You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2746 lines
83 KiB
C++
2746 lines
83 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
* configuration_store.cpp
|
|
*
|
|
* Settings and EEPROM storage
|
|
*
|
|
* IMPORTANT: Whenever there are changes made to the variables stored in EEPROM
|
|
* in the functions below, also increment the version number. This makes sure that
|
|
* the default values are used whenever there is a change to the data, to prevent
|
|
* wrong data being written to the variables.
|
|
*
|
|
* ALSO: Variables in the Store and Retrieve sections must be in the same order.
|
|
* If a feature is disabled, some data must still be written that, when read,
|
|
* either sets a Sane Default, or results in No Change to the existing value.
|
|
*
|
|
*/
|
|
|
|
// Change EEPROM version if the structure changes
|
|
#define EEPROM_VERSION "V56"
|
|
#define EEPROM_OFFSET 100
|
|
|
|
// Check the integrity of data offsets.
|
|
// Can be disabled for production build.
|
|
//#define DEBUG_EEPROM_READWRITE
|
|
|
|
#include "configuration_store.h"
|
|
|
|
#if ADD_PORT_ARG
|
|
#define PORTARG_SOLO const int8_t port
|
|
#define PORTARG_AFTER ,const int8_t port
|
|
#define PORTVAR_SOLO port
|
|
#else
|
|
#define PORTARG_SOLO
|
|
#define PORTARG_AFTER
|
|
#define PORTVAR_SOLO
|
|
#endif
|
|
|
|
#include "endstops.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "temperature.h"
|
|
#include "../lcd/ultralcd.h"
|
|
#include "../core/language.h"
|
|
#include "../libs/vector_3.h"
|
|
#include "../gcode/gcode.h"
|
|
#include "../Marlin.h"
|
|
|
|
#if HAS_LEVELING
|
|
#include "../feature/bedlevel/bedlevel.h"
|
|
#endif
|
|
|
|
#if HAS_SERVOS
|
|
#include "servo.h"
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
#include "../module/probe.h"
|
|
#endif
|
|
|
|
#if HAS_TRINAMIC
|
|
#include "stepper_indirection.h"
|
|
#include "../feature/tmc_util.h"
|
|
#define TMC_GET_PWMTHRS(A,Q) _tmc_thrs(stepper##Q.microsteps(), stepper##Q.TPWMTHRS(), planner.axis_steps_per_mm[_AXIS(A)])
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
#include "../feature/fwretract.h"
|
|
#endif
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
#include "../feature/pause.h"
|
|
#endif
|
|
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
#define LPQ_LEN thermalManager.lpq_len
|
|
#endif
|
|
|
|
#pragma pack(push, 1) // No padding between variables
|
|
|
|
typedef struct PID { float Kp, Ki, Kd; } PID;
|
|
typedef struct PIDC { float Kp, Ki, Kd, Kc; } PIDC;
|
|
|
|
/**
|
|
* Current EEPROM Layout
|
|
*
|
|
* Keep this data structure up to date so
|
|
* EEPROM size is known at compile time!
|
|
*/
|
|
typedef struct SettingsDataStruct {
|
|
char version[4]; // Vnn\0
|
|
uint16_t crc; // Data Checksum
|
|
|
|
//
|
|
// DISTINCT_E_FACTORS
|
|
//
|
|
uint8_t esteppers; // XYZE_N - XYZ
|
|
|
|
uint32_t planner_max_acceleration_mm_per_s2[XYZE_N], // M201 XYZE planner.max_acceleration_mm_per_s2[XYZE_N]
|
|
planner_min_segment_time_us; // M205 B planner.min_segment_time_us
|
|
float planner_axis_steps_per_mm[XYZE_N], // M92 XYZE planner.axis_steps_per_mm[XYZE_N]
|
|
planner_max_feedrate_mm_s[XYZE_N], // M203 XYZE planner.max_feedrate_mm_s[XYZE_N]
|
|
planner_acceleration, // M204 P planner.acceleration
|
|
planner_retract_acceleration, // M204 R planner.retract_acceleration
|
|
planner_travel_acceleration, // M204 T planner.travel_acceleration
|
|
planner_min_feedrate_mm_s, // M205 S planner.min_feedrate_mm_s
|
|
planner_min_travel_feedrate_mm_s, // M205 T planner.min_travel_feedrate_mm_s
|
|
planner_max_jerk[XYZE], // M205 XYZE planner.max_jerk[XYZE]
