You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
scube/Marlin/ConfigurationStore.cpp

769 lines
22 KiB
C++

/**
* ConfigurationStore.cpp
*
* Configuration and EEPROM storage
*
* V16 EEPROM Layout:
*
* ver
* axis_steps_per_unit (x4)
* max_feedrate (x4)
* max_acceleration_units_per_sq_second (x4)
* acceleration
* retract_acceleration
* travel_acceleration
* minimumfeedrate
* mintravelfeedrate
* minsegmenttime
* max_xy_jerk
* max_z_jerk
* max_e_jerk
* home_offset (x3)
*
* Mesh bed leveling:
* active
* mesh_num_x
* mesh_num_y
* z_values[][]
* zprobe_zoffset
*
* DELTA:
* endstop_adj (x3)
* delta_radius
* delta_diagonal_rod
* delta_segments_per_second
*
* ULTIPANEL:
* plaPreheatHotendTemp
* plaPreheatHPBTemp
* plaPreheatFanSpeed
* absPreheatHotendTemp
* absPreheatHPBTemp
* absPreheatFanSpeed
*
* PIDTEMP:
* Kp[0], Ki[0], Kd[0], Kc[0]
* Kp[1], Ki[1], Kd[1], Kc[1]
* Kp[2], Ki[2], Kd[2], Kc[2]
* Kp[3], Ki[3], Kd[3], Kc[3]
*
* DOGLCD:
* lcd_contrast
*
* SCARA:
* axis_scaling (x3)
*
* FWRETRACT:
* autoretract_enabled
* retract_length
* retract_length_swap
* retract_feedrate
* retract_zlift
* retract_recover_length
* retract_recover_length_swap
* retract_recover_feedrate
*
* volumetric_enabled
*
* filament_size (x4)
*
* Z_DUAL_ENDSTOPS
* z_endstop_adj
*
*/
#include "Marlin.h"
#include "language.h"
#include "planner.h"
#include "temperature.h"
#include "ultralcd.h"
#include "ConfigurationStore.h"
#if defined(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif // MESH_BED_LEVELING
void _EEPROM_writeData(int &pos, uint8_t* value, uint8_t size) {
uint8_t c;
while(size--) {
eeprom_write_byte((unsigned char*)pos, *value);
c = eeprom_read_byte((unsigned char*)pos);
if (c != *value) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_EEPROM_WRITE);
}
pos++;
value++;
};
}
void _EEPROM_readData(int &pos, uint8_t* value, uint8_t size) {
do {
*value = eeprom_read_byte((unsigned char*)pos);
pos++;
value++;
} while (--size);
}
#define EEPROM_WRITE_VAR(pos, value) _EEPROM_writeData(pos, (uint8_t*)&value, sizeof(value))
#define EEPROM_READ_VAR(pos, value) _EEPROM_readData(pos, (uint8_t*)&value, sizeof(value))
//======================================================================================
#define DUMMY_PID_VALUE 3000.0f
#define EEPROM_OFFSET 100
// IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
// in the functions below, also increment the version number. This makes sure that
// the default values are used whenever there is a change to the data, to prevent
// wrong data being written to the variables.
// ALSO: always make sure the variables in the Store and retrieve sections are in the same order.
