" A("sbc %3,r1")
" sbc %4,%0" "\n\t" /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/ A("sbc %4,%0") /* %4:%3:%2:%9 -= MI(bezier_B) * MI(f) << 8*/
" mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_B) * LO(f)*/ A("mul %1,%6") /* r1:r0 = HI(bezier_B) * LO(f)*/
" sub %3,r0" "\n\t" A("sub %3,r0")
" sbc %4,r1" "\n\t" /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/ A("sbc %4,r1") /* %4:%3:%2:%9 -= HI(bezier_B) * LO(f) << 16*/
/* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/ /* umul16x16to16hi(f, f, t); / Range 16 bits : f = t^5 (unsigned) [17]*/
" mul %5,%7" "\n\t" /* r1:r0 = LO(f) * LO(t)*/ A("mul %5,%7") /* r1:r0 = LO(f) * LO(t)*/
" mov %1,r1" "\n\t" /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/ A("mov %1,r1") /* store MIL(LO(f) * LO(t)) in %1, we need it for rounding*/
" clr %10" "\n\t" /* %10 = 0*/ A("clr %10") /* %10 = 0*/
" clr %11" "\n\t" /* %11 = 0*/ A("clr %11") /* %11 = 0*/
" mul %5,%8" "\n\t" /* r1:r0 = LO(f) * HI(t)*/ A("mul %5,%8") /* r1:r0 = LO(f) * HI(t)*/
" add %1,r0" "\n\t" /* %1 += LO(LO(f) * HI(t))*/ A("add %1,r0") /* %1 += LO(LO(f) * HI(t))*/
" adc %10,r1" "\n\t" /* %10 = HI(LO(f) * HI(t))*/ A("adc %10,r1") /* %10 = HI(LO(f) * HI(t))*/
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%7" "\n\t" /* r1:r0 = HI(f) * LO(t)*/ A("mul %6,%7") /* r1:r0 = HI(f) * LO(t)*/
" add %1,r0" "\n\t" /* %1 += LO(HI(f) * LO(t))*/ A("add %1,r0") /* %1 += LO(HI(f) * LO(t))*/
" adc %10,r1" "\n\t" /* %10 += HI(HI(f) * LO(t))*/ A("adc %10,r1") /* %10 += HI(HI(f) * LO(t))*/
" adc %11,%0" "\n\t" /* %11 += carry*/ A("adc %11,%0") /* %11 += carry*/
" mul %6,%8" "\n\t" /* r1:r0 = HI(f) * HI(t)*/ A("mul %6,%8") /* r1:r0 = HI(f) * HI(t)*/
" add %10,r0" "\n\t" /* %10 += LO(HI(f) * HI(t))*/ A("add %10,r0") /* %10 += LO(HI(f) * HI(t))*/
" adc %11,r1" "\n\t" /* %11 += HI(HI(f) * HI(t))*/ A("adc %11,r1") /* %11 += HI(HI(f) * HI(t))*/
" mov %5,%10" "\n\t" /* %6:%5 =*/ A("mov %5,%10") /* %6:%5 =*/
" mov %6,%11" "\n\t" /* f = %10:%11*/ A("mov %6,%11") /* f = %10:%11*/
/* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/ /* umul16x24to24hi(v, f, bezier_A); / Range 21bits [29]*/
/* acc += v; */ /* acc += v; */
" lds %10, bezier_A" "\n\t" /* %10 = LO(bezier_A)*/ A("lds %10, bezier_A") /* %10 = LO(bezier_A)*/
" mul %10,%5" "\n\t" /* r1:r0 = LO(bezier_A) * LO(f)*/ A("mul %10,%5") /* r1:r0 = LO(bezier_A) * LO(f)*/
" add %9,r1" "\n\t" A("add %9,r1")
" adc %2,%0" "\n\t" A("adc %2,%0")
" adc %3,%0" "\n\t" A("adc %3,%0")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/ A("adc %4,%0") /* %4:%3:%2:%9 += HI(LO(bezier_A) * LO(f))*/
" lds %11, bezier_A+1" "\n\t" /* %11 = MI(bezier_A)*/ A("lds %11, bezier_A+1") /* %11 = MI(bezier_A)*/
" mul %11,%5" "\n\t" /* r1:r0 = MI(bezier_A) * LO(f)*/ A("mul %11,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
" add %9,r0" "\n\t" A("add %9,r0")
" adc %2,r1" "\n\t" A("adc %2,r1")
" adc %3,%0" "\n\t" A("adc %3,%0")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * LO(f)*/
" lds %1, bezier_A+2" "\n\t" /* %1 = HI(bezier_A)*/ A("lds %1, bezier_A+2") /* %1 = HI(bezier_A)*/
" mul %1,%5" "\n\t" /* r1:r0 = MI(bezier_A) * LO(f)*/ A("mul %1,%5") /* r1:r0 = MI(bezier_A) * LO(f)*/
" add %2,r0" "\n\t" A("add %2,r0")
