Remove legacy ADVANCE feature

2.0.x
Scott Lahteine 7 years ago
parent e31385ecf6
commit 03f4891fb9

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 1.75
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 1.75
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -614,20 +614,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 1.75
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 1.75
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -610,20 +610,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -634,20 +634,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -623,20 +623,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -623,20 +623,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -623,20 +623,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -623,20 +623,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -628,20 +628,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -623,20 +623,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -621,20 +621,6 @@
// @section extruder // @section extruder
// extruder advance constant (s2/mm3)
//
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTRUDER_ADVANCE_K * cubic mm per second ^ 2
//
// Hooke's law says: force = k * distance
// Bernoulli's principle says: v ^ 2 / 2 + g . h + pressure / density = constant
// so: v ^ 2 is proportional to number of steps we advance the extruder
//#define ADVANCE
#if ENABLED(ADVANCE)
#define EXTRUDER_ADVANCE_K .0
#define D_FILAMENT 2.85
#endif
/** /**
* Implementation of linear pressure control * Implementation of linear pressure control
* *

@ -209,7 +209,7 @@
*/ */
// Double stepping starts at STEP_DOUBLER_FREQUENCY + 1, quad stepping starts at STEP_DOUBLER_FREQUENCY * 2 + 1 // Double stepping starts at STEP_DOUBLER_FREQUENCY + 1, quad stepping starts at STEP_DOUBLER_FREQUENCY * 2 + 1
#ifndef STEP_DOUBLER_FREQUENCY #ifndef STEP_DOUBLER_FREQUENCY
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
#define STEP_DOUBLER_FREQUENCY 60000 // Hz #define STEP_DOUBLER_FREQUENCY 60000 // Hz
#else #else
#define STEP_DOUBLER_FREQUENCY 80000 // Hz #define STEP_DOUBLER_FREQUENCY 80000 // Hz
@ -260,13 +260,8 @@
#endif #endif
/** /**
* Advance calculated values * Override here because this is set in Configuration_adv.h
*/ */
#if ENABLED(ADVANCE)
#define EXTRUSION_AREA CIRCLE_CIRC(0.5 * D_FILAMENT)
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_mm[E_AXIS_N] / (EXTRUSION_AREA))
#endif
#if ENABLED(ULTIPANEL) && DISABLED(ELB_FULL_GRAPHIC_CONTROLLER) #if ENABLED(ULTIPANEL) && DISABLED(ELB_FULL_GRAPHIC_CONTROLLER)
#undef SD_DETECT_INVERTED #undef SD_DETECT_INVERTED
#endif #endif

@ -208,6 +208,8 @@
#error "CONTROLLERFAN_PIN is now CONTROLLER_FAN_PIN, enabled with USE_CONTROLLER_FAN. Please update your Configuration_adv.h." #error "CONTROLLERFAN_PIN is now CONTROLLER_FAN_PIN, enabled with USE_CONTROLLER_FAN. Please update your Configuration_adv.h."
#elif defined(MIN_RETRACT) #elif defined(MIN_RETRACT)
#error "MIN_RETRACT is now MIN_AUTORETRACT and MAX_AUTORETRACT. Please update your Configuration_adv.h." #error "MIN_RETRACT is now MIN_AUTORETRACT and MAX_AUTORETRACT. Please update your Configuration_adv.h."
#elif defined(ADVANCE)
#error "ADVANCE was removed in Marlin 1.1.6. Please use LIN_ADVANCE."
#endif #endif
/** /**
@ -813,13 +815,6 @@ static_assert(1 >= 0
#endif #endif
#endif // DISABLE_[XYZ] #endif // DISABLE_[XYZ]
/**
* Advance Extrusion
*/
#if ENABLED(ADVANCE) && ENABLED(LIN_ADVANCE)
#error "You can enable ADVANCE or LIN_ADVANCE, but not both."
#endif
/** /**
* Filament Width Sensor * Filament Width Sensor
*/ */