#define EEPROM_VERSION "V18"
#ifdef EEPROM_SETTINGS
void Config_StoreSettings() {
float dummy = 0.0f;
char ver[4] = "000";
int i = EEPROM_OFFSET;
EEPROM_WRITE_VAR(i, ver); // invalidate data first
EEPROM_WRITE_VAR(i, axis_steps_per_unit);
EEPROM_WRITE_VAR(i, max_feedrate);
EEPROM_WRITE_VAR(i, max_acceleration_units_per_sq_second);
EEPROM_WRITE_VAR(i, acceleration);
EEPROM_WRITE_VAR(i, retract_acceleration);
EEPROM_WRITE_VAR(i, travel_acceleration);
EEPROM_WRITE_VAR(i, minimumfeedrate);
EEPROM_WRITE_VAR(i, mintravelfeedrate);
EEPROM_WRITE_VAR(i, minsegmenttime);
EEPROM_WRITE_VAR(i, max_xy_jerk);
EEPROM_WRITE_VAR(i, max_z_jerk);
EEPROM_WRITE_VAR(i, max_e_jerk);
EEPROM_WRITE_VAR(i, home_offset);
uint8_t mesh_num_x = 3;
uint8_t mesh_num_y = 3;
#ifdef MESH_BED_LEVELING
// Compile time test that sizeof(mbl.z_values) is as expected
typedef char c_assert[(sizeof(mbl.z_values) == MESH_NUM_X_POINTS*MESH_NUM_Y_POINTS*sizeof(dummy)) ? 1 : -1];
mesh_num_x = MESH_NUM_X_POINTS;
mesh_num_y = MESH_NUM_Y_POINTS;
EEPROM_WRITE_VAR(i, mbl.active);
EEPROM_WRITE_VAR(i, mesh_num_x);
EEPROM_WRITE_VAR(i, mesh_num_y);
EEPROM_WRITE_VAR(i, mbl.z_values);
#else
uint8_t dummy_uint8 = 0;
EEPROM_WRITE_VAR(i, dummy_uint8);
EEPROM_WRITE_VAR(i, mesh_num_x);
EEPROM_WRITE_VAR(i, mesh_num_y);
dummy = 0.0f;
for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
EEPROM_WRITE_VAR(i, dummy);
}
#endif // MESH_BED_LEVELING
#ifndef ENABLE_AUTO_BED_LEVELING
float zprobe_zoffset = 0;
#endif
EEPROM_WRITE_VAR(i, zprobe_zoffset);
#ifdef DELTA
EEPROM_WRITE_VAR(i, endstop_adj); // 3 floats
EEPROM_WRITE_VAR(i, delta_radius); // 1 float
EEPROM_WRITE_VAR(i, delta_diagonal_rod); // 1 float
EEPROM_WRITE_VAR(i, delta_segments_per_second); // 1 float
#elif defined(Z_DUAL_ENDSTOPS)
EEPROM_WRITE_VAR(i, z_endstop_adj); // 1 floats
dummy = 0.0f;
for (int q=5; q--;) EEPROM_WRITE_VAR(i, dummy);
#else
dummy = 0.0f;
for (int q=6; q--;) EEPROM_WRITE_VAR(i, dummy);
#endif
#ifndef ULTIPANEL
int plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP, plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP, plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED,
absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP, absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP, absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif // !ULTIPANEL
EEPROM_WRITE_VAR(i, plaPreheatHotendTemp);
EEPROM_WRITE_VAR(i, plaPreheatHPBTemp);
EEPROM_WRITE_VAR(i, plaPreheatFanSpeed);
EEPROM_WRITE_VAR(i, absPreheatHotendTemp);
EEPROM_WRITE_VAR(i, absPreheatHPBTemp);
EEPROM_WRITE_VAR(i, absPreheatFanSpeed);
for (int e = 0; e < 4; e++) {
#ifdef PIDTEMP
if (e < EXTRUDERS) {
EEPROM_WRITE_VAR(i, PID_PARAM(Kp, e));
EEPROM_WRITE_VAR(i, PID_PARAM(Ki, e));
EEPROM_WRITE_VAR(i, PID_PARAM(Kd, e));
#ifdef PID_ADD_EXTRUSION_RATE
EEPROM_WRITE_VAR(i, PID_PARAM(Kc, e));
#else
dummy = 1.0f; // 1.0 = default kc
EEPROM_WRITE_VAR(i, dummy);
