[2.0.x] LPC176x Serial cleanup (#11032)

2.0.x
Chris Pepper 7 years ago committed by Scott Lahteine
parent c1269c2ec1
commit 0312c42f9d

@ -123,8 +123,8 @@ void HardwareSerial::begin(uint32_t baudrate) {
Baudrate = baudrate;
}
int HardwareSerial::peek() {
int byte = -1;
int16_t HardwareSerial::peek() {
int16_t byte = -1;
// Temporarily lock out UART receive interrupts during this read so the UART receive
// interrupt won't cause problems with the index values
@ -139,8 +139,8 @@ int HardwareSerial::peek() {
return byte;
}
int HardwareSerial::read() {
int byte = -1;
int16_t HardwareSerial::read() {
int16_t byte = -1;
// Temporarily lock out UART receive interrupts during this read so the UART receive
// interrupt won't cause problems with the index values
@ -201,7 +201,7 @@ size_t HardwareSerial::write(uint8_t send) {
}
#endif
int HardwareSerial::available() {
size_t HardwareSerial::available() {
return (RxQueueWritePos + RX_BUFFER_SIZE - RxQueueReadPos) % RX_BUFFER_SIZE;
}
@ -210,16 +210,17 @@ void HardwareSerial::flush() {
RxQueueReadPos = 0;
}
void HardwareSerial::printf(const char *format, ...) {
size_t HardwareSerial::printf(const char *format, ...) {
char RxBuffer[256];
va_list vArgs;
va_start(vArgs, format);
int length = vsnprintf(RxBuffer, 256, format, vArgs);
va_end(vArgs);
if (length > 0 && length < 256) {
for (int i = 0; i < length; ++i)
for (size_t i = 0; i < (size_t)length; ++i)
write(RxBuffer[i]);
}
return length;
}
void HardwareSerial::IRQHandler() {

@ -72,120 +72,20 @@ public:
}
void begin(uint32_t baudrate);
int peek();
int read();
int16_t peek();
int16_t read();
size_t write(uint8_t send);
#if TX_BUFFER_SIZE > 0
void flushTX();
#endif
int available();
size_t available();
void flush();
void printf(const char *format, ...);
size_t printf(const char *format, ...);
operator bool() { return true; }
void IRQHandler();
#define DEC 10
#define HEX 16
#define OCT 8
#define BIN 2
void print_bin(uint32_t value, uint8_t num_digits) {
uint32_t mask = 1 << (num_digits -1);
for (uint8_t i = 0; i < num_digits; i++) {
if (!(i % 4) && i) printf(" ");
if (!(i % 16) && i) printf(" ");
if (value & mask) printf("1");
else printf("0");
value <<= 1;
}
}
void print(const char value[]) {
printf("%s" , value);
}
void print(char value, int nbase = 0) {
if (nbase == BIN) print_bin(value,8);
else if (nbase == OCT) printf("%3o", value);
else if (nbase == HEX) printf("%2X", value);
else if (nbase == DEC ) printf("%d", value);
else printf("%c" , value);
}
void print(unsigned char value, int nbase = 0) {
if (nbase == BIN) print_bin(value,8);
else if (nbase == OCT) printf("%3o", value);
else if (nbase == HEX) printf("%2X", value);
else printf("%u" , value);
}
void print(int value, int nbase = 0) {
if (nbase == BIN) print_bin(value,16);
else if (nbase == OCT) printf("%6o", value);
else if (nbase == HEX) printf("%4X", value);
else printf("%d", value);
}
void print(unsigned int value, int nbase = 0) {
if (nbase == BIN) print_bin(value,16);
else if (nbase == OCT) printf("%6o", value);
else if (nbase == HEX) printf("%4X", value);
else printf("%u" , value);
}
void print(long value, int nbase = 0) {
if (nbase == BIN) print_bin(value,32);
else if (nbase == OCT) printf("%11o", value);
else if (nbase == HEX) printf("%8X", value);
else printf("%ld" , value);
}
void print(unsigned long value, int nbase = 0) {
if (nbase == BIN) print_bin(value,32);
else if (nbase == OCT) printf("%11o", value);
else if (nbase == HEX) printf("%8X", value);
else printf("%lu" , value);
}
void print(float value, int round = 6) {
printf("%f" , value);
}
void print(double value, int round = 6) {
printf("%f" , value );
}
void println(const char value[]) {
printf("%s\n" , value);
}
void println(char value, int nbase = 0) {
print(value, nbase);
println();
}
void println(unsigned char value, int nbase = 0) {
print(value, nbase);
println();
}
void println(int value, int nbase = 0) {
print(value, nbase);
println();
}
void println(unsigned int value, int nbase = 0) {
print(value, nbase);
println();
}
void println(long value, int nbase = 0) {
print(value, nbase);
println();
}
void println(unsigned long value, int nbase = 0) {
print(value, nbase);
println();
}
void println(float value, int round = 6) {
printf("%f\n" , value );
}
void println(double value, int round = 6) {
printf("%f\n" , value );
}
void println(void) {
print('\n');
}
};
#endif // MARLIN_SRC_HAL_HAL_SERIAL_H_

