/**
* Marlin 3 D Printer Firmware
* Copyright ( C ) 2016 MarlinFirmware [ https : //github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl .
* Copyright ( C ) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* This program is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with this program . If not , see < http : //www.gnu.org/licenses/>.
*
*/
/**
* stepper . h - stepper motor driver : executes motion plans of planner . c using the stepper motors
* Derived from Grbl
*
* Copyright ( c ) 2009 - 2011 Simen Svale Skogsrud
*
* Grbl is free software : you can redistribute it and / or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation , either version 3 of the License , or
* ( at your option ) any later version .
*
* Grbl is distributed in the hope that it will be useful ,
* but WITHOUT ANY WARRANTY ; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE . See the
* GNU General Public License for more details .
*
* You should have received a copy of the GNU General Public License
* along with Grbl . If not , see < http : //www.gnu.org/licenses/>.
*/
# ifndef STEPPER_H
# define STEPPER_H
# include "stepper_indirection.h"
# ifdef __AVR__
# include "speed_lookuptable.h"
# endif
# include "../inc/MarlinConfig.h"
# include "../module/planner.h"
# include "../core/language.h"
class Stepper ;
extern Stepper stepper ;
class Stepper {
public :
static block_t * current_block ; // A pointer to the block currently being traced
# if ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
static bool performing_homing ;
# endif
# if HAS_MOTOR_CURRENT_PWM
# ifndef PWM_MOTOR_CURRENT
# define PWM_MOTOR_CURRENT DEFAULT_PWM_MOTOR_CURRENT
# endif
static uint32_t motor_current_setting [ 3 ] ;
# endif
private :
static uint8_t last_direction_bits , // The next stepping-bits to be output
last_movement_extruder , // Last movement extruder, as computed when the last movement was fetched from planner
axis_did_move ; // Last Movement in the given direction is not null, as computed when the last movement was fetched from planner
static bool abort_current_block ; // Signals to the stepper that current block should be aborted
# if ENABLED(X_DUAL_ENDSTOPS)
static bool locked_x_motor , locked_x2_motor ;
# endif
# if ENABLED(Y_DUAL_ENDSTOPS)
static bool locked_y_motor , locked_y2_motor ;
# endif
# if ENABLED(Z_DUAL_ENDSTOPS)
static bool locked_z_motor , locked_z2_motor ;
# endif
// Counter variables for the Bresenham line tracer
static int32_t counter_X , counter_Y , counter_Z , counter_E ;
static uint32_t step_events_completed ; // The number of step events executed in the current block
# if ENABLED(S_CURVE_ACCELERATION)
static int32_t bezier_A , // A coefficient in Bézier speed curve
bezier_B , // B coefficient in Bézier speed curve
bezier_C ; // C coefficient in Bézier speed curve
static uint32_t bezier_F , // F coefficient in Bézier speed curve
bezier_AV ; // AV coefficient in Bézier speed curve
# ifdef __AVR__
static bool A_negative ; // If A coefficient was negative
# endif
static bool bezier_2nd_half ; // If Bézier curve has been initialized or not
# endif
static uint32_t nextMainISR ; // time remaining for the next Step ISR
static bool all_steps_done ; // all steps done
# if ENABLED(LIN_ADVANCE)
static uint32_t LA_decelerate_after ; // Copy from current executed block. Needed because current_block is set to NULL "too early".
static uint32_t nextAdvanceISR , eISR_Rate ;
static uint16_t current_adv_steps , final_adv_steps , max_adv_steps ; // Copy from current executed block. Needed because current_block is set to NULL "too early".
static int8_t e_steps ;
static bool use_advance_lead ;
# if E_STEPPERS > 1
static int8_t LA_active_extruder ; // Copy from current executed block. Needed because current_block is set to NULL "too early".