#endif
}
else {
#else // !PIDTEMP
{
#endif // !PIDTEMP
dummy = DUMMY_PID_VALUE;
EEPROM_WRITE_VAR(i, dummy);
dummy = 0.0f;
for (int q = 3; q--;) EEPROM_WRITE_VAR(i, dummy);
}
} // Extruders Loop
#ifndef DOGLCD
int lcd_contrast = 32;
#endif
EEPROM_WRITE_VAR(i, lcd_contrast);
#ifdef SCARA
EEPROM_WRITE_VAR(i, axis_scaling); // 3 floats
#else
dummy = 1.0f;
EEPROM_WRITE_VAR(i, dummy);
#endif
#ifdef FWRETRACT
EEPROM_WRITE_VAR(i, autoretract_enabled);
EEPROM_WRITE_VAR(i, retract_length);
#if EXTRUDERS > 1
EEPROM_WRITE_VAR(i, retract_length_swap);
#else
dummy = 0.0f;
EEPROM_WRITE_VAR(i, dummy);
#endif
EEPROM_WRITE_VAR(i, retract_feedrate);
EEPROM_WRITE_VAR(i, retract_zlift);
EEPROM_WRITE_VAR(i, retract_recover_length);
#if EXTRUDERS > 1
EEPROM_WRITE_VAR(i, retract_recover_length_swap);
#else
dummy = 0.0f;
EEPROM_WRITE_VAR(i, dummy);
#endif
EEPROM_WRITE_VAR(i, retract_recover_feedrate);
#endif // FWRETRACT
EEPROM_WRITE_VAR(i, volumetric_enabled);
// Save filament sizes
for (int q = 0; q < 4; q++) {
if (q < EXTRUDERS) dummy = filament_size[q];
EEPROM_WRITE_VAR(i, dummy);
}
int storageSize = i;
char ver2[4] = EEPROM_VERSION;
int j = EEPROM_OFFSET;
EEPROM_WRITE_VAR(j, ver2); // validate data
// Report storage size
SERIAL_ECHO_START;
SERIAL_ECHOPAIR("Settings Stored (", (unsigned long)i);
SERIAL_ECHOLNPGM(" bytes)");
}
void Config_RetrieveSettings() {
int i = EEPROM_OFFSET;
char stored_ver[4];
char ver[4] = EEPROM_VERSION;
EEPROM_READ_VAR(i, stored_ver); //read stored version
// SERIAL_ECHOLN("Version: [" << ver << "] Stored version: [" << stored_ver << "]");
if (strncmp(ver, stored_ver, 3) != 0) {
Config_ResetDefault();
}
else {
float dummy = 0;
// version number match
EEPROM_READ_VAR(i, axis_steps_per_unit);
EEPROM_READ_VAR(i, max_feedrate);
EEPROM_READ_VAR(i, max_acceleration_units_per_sq_second);
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
EEPROM_READ_VAR(i, acceleration);
EEPROM_READ_VAR(i, retract_acceleration);
EEPROM_READ_VAR(i, travel_acceleration);
EEPROM_READ_VAR(i, minimumfeedrate);
EEPROM_READ_VAR(i, mintravelfeedrate);
EEPROM_READ_VAR(i, minsegmenttime);
EEPROM_READ_VAR(i, max_xy_jerk);
EEPROM_READ_VAR(i, max_z_jerk);
EEPROM_READ_VAR(i, max_e_jerk);
EEPROM_READ_VAR(i, home_offset);
uint8_t mesh_num_x = 0;
uint8_t mesh_num_y = 0;
#if defined(MESH_BED_LEVELING)
EEPROM_READ_VAR(i, mbl.active);
EEPROM_READ_VAR(i, mesh_num_x);
EEPROM_READ_VAR(i, mesh_num_y);
if (mesh_num_x != MESH_NUM_X_POINTS ||
mesh_num_y != MESH_NUM_Y_POINTS) {
mbl.reset();
for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
EEPROM_READ_VAR(i, dummy);
}
} else {
EEPROM_READ_VAR(i, mbl.z_values);
}
#else
uint8_t dummy_uint8 = 0;
EEPROM_READ_VAR(i, dummy_uint8);
EEPROM_READ_VAR(i, mesh_num_x);
EEPROM_READ_VAR(i, mesh_num_y);
for (int q=0; q<mesh_num_x*mesh_num_y; q++) {
EEPROM_READ_VAR(i, dummy);
}
#endif // MESH_BED_LEVELING