|
|
planner_junction_deviation_mm; // M205 J planner.junction_deviation_mm
|
|
|
|
float home_offset[XYZ]; // M206 XYZ
|
|
|
|
#if HAS_HOTEND_OFFSET
|
|
float hotend_offset[XYZ][HOTENDS - 1]; // M218 XYZ
|
|
#endif
|
|
|
|
//
|
|
// ENABLE_LEVELING_FADE_HEIGHT
|
|
//
|
|
float planner_z_fade_height; // M420 Zn planner.z_fade_height
|
|
|
|
//
|
|
// MESH_BED_LEVELING
|
|
//
|
|
float mbl_z_offset; // mbl.z_offset
|
|
uint8_t mesh_num_x, mesh_num_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
float mbl_z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // mbl.z_values
|
|
#else
|
|
float mbl_z_values[3][3];
|
|
#endif
|
|
|
|
//
|
|
// HAS_BED_PROBE
|
|
//
|
|
float zprobe_zoffset; // M851 Z
|
|
|
|
//
|
|
// ABL_PLANAR
|
|
//
|
|
matrix_3x3 planner_bed_level_matrix; // planner.bed_level_matrix
|
|
|
|
//
|
|
// AUTO_BED_LEVELING_BILINEAR
|
|
//
|
|
uint8_t grid_max_x, grid_max_y; // GRID_MAX_POINTS_X, GRID_MAX_POINTS_Y
|
|
int bilinear_grid_spacing[2],
|
|
bilinear_start[2]; // G29 L F
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y]; // G29
|
|
#else
|
|
float z_values[3][3];
|
|
#endif
|
|
|
|
//
|
|
// AUTO_BED_LEVELING_UBL
|
|
//
|
|
bool planner_leveling_active; // M420 S planner.leveling_active
|
|
int8_t ubl_storage_slot; // ubl.storage_slot
|
|
|
|
//
|
|
// SERVO_ANGLES
|
|
//
|
|
#if HAS_SERVOS
|
|
uint8_t servo_angles[NUM_SERVOS][2];
|
|
#endif
|
|
|
|
//
|
|
// DELTA / [XYZ]_DUAL_ENDSTOPS
|
|
//
|
|
#if ENABLED(DELTA)
|
|
float delta_height, // M666 H
|
|
delta_endstop_adj[ABC], // M666 XYZ
|
|
delta_radius, // M665 R
|
|
delta_diagonal_rod, // M665 L
|
|
delta_segments_per_second, // M665 S
|
|
delta_calibration_radius, // M665 B
|
|
delta_tower_angle_trim[ABC]; // M665 XYZ
|
|
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
float x_endstop_adj, // M666 X
|
|
y_endstop_adj, // M666 Y
|
|
z_endstop_adj; // M666 Z
|
|
#endif
|
|
|
|
//
|
|
// ULTIPANEL
|
|
//
|
|
int16_t lcd_preheat_hotend_temp[2], // M145 S0 H
|
|
lcd_preheat_bed_temp[2], // M145 S0 B
|
|
lcd_preheat_fan_speed[2]; // M145 S0 F
|
|
|
|
//
|
|
// PIDTEMP
|
|
//
|
|
PIDC hotendPID[MAX_EXTRUDERS]; // M301 En PIDC / M303 En U
|
|
|
|
int16_t lpq_len; // M301 L
|
|
|
|
//
|
|
// PIDTEMPBED
|
|
//
|
|
PID bedPID; // M304 PID / M303 E-1 U
|
|
|
|
//
|
|
// HAS_LCD_CONTRAST
|
|
//
|
|
int16_t lcd_contrast; // M250 C
|
|
|
|
//
|
|
// FWRETRACT
|
|
//
|
|
bool autoretract_enabled; // M209 S
|
|
float retract_length, // M207 S
|
|
retract_feedrate_mm_s, // M207 F
|
|
retract_zlift, // M207 Z
|
|
retract_recover_length, // M208 S
|
|
retract_recover_feedrate_mm_s, // M208 F
|
|
swap_retract_length, // M207 W
|
|
swap_retract_recover_length, // M208 W
|
|
swap_retract_recover_feedrate_mm_s; // M208 R
|
|
|
|
//
|
|
// !NO_VOLUMETRIC
|
|
//
|
|
bool parser_volumetric_enabled; // M200 D parser.volumetric_enabled
|
|
float planner_filament_size[MAX_EXTRUDERS]; // M200 T D planner.filament_size[]
|
|
|
|
//
|
|
// HAS_TRINAMIC
|
|
//
|
|
#define TMC_AXES (MAX_EXTRUDERS + 6)
|
|
uint16_t tmc_stepper_current[TMC_AXES]; // M906 X Y Z X2 Y2 Z2 E0 E1 E2 E3 E4
|
|
uint32_t tmc_hybrid_threshold[TMC_AXES]; // M913 X Y Z X2 Y2 Z2 E0 E1 E2 E3 E4
|
|
int16_t tmc_sgt[XYZ]; // M914 X Y Z
|
|
|
|
//
|
|
// LIN_ADVANCE
|
|
//
|
|
float planner_extruder_advance_K; // M900 K planner.extruder_advance_K
|
|
|
|
//
|
|
// HAS_MOTOR_CURRENT_PWM
|
|
//
|
|
uint32_t motor_current_setting[XYZ]; // M907 X Z E
|
|
|
|
//
|
|
// CNC_COORDINATE_SYSTEMS
|
|
//
|
|
float coordinate_system[MAX_COORDINATE_SYSTEMS][XYZ]; // G54-G59.3
|
|
|
|
//
|
|
// SKEW_CORRECTION