# else
static constexpr int8_t LA_active_extruder = 0 ;
# endif
# endif // LIN_ADVANCE
static uint32_t acceleration_time , deceleration_time ;
static uint8_t step_loops , step_loops_nominal ;
static uint32_t ticks_nominal ;
# if DISABLED(S_CURVE_ACCELERATION)
static uint32_t acc_step_rate ; // needed for deceleration start point
# endif
static volatile int32_t endstops_trigsteps [ XYZ ] ;
static volatile int32_t endstops_stepsTotal , endstops_stepsDone ;
//
// Positions of stepper motors, in step units
//
static volatile int32_t count_position [ NUM_AXIS ] ;
//
// Current direction of stepper motors (+1 or -1)
//
static volatile signed char count_direction [ NUM_AXIS ] ;
//
// Mixing extruder mix counters
//
# if ENABLED(MIXING_EXTRUDER)
static int32_t counter_m [ MIXING_STEPPERS ] ;
# define MIXING_STEPPERS_LOOP(VAR) \
for ( uint8_t VAR = 0 ; VAR < MIXING_STEPPERS ; VAR + + ) \
if ( current_block - > mix_event_count [ VAR ] )
# endif
public :
//
// Constructor / initializer
//
Stepper ( ) { } ;
// Initialize stepper hardware
static void init ( ) ;
// Interrupt Service Routines
// The ISR scheduler
static hal_timer_t isr_scheduler ( ) ;
// The stepper pulse phase ISR
static void stepper_pulse_phase_isr ( ) ;
// The stepper block processing phase ISR
static uint32_t stepper_block_phase_isr ( ) ;
# if ENABLED(LIN_ADVANCE)
// The Linear advance stepper ISR
static uint32_t advance_isr ( ) ;
# endif
// Get the position of a stepper, in steps
static int32_t position ( const AxisEnum axis ) ;
// Report the positions of the steppers, in steps
static void report_positions ( ) ;
// The stepper subsystem goes to sleep when it runs out of things to execute. Call this
// to notify the subsystem that it is time to go to work.
static void wake_up ( ) ;
// Quickly stop all steppers
FORCE_INLINE static void quick_stop ( ) { abort_current_block = true ; }
// The direction of a single motor
FORCE_INLINE static bool motor_direction ( const AxisEnum axis ) { return TEST ( last_direction_bits , axis ) ; }
// The last movement direction was not null on the specified axis. Note that motor direction is not necessarily the same.
FORCE_INLINE static bool axis_is_moving ( const AxisEnum axis ) { return TEST ( axis_did_move , axis ) ; }
// The extruder associated to the last movement
FORCE_INLINE static uint8_t movement_extruder ( ) { return last_movement_extruder ; }
// Handle a triggered endstop
static void endstop_triggered ( const AxisEnum axis ) ;
// Triggered position of an axis in steps
static int32_t triggered_position ( const AxisEnum axis ) ;
# if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
static void digitalPotWrite ( const int16_t address , const int16_t value ) ;
static void digipot_current ( const uint8_t driver , const int16_t current ) ;
# endif
# if HAS_MICROSTEPS
static void microstep_ms ( const uint8_t driver , const int8_t ms1 , const int8_t ms2 ) ;
static void microstep_mode ( const uint8_t driver , const uint8_t stepping ) ;
static void microstep_readings ( ) ;
# endif
# if ENABLED(X_DUAL_ENDSTOPS)
FORCE_INLINE static void set_homing_flag_x ( const bool state ) { performing_homing = state ; }
FORCE_INLINE static void set_x_lock ( const bool state ) { locked_x_motor = state ; }
FORCE_INLINE static void set_x2_lock ( const bool state ) { locked_x2_motor = state ; }
# endif
# if ENABLED(Y_DUAL_ENDSTOPS)
FORCE_INLINE static void set_homing_flag_y ( const bool state ) { performing_homing = state ; }
FORCE_INLINE static void set_y_lock ( const bool state ) { locked_y_motor = state ; }
FORCE_INLINE static void set_y2_lock ( const bool state ) { locked_y2_motor = state ; }
# endif
# if ENABLED(Z_DUAL_ENDSTOPS)
FORCE_INLINE static void set_homing_flag_z ( const bool state ) { performing_homing = state ; }