" adc %3,r1" "\n\t" A("adc %3,r1")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/ A("adc %4,%0") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 8*/
" mul %10,%6" "\n\t" /* r1:r0 = LO(bezier_A) * MI(f)*/ A("mul %10,%6") /* r1:r0 = LO(bezier_A) * MI(f)*/
" add %9,r0" "\n\t" A("add %9,r0")
" adc %2,r1" "\n\t" A("adc %2,r1")
" adc %3,%0" "\n\t" A("adc %3,%0")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/ A("adc %4,%0") /* %4:%3:%2:%9 += LO(bezier_A) * MI(f)*/
" mul %11,%6" "\n\t" /* r1:r0 = MI(bezier_A) * MI(f)*/ A("mul %11,%6") /* r1:r0 = MI(bezier_A) * MI(f)*/
" add %2,r0" "\n\t" A("add %2,r0")
" adc %3,r1" "\n\t" A("adc %3,r1")
" adc %4,%0" "\n\t" /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/ A("adc %4,%0") /* %4:%3:%2:%9 += MI(bezier_A) * MI(f) << 8*/
" mul %1,%6" "\n\t" /* r1:r0 = HI(bezier_A) * LO(f)*/ A("mul %1,%6") /* r1:r0 = HI(bezier_A) * LO(f)*/
" add %3,r0" "\n\t" A("add %3,r0")
" adc %4,r1" "\n\t" /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/ A("adc %4,r1") /* %4:%3:%2:%9 += HI(bezier_A) * LO(f) << 16*/
"2:" "\n\t" L("2")
" clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */ " clr __zero_reg__" /* C runtime expects r1 = __zero_reg__ = 0 */
: "+r"(r0), : "+r"(r0),
"+r"(r1), "+r"(r1),
@ -1071,20 +1071,20 @@ void Stepper::set_directions() {
register int32_t C = bezier_C; register int32_t C = bezier_C;
__asm__ __volatile__( __asm__ __volatile__(
".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax ".syntax unified" "\n\t" // is to prevent CM0,CM1 non-unified syntax
" lsrs %[ahi],%[alo],#1" "\n\t" // a = F << 31 1 cycles A("lsrs %[ahi],%[alo],#1") // a = F << 31 1 cycles
" lsls %[alo],%[alo],#31" "\n\t" // 1 cycles A("lsls %[alo],%[alo],#31") // 1 cycles
" umull %[flo],%[fhi],%[fhi],%[t]" "\n\t" // f *= t 5 cycles [fhi:flo=64bits] A("umull %[flo],%[fhi],%[fhi],%[t]") // f *= t 5 cycles [fhi:flo=64bits]
" umull %[flo],%[fhi],%[fhi],%[t]" "\n\t" // f>>=32; f*=t 5 cycles [fhi:flo=64bits] A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
" lsrs %[flo],%[fhi],#1" "\n\t" // 1 cycles [31bits] A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
" smlal %[alo],%[ahi],%[flo],%[C]" "\n\t" // a+=(f>>33)*C; 5 cycles A("smlal %[alo],%[ahi],%[flo],%[C]") // a+=(f>>33)*C; 5 cycles
" umull %[flo],%[fhi],%[fhi],%[t]" "\n\t" // f>>=32; f*=t 5 cycles [fhi:flo=64bits] A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
" lsrs %[flo],%[fhi],#1" "\n\t" // 1 cycles [31bits] A("lsrs %[flo],%[fhi],#1") // 1 cycles [31bits]
" smlal %[alo],%[ahi],%[flo],%[B]" "\n\t" // a+=(f>>33)*B; 5 cycles A("smlal %[alo],%[ahi],%[flo],%[B]") // a+=(f>>33)*B; 5 cycles
" umull %[flo],%[fhi],%[fhi],%[t]" "\n\t" // f>>=32; f*=t 5 cycles [fhi:flo=64bits] A("umull %[flo],%[fhi],%[fhi],%[t]") // f>>=32; f*=t 5 cycles [fhi:flo=64bits]
" lsrs %[flo],%[fhi],#1" "\n\t" // f>>=33; 1 cycles [31bits] A("lsrs %[flo],%[fhi],#1") // f>>=33; 1 cycles [31bits]
" smlal %[alo],%[ahi],%[flo],%[A]" "\n\t" // a+=(f>>33)*A; 5 cycles A("smlal %[alo],%[ahi],%[flo],%[A]") // a+=(f>>33)*A; 5 cycles
" lsrs %[alo],%[ahi],#6" "\n\t" // a>>=38 1 cycles A("lsrs %[alo],%[ahi],#6") // a>>=38 1 cycles
: [alo]"+r"( alo ) , : [alo]"+r"( alo ) ,
[flo]"+r"( flo ) , [flo]"+r"( flo ) ,
[fhi]"+r"( fhi ) , [fhi]"+r"( fhi ) ,

Loading…
Cancel
Save