@ -228,10 +228,6 @@ void Planner::calculate_trapezoid_for_block(block_t* const block, const float &e
block->decelerate_after = accelerate_steps + plateau_steps; block->decelerate_after = accelerate_steps + plateau_steps;
block->initial_rate = initial_rate; block->initial_rate = initial_rate;
block->final_rate = final_rate; block->final_rate = final_rate;
#if ENABLED(ADVANCE)
block->initial_advance = block->advance * sq(entry_factor);
block->final_advance = block->advance * sq(exit_factor);
#endif
} }
CRITICAL_SECTION_END; CRITICAL_SECTION_END;
} }
@ -1432,27 +1428,7 @@ void Planner::_buffer_line(const float &a, const float &b, const float &c, const
* axis_steps_per_mm[E_AXIS_N] * 256.0 * axis_steps_per_mm[E_AXIS_N] * 256.0
); );
#elif ENABLED(ADVANCE) #endif // LIN_ADVANCE
// Calculate advance rate
if (esteps && (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS])) {
const long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_steps_per_s2);
const float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * HYPOT(current_speed[E_AXIS], EXTRUSION_AREA) * 256;
block->advance = advance;
block->advance_rate = acc_dist ? advance / (float)acc_dist : 0;
}
else
block->advance_rate = block->advance = 0;
/**
SERIAL_ECHO_START();
SERIAL_ECHOPGM("advance :");
SERIAL_ECHO(block->advance/256.0);
SERIAL_ECHOPGM("advance rate :");
SERIAL_ECHOLN(block->advance_rate/256.0);
*/
#endif // ADVANCE or LIN_ADVANCE
calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed); calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed);

@ -100,11 +100,6 @@ typedef struct {
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
bool use_advance_lead; bool use_advance_lead;
uint32_t abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float uint32_t abs_adv_steps_multiplier8; // Factorised by 2^8 to avoid float
#elif ENABLED(ADVANCE)
int32_t advance_rate;
volatile int32_t initial_advance;
volatile int32_t final_advance;
float advance;
#endif #endif
// Fields used by the motion planner to manage acceleration // Fields used by the motion planner to manage acceleration