#ifndef ENABLE_AUTO_BED_LEVELING
float zprobe_zoffset = 0;
#endif
EEPROM_READ_VAR(i, zprobe_zoffset);
#ifdef DELTA
EEPROM_READ_VAR(i, endstop_adj); // 3 floats
EEPROM_READ_VAR(i, delta_radius); // 1 float
EEPROM_READ_VAR(i, delta_diagonal_rod); // 1 float
EEPROM_READ_VAR(i, delta_segments_per_second); // 1 float
#elif defined(Z_DUAL_ENDSTOPS)
EEPROM_READ_VAR(i, z_endstop_adj);
dummy = 0.0f;
for (int q=5; q--;) EEPROM_READ_VAR(i, dummy);
#else
dummy = 0.0f;
for (int q=6; q--;) EEPROM_READ_VAR(i, dummy);
#endif
#ifndef ULTIPANEL
int plaPreheatHotendTemp, plaPreheatHPBTemp, plaPreheatFanSpeed,
absPreheatHotendTemp, absPreheatHPBTemp, absPreheatFanSpeed;
#endif
EEPROM_READ_VAR(i, plaPreheatHotendTemp);
EEPROM_READ_VAR(i, plaPreheatHPBTemp);
EEPROM_READ_VAR(i, plaPreheatFanSpeed);
EEPROM_READ_VAR(i, absPreheatHotendTemp);
EEPROM_READ_VAR(i, absPreheatHPBTemp);
EEPROM_READ_VAR(i, absPreheatFanSpeed);
#ifdef PIDTEMP
for (int e = 0; e < 4; e++) { // 4 = max extruders currently supported by Marlin
EEPROM_READ_VAR(i, dummy);
if (e < EXTRUDERS && dummy != DUMMY_PID_VALUE) {
// do not need to scale PID values as the values in EEPROM are already scaled
PID_PARAM(Kp, e) = dummy;
EEPROM_READ_VAR(i, PID_PARAM(Ki, e));
EEPROM_READ_VAR(i, PID_PARAM(Kd, e));
#ifdef PID_ADD_EXTRUSION_RATE
EEPROM_READ_VAR(i, PID_PARAM(Kc, e));
#else
EEPROM_READ_VAR(i, dummy);
#endif
}
else {
for (int q=3; q--;) EEPROM_READ_VAR(i, dummy); // Ki, Kd, Kc
}
}
#else // !PIDTEMP
// 4 x 4 = 16 slots for PID parameters
for (int q=16; q--;) EEPROM_READ_VAR(i, dummy); // 4x Kp, Ki, Kd, Kc
#endif // !PIDTEMP
#ifndef DOGLCD
int lcd_contrast;
#endif
EEPROM_READ_VAR(i, lcd_contrast);
#ifdef SCARA
EEPROM_READ_VAR(i, axis_scaling); // 3 floats
#else
EEPROM_READ_VAR(i, dummy);
#endif
#ifdef FWRETRACT
EEPROM_READ_VAR(i, autoretract_enabled);
EEPROM_READ_VAR(i, retract_length);
#if EXTRUDERS > 1
EEPROM_READ_VAR(i, retract_length_swap);
#else
EEPROM_READ_VAR(i, dummy);
#endif
EEPROM_READ_VAR(i, retract_feedrate);
EEPROM_READ_VAR(i, retract_zlift);
EEPROM_READ_VAR(i, retract_recover_length);
#if EXTRUDERS > 1
EEPROM_READ_VAR(i, retract_recover_length_swap);
#else
EEPROM_READ_VAR(i, dummy);
#endif
EEPROM_READ_VAR(i, retract_recover_feedrate);
#endif // FWRETRACT
EEPROM_READ_VAR(i, volumetric_enabled);
for (int q = 0; q < 4; q++) {
EEPROM_READ_VAR(i, dummy);
if (q < EXTRUDERS) filament_size[q] = dummy;
}
calculate_volumetric_multipliers();
// Call updatePID (similar to when we have processed M301)
updatePID();
// Report settings retrieved and length
SERIAL_ECHO_START;
SERIAL_ECHO(ver);
SERIAL_ECHOPAIR(" stored settings retrieved (", (unsigned long)i);
SERIAL_ECHOLNPGM(" bytes)");
}
#ifdef EEPROM_CHITCHAT
Config_PrintSettings();
#endif
}
#endif // EEPROM_SETTINGS
void Config_ResetDefault() {
float tmp1[] = DEFAULT_AXIS_STEPS_PER_UNIT;
float tmp2[] = DEFAULT_MAX_FEEDRATE;
long tmp3[] = DEFAULT_MAX_ACCELERATION;