@ -60,9 +60,11 @@
* unless DEACTIVATE_SERVOS_AFTER_MOVE is enabled and a MOVE command was issued.
*/
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfig.h"
#if HAS_SERVOS && defined(TARGET_LPC1768)
#if HAS_SERVOS
#include "LPC1768_PWM.h"
#include "LPC1768_Servo.h"
@ -157,4 +159,5 @@
}
}
#endif // HAS_SERVOS && TARGET_LPC1768
#endif // HAS_SERVOS
#endif // TARGET_LPC1768

@ -29,10 +29,10 @@
* For TARGET_LPC1768
*/
#include "../../inc/MarlinConfig.h"
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfig.h"
// --------------------------------------------------------------------------
// Software SPI
// --------------------------------------------------------------------------

@ -253,7 +253,7 @@ void SoftwareSerial::end() {
// Read data from buffer
int SoftwareSerial::read() {
int16_t SoftwareSerial::read() {
if (!isListening()) return -1;
// Empty buffer?
@ -265,7 +265,7 @@ int SoftwareSerial::read() {
return d;
}
int SoftwareSerial::available() {
size_t SoftwareSerial::available() {
if (!isListening()) return 0;
return (_receive_buffer_tail + _SS_MAX_RX_BUFF - _receive_buffer_head) % _SS_MAX_RX_BUFF;
@ -314,7 +314,7 @@ void SoftwareSerial::flush() {
sei();
}
int SoftwareSerial::peek() {
int16_t SoftwareSerial::peek() {
if (!isListening())
return -1;

@ -93,11 +93,11 @@ public:
bool isListening() { return this == active_object; }
bool stopListening();
bool overflow() { bool ret = _buffer_overflow; if (ret) _buffer_overflow = false; return ret; }
int peek();
int16_t peek();
virtual size_t write(uint8_t byte);
virtual int read();
virtual int available();
virtual int16_t read();
virtual size_t available();
virtual void flush();
operator bool() { return true; }

@ -23,6 +23,8 @@
// adapted from I2C/master/master.c example
// https://www-users.cs.york.ac.uk/~pcc/MCP/HAPR-Course-web/CMSIS/examples/html/master_8c_source.html
#ifdef TARGET_LPC1768
#include "../../../inc/MarlinConfigPre.h"
#if MB(MKS_SBASE)
@ -135,3 +137,4 @@ uint8_t digipot_mcp4451_send_byte(uint8_t data) {
#endif
#endif // MB(MKS_SBASE)
#endif // TARGET_LPC1768