@ -108,7 +108,7 @@ long Stepper::counter_X = 0,
volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
constexpr HAL_TIMER_TYPE ADV_NEVER = HAL_TIMER_TYPE_MAX; constexpr HAL_TIMER_TYPE ADV_NEVER = HAL_TIMER_TYPE_MAX;
@ -116,18 +116,10 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even
Stepper::nextAdvanceISR = ADV_NEVER, Stepper::nextAdvanceISR = ADV_NEVER,
Stepper::eISR_Rate = ADV_NEVER; Stepper::eISR_Rate = ADV_NEVER;
#if ENABLED(LIN_ADVANCE) volatile int Stepper::e_steps[E_STEPPERS];
volatile int Stepper::e_steps[E_STEPPERS]; int Stepper::final_estep_rate,
int Stepper::final_estep_rate, Stepper::current_estep_rate[E_STEPPERS],
Stepper::current_estep_rate[E_STEPPERS], Stepper::current_adv_steps[E_STEPPERS];
Stepper::current_adv_steps[E_STEPPERS];
#else
long Stepper::e_steps[E_STEPPERS],
Stepper::final_advance = 0,
Stepper::old_advance = 0,
Stepper::advance_rate,
Stepper::advance;
#endif
/** /**
* See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382 * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382
@ -144,7 +136,7 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even
return ADV_NEVER; return ADV_NEVER;
} }
#endif // ADVANCE || LIN_ADVANCE #endif // LIN_ADVANCE
long Stepper::acceleration_time, Stepper::deceleration_time; long Stepper::acceleration_time, Stepper::deceleration_time;
@ -277,7 +269,7 @@ void Stepper::set_directions() {
SET_STEP_DIR(Z); // C SET_STEP_DIR(Z); // C
#endif #endif
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if DISABLED(LIN_ADVANCE)
if (motor_direction(E_AXIS)) { if (motor_direction(E_AXIS)) {
REV_E_DIR(); REV_E_DIR();
count_direction[E_AXIS] = -1; count_direction[E_AXIS] = -1;
@ -286,7 +278,7 @@ void Stepper::set_directions() {
NORM_E_DIR(); NORM_E_DIR();
count_direction[E_AXIS] = 1; count_direction[E_AXIS] = 1;
} }
#endif // !ADVANCE && !LIN_ADVANCE #endif // !LIN_ADVANCE
} }
#if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE)
@ -312,7 +304,7 @@ void Stepper::set_directions() {
HAL_STEP_TIMER_ISR { HAL_STEP_TIMER_ISR {
HAL_timer_isr_prologue(STEP_TIMER_NUM); HAL_timer_isr_prologue(STEP_TIMER_NUM);
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
Stepper::advance_isr_scheduler(); Stepper::advance_isr_scheduler();
#else #else
Stepper::isr(); Stepper::isr();
@ -326,7 +318,7 @@ void Stepper::isr() {
#define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch #define ENDSTOP_NOMINAL_OCR_VAL 1500 * HAL_TICKS_PER_US // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch
#define OCR_VAL_TOLERANCE 500 * HAL_TICKS_PER_US // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms #define OCR_VAL_TOLERANCE 500 * HAL_TICKS_PER_US // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if DISABLED(LIN_ADVANCE)
// Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars) // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars)
DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR
DISABLE_STEPPER_DRIVER_INTERRUPT(); DISABLE_STEPPER_DRIVER_INTERRUPT();
@ -361,7 +353,7 @@ void Stepper::isr() {
_NEXT_ISR(ocr_val); _NEXT_ISR(ocr_val);
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if DISABLED(LIN_ADVANCE)
#ifdef CPU_32_BIT #ifdef CPU_32_BIT
HAL_timer_set_count(STEP_TIMER_NUM, ocr_val); HAL_timer_set_count(STEP_TIMER_NUM, ocr_val);
#else #else
@ -416,10 +408,6 @@ void Stepper::isr() {
return; return;
} }
#endif #endif
// #if ENABLED(ADVANCE)
// e_steps[TOOL_E_INDEX] = 0;
// #endif
} }
else { else {
_NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz
@ -465,33 +453,7 @@ void Stepper::isr() {
} }
#endif #endif
#elif ENABLED(ADVANCE) #endif // LIN_ADVANCE
// Always count the unified E axis
counter_E += current_block->steps[E_AXIS];
if (counter_E > 0) {
counter_E -= current_block->step_event_count;
#if DISABLED(MIXING_EXTRUDER)
// Don't step E here for mixing extruder
motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX];
#endif
}
#if ENABLED(MIXING_EXTRUDER)
// Step mixing steppers proportionally
const bool dir = motor_direction(E_AXIS);
MIXING_STEPPERS_LOOP(j) {
counter_m[j] += current_block->steps[E_AXIS];
if (counter_m[j] > 0) {
counter_m[j] -= current_block->mix_event_count[j];
dir ? --e_steps[j] : ++e_steps[j];
}
}
#endif // MIXING_EXTRUDER
#endif // ADVANCE or LIN_ADVANCE
#define _COUNTER(AXIS) counter_## AXIS #define _COUNTER(AXIS) counter_## AXIS
#define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP
@ -552,7 +514,7 @@ void Stepper::isr() {
#else #else
#define _CYCLE_APPROX_6 _CYCLE_APPROX_5 #define _CYCLE_APPROX_6 _CYCLE_APPROX_5
#endif #endif
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if DISABLED(LIN_ADVANCE)
#if ENABLED(MIXING_EXTRUDER) #if ENABLED(MIXING_EXTRUDER)
#define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6 #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6
#else #else
@ -588,7 +550,7 @@ void Stepper::isr() {
#endif #endif
// For non-advance use linear interpolation for E also // For non-advance use linear interpolation for E also
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if DISABLED(LIN_ADVANCE)
#if ENABLED(MIXING_EXTRUDER) #if ENABLED(MIXING_EXTRUDER)
// Keep updating the single E axis // Keep updating the single E axis
counter_E += current_block->steps[E_AXIS]; counter_E += current_block->steps[E_AXIS];
@ -602,7 +564,7 @@ void Stepper::isr() {
#else // !MIXING_EXTRUDER #else // !MIXING_EXTRUDER
PULSE_START(E); PULSE_START(E);
#endif #endif
#endif // !ADVANCE && !LIN_ADVANCE #endif // !LIN_ADVANCE
// For minimum pulse time wait before stopping pulses // For minimum pulse time wait before stopping pulses
#if EXTRA_CYCLES_XYZE > 20 #if EXTRA_CYCLES_XYZE > 20
@ -622,7 +584,7 @@ void Stepper::isr() {