for (int i = 0; i < NUM_AXIS; i++) {
axis_steps_per_unit[i] = tmp1[i];
max_feedrate[i] = tmp2[i];
max_acceleration_units_per_sq_second[i] = tmp3[i];
#ifdef SCARA
if (i < sizeof(axis_scaling) / sizeof(*axis_scaling))
axis_scaling[i] = 1;
#endif
}
// steps per sq second need to be updated to agree with the units per sq second
reset_acceleration_rates();
acceleration = DEFAULT_ACCELERATION;
retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
minimumfeedrate = DEFAULT_MINIMUMFEEDRATE;
minsegmenttime = DEFAULT_MINSEGMENTTIME;
mintravelfeedrate = DEFAULT_MINTRAVELFEEDRATE;
max_xy_jerk = DEFAULT_XYJERK;
max_z_jerk = DEFAULT_ZJERK;
max_e_jerk = DEFAULT_EJERK;
home_offset[X_AXIS] = home_offset[Y_AXIS] = home_offset[Z_AXIS] = 0;
#ifdef MESH_BED_LEVELING
mbl.active = 0;
#endif
#ifdef ENABLE_AUTO_BED_LEVELING
zprobe_zoffset = -Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
#ifdef DELTA
endstop_adj[X_AXIS] = endstop_adj[Y_AXIS] = endstop_adj[Z_AXIS] = 0;
delta_radius = DELTA_RADIUS;
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
recalc_delta_settings(delta_radius, delta_diagonal_rod);
#elif defined(Z_DUAL_ENDSTOPS)
z_endstop_adj = 0;
#endif
#ifdef ULTIPANEL
plaPreheatHotendTemp = PLA_PREHEAT_HOTEND_TEMP;
plaPreheatHPBTemp = PLA_PREHEAT_HPB_TEMP;
plaPreheatFanSpeed = PLA_PREHEAT_FAN_SPEED;
absPreheatHotendTemp = ABS_PREHEAT_HOTEND_TEMP;
absPreheatHPBTemp = ABS_PREHEAT_HPB_TEMP;
absPreheatFanSpeed = ABS_PREHEAT_FAN_SPEED;
#endif
#ifdef DOGLCD
lcd_contrast = DEFAULT_LCD_CONTRAST;
#endif
#ifdef PIDTEMP
#ifdef PID_PARAMS_PER_EXTRUDER
for (int e = 0; e < EXTRUDERS; e++)
#else
int e = 0; // only need to write once
#endif
{
PID_PARAM(Kp, e) = DEFAULT_Kp;
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
#ifdef PID_ADD_EXTRUSION_RATE
PID_PARAM(Kc, e) = DEFAULT_Kc;
#endif
}
// call updatePID (similar to when we have processed M301)
updatePID();
#endif // PIDTEMP
#ifdef FWRETRACT
autoretract_enabled = false;
retract_length = RETRACT_LENGTH;
#if EXTRUDERS > 1
retract_length_swap = RETRACT_LENGTH_SWAP;
#endif
retract_feedrate = RETRACT_FEEDRATE;
retract_zlift = RETRACT_ZLIFT;
retract_recover_length = RETRACT_RECOVER_LENGTH;
#if EXTRUDERS > 1
retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
#endif
retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif
volumetric_enabled = false;
filament_size[0] = DEFAULT_NOMINAL_FILAMENT_DIA;
#if EXTRUDERS > 1
filament_size[1] = DEFAULT_NOMINAL_FILAMENT_DIA;
#if EXTRUDERS > 2
filament_size[2] = DEFAULT_NOMINAL_FILAMENT_DIA;
#if EXTRUDERS > 3
filament_size[3] = DEFAULT_NOMINAL_FILAMENT_DIA;
#endif
#endif
#endif
calculate_volumetric_multipliers();
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Hardcoded Default Settings Loaded");
}
#ifndef DISABLE_M503
void Config_PrintSettings(bool forReplay) {
// Always have this function, even with EEPROM_SETTINGS disabled, the current values will be shown