@ -30,177 +30,131 @@
#include <stdarg.h>
#include <stdio.h>
#include <Print.h>
/**
* Generic RingBuffer
* T type of the buffer array
* S size of the buffer (must be power of 2)
*
* todo: optimise
*/
template <typename T, uint32_t S> class RingBuffer {
public:
RingBuffer() { index_read = index_write = 0; }
uint32_t available() volatile { return buffer_mask & (index_write - index_read); }
uint32_t free() volatile { return buffer_size - available(); }
bool empty() volatile { return (buffer_mask & index_read) == (buffer_mask & index_write); }
bool full() volatile { return index_read == buffer_mask & (index_write + 1); }
void clear() volatile { index_read = index_write = 0; }
bool peek(T *value) volatile {
if (value == 0 || available() == 0)
return false;
*value = buffer[buffer_mask & index_read];
RingBuffer() {index_read = index_write = 0;}
uint32_t available() {return mask(index_write - index_read);}
uint32_t free() {return buffer_size - available();}
bool empty() {return index_read == index_write;}
bool full() {return next(index_write) == index_read;}
void clear() {index_read = index_write = 0;}
bool peek(T *const value) {
if (value == nullptr || empty()) return false;
*value = buffer[index_read];
return true;
}
int read() volatile {
if ((buffer_mask & index_read) == (buffer_mask & index_write)) return -1;
T val = buffer[buffer_mask & index_read];
++index_read;
return val;
uint32_t read(T *const value) {
if (value == nullptr || empty()) return 0;
*value = buffer[index_read];
index_read = next(index_read);
return 1;
}
bool write(T value) volatile {
uint32_t next_head = buffer_mask & (index_write + 1);
if (next_head != index_read) {
buffer[buffer_mask & index_write] = value;
index_write = next_head;
return true;
}
return false;
uint32_t write(T value) {
uint32_t next_head = next(index_write);
if (next_head == index_read) return 0; // buffer full
buffer[index_write] = value;
index_write = next_head;
return 1;
}
private:
inline uint32_t mask(uint32_t val) {
return val & buffer_mask;
}
inline uint32_t next(uint32_t val) {
return mask(val + 1);
}
static const uint32_t buffer_size = S;
static const uint32_t buffer_mask = buffer_size - 1;
volatile T buffer[buffer_size];
T buffer[buffer_size];
volatile uint32_t index_write;
volatile uint32_t index_read;
};
class HalSerial {
/**
* Serial Interface Class
* Data is injected directly into, and consumed from, the fifo buffers
*/
class HalSerial: public Print {
public:
#if ENABLED(EMERGENCY_PARSER)
EmergencyParser::State emergency_state;
#endif
HalSerial() { host_connected = false; }
HalSerial() : host_connected(false) { }
virtual ~HalSerial() { }
void begin(int32_t baud) {
}
operator bool() { return host_connected; }
void begin(int32_t baud) { }
int peek() {
int16_t peek() {
uint8_t value;
return receive_buffer.peek(&value) ? value : -1;
}
int read() { return receive_buffer.read(); }
size_t write(char c) { return host_connected ? transmit_buffer.write((uint8_t)c) : 0; }
int16_t read() {
uint8_t value;
return receive_buffer.read(&value) ? value : -1;
}
operator bool() { return host_connected; }
size_t write(const uint8_t c) {
if (!host_connected) return 0; // Do not fill buffer when host disconnected
while (transmit_buffer.write(c) == 0) { // Block until there is free room in buffer
if (!host_connected) return 0; // Break infinite loop on host disconect
}
return 1;
}
uint16_t available() {
return (uint16_t)receive_buffer.available();
size_t available() {
return (size_t)receive_buffer.available();
}
void flush() { receive_buffer.clear(); }
void flush() {
receive_buffer.clear();
}
uint8_t availableForWrite(void){
uint8_t availableForWrite(void) {
return transmit_buffer.free() > 255 ? 255 : (uint8_t)transmit_buffer.free();
}
void flushTX(void){
if (host_connected)
while (transmit_buffer.available()) { /* nada */ }
void flushTX(void) {
while (transmit_buffer.available() && host_connected) { /* nada */}
}
void printf(const char *format, ...) {
size_t printf(const char *format, ...) {
static char buffer[256];
va_list vArgs;
va_start(vArgs, format);
int length = vsnprintf((char *) buffer, 256, (char const *) format, vArgs);
va_end(vArgs);
size_t i = 0;
if (length > 0 && length < 256) {
if (host_connected) {
for (int i = 0; i < length;) {
if (transmit_buffer.write(buffer[i])) {
++i;
}
}
while (i < (size_t)length && host_connected) {
i += transmit_buffer.write(buffer[i]);
}
}
return i;
}
#define DEC 10
#define HEX 16
#define OCT 8
#define BIN 2
void print_bin(uint32_t value, uint8_t num_digits) {
uint32_t mask = 1 << (num_digits -1);
for (uint8_t i = 0; i < num_digits; i++) {
if (!(i % 4) && i) write(' ');
if (!(i % 16) && i) write(' ');
if (value & mask) write('1');
else write('0');
value <<= 1;
}
}
void print(const char value[]) { printf("%s" , value); }
void print(char value, int nbase = 0) {
if (nbase == BIN) print_bin(value, 8);
else if (nbase == OCT) printf("%3o", value);
else if (nbase == HEX) printf("%2X", value);
else if (nbase == DEC ) printf("%d", value);
else printf("%c" , value);
}
void print(unsigned char value, int nbase = 0) {
if (nbase == BIN) print_bin(value, 8);
else if (nbase == OCT) printf("%3o", value);
else if (nbase == HEX) printf("%2X", value);
else printf("%u" , value);
}
void print(int value, int nbase = 0) {
if (nbase == BIN) print_bin(value, 16);
else if (nbase == OCT) printf("%6o", value);
else if (nbase == HEX) printf("%4X", value);
else printf("%d", value);
}
void print(unsigned int value, int nbase = 0) {
if (nbase == BIN) print_bin(value, 16);
else if (nbase == OCT) printf("%6o", value);
else if (nbase == HEX) printf("%4X", value);
else printf("%u" , value);
}
void print(long value, int nbase = 0) {
if (nbase == BIN) print_bin(value, 32);
else if (nbase == OCT) printf("%11o", value);
else if (nbase == HEX) printf("%8X", value);
else printf("%ld" , value);
}
void print(unsigned long value, int nbase = 0) {
if (nbase == BIN) print_bin(value, 32);
else if (nbase == OCT) printf("%11o", value);
else if (nbase == HEX) printf("%8X", value);
else printf("%lu" , value);
}
void print(float value, int round = 6) { printf("%f" , value); }
void print(double value, int round = 6) { printf("%f" , value); }
void println(const char value[]) { printf("%s\n" , value); }
void println(char value, int nbase = 0) { print(value, nbase); println(); }
void println(unsigned char value, int nbase = 0) { print(value, nbase); println(); }
void println(int value, int nbase = 0) { print(value, nbase); println(); }
void println(unsigned int value, int nbase = 0) { print(value, nbase); println(); }
void println(long value, int nbase = 0) { print(value, nbase); println(); }
void println(unsigned long value, int nbase = 0) { print(value, nbase); println(); }
void println(float value, int round = 6) { printf("%f\n" , value); }
void println(double value, int round = 6) { printf("%f\n" , value); }
void println(void) { print('\n'); }
volatile RingBuffer<uint8_t, 128> receive_buffer;
volatile RingBuffer<uint8_t, 128> transmit_buffer;
RingBuffer<uint8_t, 128> receive_buffer;
RingBuffer<uint8_t, 128> transmit_buffer;
volatile bool host_connected;
};