FORCE_INLINE static void set_z_lock ( const bool state ) { locked_z_motor = state ; }
FORCE_INLINE static void set_z2_lock ( const bool state ) { locked_z2_motor = state ; }
# endif
# if ENABLED(BABYSTEPPING)
static void babystep ( const AxisEnum axis , const bool direction ) ; // perform a short step with a single stepper motor, outside of any convention
# endif
# if HAS_MOTOR_CURRENT_PWM
static void refresh_motor_power ( ) ;
# endif
// Set the current position in steps
inline static void set_position ( const int32_t & a , const int32_t & b , const int32_t & c , const int32_t & e ) {
planner . synchronize ( ) ;
CRITICAL_SECTION_START ;
_set_position ( a , b , c , e ) ;
CRITICAL_SECTION_END ;
}
inline static void set_position ( const AxisEnum a , const int32_t & v ) {
planner . synchronize ( ) ;
CRITICAL_SECTION_START ;
count_position [ a ] = v ;
CRITICAL_SECTION_END ;
}
private :
// Set the current position in steps
static void _set_position ( const int32_t & a , const int32_t & b , const int32_t & c , const int32_t & e ) ;
// Set direction bits for all steppers
static void set_directions ( ) ;
FORCE_INLINE static uint32_t calc_timer_interval ( uint32_t step_rate ) {
uint32_t timer ;
NOMORE ( step_rate , uint32_t ( MAX_STEP_FREQUENCY ) ) ;
// TODO: HAL: tidy this up, use Conditionals_post.h
# ifdef CPU_32_BIT
# if ENABLED(DISABLE_MULTI_STEPPING)
step_loops = 1 ;
# else
if ( step_rate > STEP_DOUBLER_FREQUENCY * 2 ) { // If steprate > (STEP_DOUBLER_FREQUENCY * 2) kHz >> step 4 times
step_rate > > = 2 ;
step_loops = 4 ;
}
else if ( step_rate > STEP_DOUBLER_FREQUENCY ) { // If steprate > STEP_DOUBLER_FREQUENCY kHz >> step 2 times
step_rate > > = 1 ;
step_loops = 2 ;
}
else {
step_loops = 1 ;
}
# endif
# else
if ( step_rate > 20000 ) { // If steprate > 20kHz >> step 4 times
step_rate > > = 2 ;
step_loops = 4 ;
}
else if ( step_rate > 10000 ) { // If steprate > 10kHz >> step 2 times
step_rate > > = 1 ;
step_loops = 2 ;
}
else {
step_loops = 1 ;
}
# endif
# ifdef CPU_32_BIT
// In case of high-performance processor, it is able to calculate in real-time
const uint32_t min_time_per_step = ( HAL_STEPPER_TIMER_RATE ) / ( ( STEP_DOUBLER_FREQUENCY ) * 2 ) ;
timer = uint32_t ( HAL_STEPPER_TIMER_RATE ) / step_rate ;
NOLESS ( timer , min_time_per_step ) ; // (STEP_DOUBLER_FREQUENCY * 2 kHz - this should never happen)
# else
NOLESS ( step_rate , uint32_t ( F_CPU / 500000U ) ) ;
step_rate - = F_CPU / 500000 ; // Correct for minimal speed
if ( step_rate > = ( 8 * 256 ) ) { // higher step rate
const uint8_t tmp_step_rate = ( step_rate & 0x00FF ) ;
const uint16_t table_address = ( uint16_t ) & speed_lookuptable_fast [ ( uint8_t ) ( step_rate > > 8 ) ] [ 0 ] ,
gain = ( uint16_t ) pgm_read_word_near ( table_address + 2 ) ;
timer = MultiU16X8toH16 ( tmp_step_rate , gain ) ;
timer = ( uint16_t ) pgm_read_word_near ( table_address ) - timer ;
}
else { // lower step rates
uint16_t table_address = ( uint16_t ) & speed_lookuptable_slow [ 0 ] [ 0 ] ;
table_address + = ( ( step_rate ) > > 1 ) & 0xFFFC ;
timer = ( uint16_t ) pgm_read_word_near ( table_address )
- ( ( ( uint16_t ) pgm_read_word_near ( table_address + 2 ) * ( uint8_t ) ( step_rate & 0x0007 ) ) > > 3 ) ;
}
if ( timer < 100 ) { // (20kHz - this should never happen)
timer = 100 ;
SERIAL_ECHOLNPAIR ( MSG_STEPPER_TOO_HIGH , step_rate ) ;
}
# endif
return timer ;
}
# if ENABLED(S_CURVE_ACCELERATION)
static void _calc_bezier_curve_coeffs ( const int32_t v0 , const int32_t v1 , const uint32_t av ) ;
static int32_t _eval_bezier_curve ( const uint32_t curr_step ) ;
# endif
# if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM
static void digipot_init ( ) ;
# endif
# if HAS_MICROSTEPS
static void microstep_init ( ) ;
# endif
} ;
# endif // STEPPER_H