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Steps per unit:");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M92 X", axis_steps_per_unit[X_AXIS]);
SERIAL_ECHOPAIR(" Y", axis_steps_per_unit[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", axis_steps_per_unit[Z_AXIS]);
SERIAL_ECHOPAIR(" E", axis_steps_per_unit[E_AXIS]);
SERIAL_EOL;
SERIAL_ECHO_START;
#ifdef SCARA
if (!forReplay) {
SERIAL_ECHOLNPGM("Scaling factors:");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M365 X", axis_scaling[X_AXIS]);
SERIAL_ECHOPAIR(" Y", axis_scaling[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", axis_scaling[Z_AXIS]);
SERIAL_EOL;
SERIAL_ECHO_START;
#endif // SCARA
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum feedrates (mm/s):");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M203 X", max_feedrate[X_AXIS]);
SERIAL_ECHOPAIR(" Y", max_feedrate[Y_AXIS]);
SERIAL_ECHOPAIR(" Z", max_feedrate[Z_AXIS]);
SERIAL_ECHOPAIR(" E", max_feedrate[E_AXIS]);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Maximum Acceleration (mm/s2):");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M201 X", max_acceleration_units_per_sq_second[X_AXIS] );
SERIAL_ECHOPAIR(" Y", max_acceleration_units_per_sq_second[Y_AXIS] );
SERIAL_ECHOPAIR(" Z", max_acceleration_units_per_sq_second[Z_AXIS] );
SERIAL_ECHOPAIR(" E", max_acceleration_units_per_sq_second[E_AXIS]);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Accelerations: P=printing, R=retract and T=travel");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M204 P", acceleration );
SERIAL_ECHOPAIR(" R", retract_acceleration);
SERIAL_ECHOPAIR(" T", travel_acceleration);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Advanced variables: S=Min feedrate (mm/s), T=Min travel feedrate (mm/s), B=minimum segment time (ms), X=maximum XY jerk (mm/s), Z=maximum Z jerk (mm/s), E=maximum E jerk (mm/s)");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M205 S", minimumfeedrate );
SERIAL_ECHOPAIR(" T", mintravelfeedrate );
SERIAL_ECHOPAIR(" B", minsegmenttime );
SERIAL_ECHOPAIR(" X", max_xy_jerk );
SERIAL_ECHOPAIR(" Z", max_z_jerk);
SERIAL_ECHOPAIR(" E", max_e_jerk);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Home offset (mm):");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M206 X", home_offset[X_AXIS] );
SERIAL_ECHOPAIR(" Y", home_offset[Y_AXIS] );
SERIAL_ECHOPAIR(" Z", home_offset[Z_AXIS] );
SERIAL_EOL;
#ifdef DELTA
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Endstop adjustement (mm):");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 X", endstop_adj[X_AXIS] );
SERIAL_ECHOPAIR(" Y", endstop_adj[Y_AXIS] );
SERIAL_ECHOPAIR(" Z", endstop_adj[Z_AXIS] );
SERIAL_EOL;
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Delta settings: L=delta_diagonal_rod, R=delta_radius, S=delta_segments_per_second");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M665 L", delta_diagonal_rod );