@ -49,7 +49,7 @@ else:
"-fno-threadsafe-statics"
],
LINKFLAGS=[
"-Wl,-Tframeworks/CMSIS/LPC1768/Re-ARM/LPC1768.ld,--gc-sections",
"-Wl,-Tframeworks/CMSIS/LPC1768/system/LPC1768.ld,--gc-sections",
"-Os",
"-mcpu=cortex-m3",
"-mthumb",

@ -35,53 +35,52 @@ extern "C" {
#include "LPC1768_PWM.h"
static __INLINE uint32_t SysTick_Config(uint32_t ticks) {
if (ticks > SysTick_LOAD_RELOAD_Msk)
return (1); /* Reload value impossible */
if (ticks > SysTick_LOAD_RELOAD_Msk) return 1;
SysTick->LOAD = (ticks & SysTick_LOAD_RELOAD_Msk) - 1; /* set reload register */
NVIC_SetPriority(SysTick_IRQn, NVIC_EncodePriority(0, 0, 0)); /* set Priority for Cortex-M3 System Interrupts */
SysTick->VAL = 0; /* Load the SysTick Counter Value */
SysTick->LOAD = (ticks & SysTick_LOAD_RELOAD_Msk) - 1; // Set reload register
SysTick->VAL = 0; // Load the SysTick Counter Value
SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */
return (0); /* Function successful */
SysTick_CTRL_TICKINT_Msk |
SysTick_CTRL_ENABLE_Msk; // Enable SysTick IRQ and SysTick Timer
NVIC_SetPriority(SysTick_IRQn, NVIC_EncodePriority(0, 0, 0)); // Set Priority for Cortex-M3 System Interrupts
return 0;
}
extern "C" {
extern void disk_timerproc(void);
volatile uint32_t _millis;
void SysTick_Handler(void) {
++_millis;
disk_timerproc(); /* Disk timer process */
}
}
extern int isLPC1769();
extern void disk_timerproc(void);
volatile uint32_t _millis;
// runs after clock init and before global static constructors
extern "C" void SystemPostInit() {
_millis = 0; // initialise the millisecond counter value;
SysTick_Config(SystemCoreClock / 1000); // start millisecond global counter
GPIO_SetDir(4, 1UL << 28, 1);
for (int i = 0; i < 4; ++i) {
GPIO_SetValue(4, 1UL << 28);
delay(100);
GPIO_ClearValue(4, 1UL << 28);
delay(100);
void SysTick_Handler(void) {
++_millis;
disk_timerproc();
}
}
// detect 17x[4-8] (100MHz) or 17x9 (120MHz)
static bool isLPC1769() {
#define IAP_LOCATION 0x1FFF1FF1
uint32_t command[1];
uint32_t result[5];
typedef void (*IAP)(uint32_t*, uint32_t*);
IAP iap = (IAP) IAP_LOCATION;
command[0] = 54;
iap(command, result);
// Runs after clock init and before global static constructors
void SystemPostInit() {
_millis = 0; // Initialise the millisecond counter value;
SysTick_Config(SystemCoreClock / 1000); // Start millisecond global counter
return ((result[1] & 0x00100000) != 0);
// Runs before setup() need to configure LED_PIN and use to indicate succsessful bootloader execution
#if PIN_EXISTS(LED)
SET_DIR_OUTPUT(LED_PIN);
WRITE_PIN_CLR(LED_PIN);
//MKS-SBASE has 3 other LEDS the bootloader uses during flashing, clear them
SET_DIR_OUTPUT(P1_19);
WRITE_PIN_CLR(P1_19);
SET_DIR_OUTPUT(P1_20);
WRITE_PIN_CLR(P1_20);
SET_DIR_OUTPUT(P1_21);
WRITE_PIN_CLR(P1_21);
for (int i = 0; i < 6; ++i) {
TOGGLE(LED_PIN);
delay(100);
}
#endif
}
}
extern uint32_t MSC_SD_Init(uint8_t pdrv);
@ -96,7 +95,6 @@ int main(void) {
const uint32_t usb_timeout = millis() + 2000;
while (!USB_Configuration && PENDING(millis(), usb_timeout)) {
delay(50);
#if PIN_EXISTS(LED)
TOGGLE(LED_PIN); // Flash fast while USB initialisation completes
#endif
@ -107,7 +105,7 @@ int main(void) {
#if NUM_SERIAL > 1
MYSERIAL1.begin(BAUDRATE);
#endif
SERIAL_PRINTF("\n\n%s (%dMhz) UART0 Initialised\n", isLPC1769() ? "LPC1769" : "LPC1768", SystemCoreClock / 1000000);
SERIAL_PRINTF("\n\necho:%s (%dMhz) Initialised\n", isLPC1769() ? "LPC1769" : "LPC1768", SystemCoreClock / 1000000);
SERIAL_FLUSHTX();
#endif