PULSE_STOP(Z); PULSE_STOP(Z);
#endif #endif
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if DISABLED(LIN_ADVANCE)
#if ENABLED(MIXING_EXTRUDER) #if ENABLED(MIXING_EXTRUDER)
// Always step the single E axis // Always step the single E axis
if (counter_E > 0) { if (counter_E > 0) {
@ -638,7 +600,7 @@ void Stepper::isr() {
#else // !MIXING_EXTRUDER #else // !MIXING_EXTRUDER
PULSE_STOP(E); PULSE_STOP(E);
#endif #endif
#endif // !ADVANCE && !LIN_ADVANCE #endif // !LIN_ADVANCE
if (++step_events_completed >= current_block->step_event_count) { if (++step_events_completed >= current_block->step_event_count) {
all_steps_done = true; all_steps_done = true;
@ -655,6 +617,7 @@ void Stepper::isr() {
} // steps_loop } // steps_loop
#if ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
if (current_block->use_advance_lead) { if (current_block->use_advance_lead) {
const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX]; const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX];
current_adv_steps[TOOL_E_INDEX] += delta_adv_steps; current_adv_steps[TOOL_E_INDEX] += delta_adv_steps;
@ -666,13 +629,11 @@ void Stepper::isr() {
// For most extruders, advance the single E stepper // For most extruders, advance the single E stepper
e_steps[TOOL_E_INDEX] += delta_adv_steps; e_steps[TOOL_E_INDEX] += delta_adv_steps;
#endif #endif
} }
#endif
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
// If we have esteps to execute, fire the next advance_isr "now" // If we have esteps to execute, fire the next advance_isr "now"
if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0; if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0;
#endif
#endif // LIN_ADVANCE
// Calculate new timer value // Calculate new timer value
if (step_events_completed <= (uint32_t)current_block->accelerate_until) { if (step_events_completed <= (uint32_t)current_block->accelerate_until) {
@ -705,33 +666,9 @@ void Stepper::isr() {
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17; current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif #endif
} }
#elif ENABLED(ADVANCE)
advance += advance_rate * step_loops;
//NOLESS(advance, current_block->advance);
const long advance_whole = advance >> 8,
advance_factor = advance_whole - old_advance;
// Do E steps + advance steps
#if ENABLED(MIXING_EXTRUDER)
// ...for mixing steppers proportionally
MIXING_STEPPERS_LOOP(j)
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
#else
// ...for the active extruder
e_steps[TOOL_E_INDEX] += advance_factor;
#endif
old_advance = advance_whole;
#endif // ADVANCE or LIN_ADVANCE
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
// TODO: HAL
eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops); eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
#endif
#endif // LIN_ADVANCE
} }
else if (step_events_completed > (uint32_t)current_block->decelerate_after) { else if (step_events_completed > (uint32_t)current_block->decelerate_after) {
HAL_TIMER_TYPE step_rate; HAL_TIMER_TYPE step_rate;
@ -765,30 +702,9 @@ void Stepper::isr() {
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17; current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif #endif
} }
#elif ENABLED(ADVANCE)
advance -= advance_rate * step_loops;
NOLESS(advance, final_advance);
// Do E steps + advance steps
const long advance_whole = advance >> 8,
advance_factor = advance_whole - old_advance;
#if ENABLED(MIXING_EXTRUDER)
MIXING_STEPPERS_LOOP(j)
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
#else
e_steps[TOOL_E_INDEX] += advance_factor;
#endif
old_advance = advance_whole;
#endif // ADVANCE or LIN_ADVANCE
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE)
eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops); eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
#endif
#endif // LIN_ADVANCE
} }
else { else {
@ -807,7 +723,7 @@ void Stepper::isr() {
step_loops = step_loops_nominal; step_loops = step_loops_nominal;
} }
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if DISABLED(LIN_ADVANCE)
#ifdef CPU_32_BIT #ifdef CPU_32_BIT
// Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room // Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room
HAL_TIMER_TYPE stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM), HAL_TIMER_TYPE stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM),
@ -823,12 +739,12 @@ void Stepper::isr() {
current_block = NULL; current_block = NULL;
planner.discard_current_block(); planner.discard_current_block();
} }
#if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if DISABLED(LIN_ADVANCE)
HAL_ENABLE_ISRs(); // re-enable ISRs HAL_ENABLE_ISRs(); // re-enable ISRs
#endif #endif
} }
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
#define CYCLES_EATEN_E (E_STEPPERS * 5) #define CYCLES_EATEN_E (E_STEPPERS * 5)
#define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E)) #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E))
@ -968,7 +884,7 @@ void Stepper::isr() {
HAL_ENABLE_ISRs(); HAL_ENABLE_ISRs();
} }
#endif // ADVANCE or LIN_ADVANCE #endif // LIN_ADVANCE
void Stepper::init() { void Stepper::init() {
@ -1166,12 +1082,10 @@ void Stepper::init() {
ENABLE_STEPPER_DRIVER_INTERRUPT(); ENABLE_STEPPER_DRIVER_INTERRUPT();
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0; for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0;
#if ENABLED(LIN_ADVANCE) ZERO(current_adv_steps);
ZERO(current_adv_steps); #endif
#endif
#endif // ADVANCE || LIN_ADVANCE
endstops.enable(true); // Start with endstops active. After homing they can be disabled endstops.enable(true); // Start with endstops active. After homing they can be disabled
sei(); sei();