SERIAL_ECHOPAIR(" R", delta_radius );
SERIAL_ECHOPAIR(" S", delta_segments_per_second );
SERIAL_EOL;
#elif defined(Z_DUAL_ENDSTOPS)
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Z2 Endstop adjustement (mm):");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M666 Z", z_endstop_adj );
SERIAL_EOL;
#endif // DELTA
#ifdef PIDTEMP
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("PID settings:");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echos values for E0
SERIAL_ECHOPAIR(" I", unscalePID_i(PID_PARAM(Ki, 0)));
SERIAL_ECHOPAIR(" D", unscalePID_d(PID_PARAM(Kd, 0)));
SERIAL_EOL;
#endif // PIDTEMP
#ifdef FWRETRACT
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Retract: S=Length (mm) F:Speed (mm/m) Z: ZLift (mm)");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M207 S", retract_length);
SERIAL_ECHOPAIR(" F", retract_feedrate*60);
SERIAL_ECHOPAIR(" Z", retract_zlift);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Recover: S=Extra length (mm) F:Speed (mm/m)");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M208 S", retract_recover_length);
SERIAL_ECHOPAIR(" F", retract_recover_feedrate*60);
SERIAL_EOL;
SERIAL_ECHO_START;
if (!forReplay) {
SERIAL_ECHOLNPGM("Auto-Retract: S=0 to disable, 1 to interpret extrude-only moves as retracts or recoveries");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M209 S", (unsigned long)(autoretract_enabled ? 1 : 0));
SERIAL_EOL;
#if EXTRUDERS > 1
if (!forReplay) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Multi-extruder settings:");
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" Swap retract length (mm): ", retract_length_swap);
SERIAL_EOL;
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" Swap rec. addl. length (mm): ", retract_recover_length_swap);
SERIAL_EOL;
}
#endif // EXTRUDERS > 1
#endif // FWRETRACT
SERIAL_ECHO_START;
if (volumetric_enabled) {
if (!forReplay) {
SERIAL_ECHOLNPGM("Filament settings:");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M200 D", filament_size[0]);
SERIAL_EOL;
#if EXTRUDERS > 1
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T1 D", filament_size[1]);
SERIAL_EOL;
#if EXTRUDERS > 2
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T2 D", filament_size[2]);
SERIAL_EOL;
#if EXTRUDERS > 3
SERIAL_ECHO_START;
SERIAL_ECHOPAIR(" M200 T3 D", filament_size[3]);
SERIAL_EOL;
#endif
#endif
#endif
} else {
if (!forReplay) {
SERIAL_ECHOLNPGM("Filament settings: Disabled");
}
}
#ifdef ENABLE_AUTO_BED_LEVELING
SERIAL_ECHO_START;
#ifdef CUSTOM_M_CODES
if (!forReplay) {
SERIAL_ECHOLNPGM("Z-Probe Offset (mm):");
SERIAL_ECHO_START;
}
SERIAL_ECHOPAIR(" M", CUSTOM_M_CODE_SET_Z_PROBE_OFFSET);
SERIAL_ECHOPAIR(" Z", -zprobe_zoffset);
#else
if (!forReplay) {
SERIAL_ECHOPAIR("Z-Probe Offset (mm):", -zprobe_zoffset);
}
#endif
SERIAL_EOL;
#endif
}
#endif // !DISABLE_M503