@ -40,6 +40,8 @@
#define PIN_P0_28 P0_28
*/
#define LED_PIN P1_18 // LED2 P1_19, LED3 P1_20, LED4 P1_21
//
// Servo pin
//

@ -40,7 +40,8 @@ class Print {
void setWriteError(const int err = 1) { write_error = err; }
public:
Print() : write_error(0) {}
virtual ~Print() {}
int getWriteError() { return write_error; }
void clearWriteError() { setWriteError(0); }
@ -74,7 +75,7 @@ class Print {
size_t println(double, int = 2);
size_t println(const Printable&);
size_t println(void);
size_t printf(const char *argList, ...);
virtual size_t printf(const char *argList, ...);
};
#endif // _CMSIS_PRINT_H_

@ -47,9 +47,9 @@ class Stream : public Print
int peekNextDigit(); // returns the next numeric digit in the stream or -1 if timeout
public:
virtual int available() = 0;
virtual int read() = 0;
virtual int peek() = 0;
virtual size_t available() = 0;
virtual int16_t read() = 0; // signed int required for error (empty buffer) value
virtual int16_t peek() = 0;
virtual void flush() = 0;
Stream() {_timeout=1000;}

@ -211,7 +211,7 @@ void CDC_BulkIn(void) {
if (numBytesAvail > 0) {
numBytesAvail = numBytesAvail > (USB_CDC_BUFSIZE - 1) ? (USB_CDC_BUFSIZE - 1) : numBytesAvail;
for(uint32_t i = 0; i < numBytesAvail; ++i) {
BulkBufIn[i] = usb_serial.transmit_buffer.read(); //todo: optimise
usb_serial.transmit_buffer.read(&BulkBufIn[i]);
}
USB_WriteEP(CDC_DEP_IN, &BulkBufIn[0], numBytesAvail);
} else {

@ -499,7 +499,7 @@ void SystemCoreClockUpdate (void) /* Get Core Clock Frequency */
}
// detect 17x[4-8] (100MHz) or 17x9 (120MHz)
static int can_120MHz() {
int isLPC1769() {
#define IAP_LOCATION 0x1FFF1FF1
uint32_t command[1];
uint32_t result[5];
@ -558,7 +558,7 @@ void SystemInit (void)
LPC_SC->CCLKCFG = 0x00000002; /* Setup CPU Clock Divider */
if(can_120MHz()) {
if(isLPC1769()) {
LPC_SC->PLL0CFG = 0x0000000E; /* configure PLL0 */
LPC_SC->PLL0FEED = 0xAA;
LPC_SC->PLL0FEED = 0x55;
Loading…
Cancel
Save