@ -90,25 +90,19 @@ class Stepper {
static long counter_X, counter_Y, counter_Z, counter_E; static long counter_X, counter_Y, counter_Z, counter_E;
static volatile uint32_t step_events_completed; // The number of step events executed in the current block static volatile uint32_t step_events_completed; // The number of step events executed in the current block
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
static HAL_TIMER_TYPE nextMainISR, nextAdvanceISR, eISR_Rate; static HAL_TIMER_TYPE nextMainISR, nextAdvanceISR, eISR_Rate;
#define _NEXT_ISR(T) nextMainISR = T #define _NEXT_ISR(T) nextMainISR = T
#if ENABLED(LIN_ADVANCE) static volatile int e_steps[E_STEPPERS];
static volatile int e_steps[E_STEPPERS]; static int final_estep_rate;
static int final_estep_rate; static int current_estep_rate[E_STEPPERS]; // Actual extruder speed [steps/s]
static int current_estep_rate[E_STEPPERS]; // Actual extruder speed [steps/s] static int current_adv_steps[E_STEPPERS]; // The amount of current added esteps due to advance.
static int current_adv_steps[E_STEPPERS]; // The amount of current added esteps due to advance. // i.e., the current amount of pressure applied
// i.e., the current amount of pressure applied // to the spring (=filament).
// to the spring (=filament).
#else
static long e_steps[E_STEPPERS];
static long advance_rate, advance, final_advance;
static long old_advance;
#endif
#else #else
#define _NEXT_ISR(T) HAL_timer_set_count(STEP_TIMER_NUM, T); #define _NEXT_ISR(T) HAL_timer_set_count(STEP_TIMER_NUM, T);
#endif // ADVANCE or LIN_ADVANCE #endif // LIN_ADVANCE
static long acceleration_time, deceleration_time; static long acceleration_time, deceleration_time;
//unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate; //unsigned long accelerate_until, decelerate_after, acceleration_rate, initial_rate, final_rate, nominal_rate;
@ -157,7 +151,7 @@ class Stepper {
static void isr(); static void isr();
#if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #if ENABLED(LIN_ADVANCE)
static void advance_isr(); static void advance_isr();
static void advance_isr_scheduler(); static void advance_isr_scheduler();
#endif #endif
@ -344,26 +338,6 @@ class Stepper {
set_directions(); set_directions();
} }
#if ENABLED(ADVANCE)
advance = current_block->initial_advance;
final_advance = current_block->final_advance;
// Do E steps + advance steps
#if ENABLED(MIXING_EXTRUDER)
long advance_factor = (advance >> 8) - old_advance;
// ...for mixing steppers proportionally
MIXING_STEPPERS_LOOP(j)
e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j];
#else
// ...for the active extruder
e_steps[TOOL_E_INDEX] += ((advance >> 8) - old_advance);
#endif
old_advance = advance >> 8;
#endif
deceleration_time = 0; deceleration_time = 0;
// step_rate to timer interval // step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate); OCR1A_nominal = calc_timer(current_block->nominal_rate);

Loading…
Cancel
Save