|
|
//
|
|
float planner_xy_skew_factor, // M852 I planner.xy_skew_factor
|
|
planner_xz_skew_factor, // M852 J planner.xz_skew_factor
|
|
planner_yz_skew_factor; // M852 K planner.yz_skew_factor
|
|
|
|
//
|
|
// ADVANCED_PAUSE_FEATURE
|
|
//
|
|
float filament_change_unload_length[MAX_EXTRUDERS], // M603 T U
|
|
filament_change_load_length[MAX_EXTRUDERS]; // M603 T L
|
|
|
|
} SettingsData;
|
|
|
|
#pragma pack(pop)
|
|
|
|
MarlinSettings settings;
|
|
|
|
uint16_t MarlinSettings::datasize() { return sizeof(SettingsData); }
|
|
|
|
/**
|
|
* Post-process after Retrieve or Reset
|
|
*/
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
float new_z_fade_height;
|
|
#endif
|
|
|
|
void MarlinSettings::postprocess() {
|
|
const float oldpos[] = { current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] };
|
|
|
|
// steps per s2 needs to be updated to agree with units per s2
|
|
planner.reset_acceleration_rates();
|
|
|
|
// Make sure delta kinematics are updated before refreshing the
|
|
// planner position so the stepper counts will be set correctly.
|
|
#if ENABLED(DELTA)
|
|
recalc_delta_settings();
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
thermalManager.updatePID();
|
|
#endif
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
planner.calculate_volumetric_multipliers();
|
|
#else
|
|
for (uint8_t i = COUNT(planner.e_factor); i--;)
|
|
planner.refresh_e_factor(i);
|
|
#endif
|
|
|
|
#if HAS_HOME_OFFSET || ENABLED(DUAL_X_CARRIAGE)
|
|
// Software endstops depend on home_offset
|
|
LOOP_XYZ(i) update_software_endstops((AxisEnum)i);
|
|
#endif
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
set_z_fade_height(new_z_fade_height, false); // false = no report
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
refresh_bed_level();
|
|
#endif
|
|
|
|
#if HAS_MOTOR_CURRENT_PWM
|
|
stepper.refresh_motor_power();
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
fwretract.refresh_autoretract();
|
|
#endif
|
|
|
|
#if ENABLED(JUNCTION_DEVIATION) && ENABLED(LIN_ADVANCE)
|
|
planner.recalculate_max_e_jerk();
|
|
#endif
|
|
|
|
// Refresh steps_to_mm with the reciprocal of axis_steps_per_mm
|
|
// and init stepper.count[], planner.position[] with current_position
|
|
planner.refresh_positioning();
|
|
|
|
// Various factors can change the current position
|
|
if (memcmp(oldpos, current_position, sizeof(oldpos)))
|
|
report_current_position();
|
|
}
|
|
|
|
#if ENABLED(EEPROM_SETTINGS)
|
|
#include "../HAL/shared/persistent_store_api.h"
|
|
|
|
#define DUMMY_PID_VALUE 3000.0f
|
|
#define EEPROM_START() int eeprom_index = EEPROM_OFFSET; persistentStore.access_start()
|
|
#define EEPROM_FINISH() persistentStore.access_finish()
|
|
#define EEPROM_SKIP(VAR) eeprom_index += sizeof(VAR)
|
|
#define EEPROM_WRITE(VAR) persistentStore.write_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
|
|
#define EEPROM_READ(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc, !validating)
|
|
#define EEPROM_READ_ALWAYS(VAR) persistentStore.read_data(eeprom_index, (uint8_t*)&VAR, sizeof(VAR), &working_crc)
|
|
#define EEPROM_ASSERT(TST,ERR) if (!(TST)) do{ SERIAL_ERROR_START_P(port); SERIAL_ERRORLNPGM_P(port, ERR); eeprom_error = true; }while(0)
|
|
|
|
#if ENABLED(DEBUG_EEPROM_READWRITE)
|
|
#define _FIELD_TEST(FIELD) \
|
|
EEPROM_ASSERT( \
|
|
eeprom_error || eeprom_index == offsetof(SettingsData, FIELD) + EEPROM_OFFSET, \
|
|
"Field " STRINGIFY(FIELD) " mismatch." \
|
|
)
|
|
#else
|
|
#define _FIELD_TEST(FIELD) NOOP
|
|
#endif
|
|
|
|
const char version[4] = EEPROM_VERSION;
|
|
|
|
bool MarlinSettings::eeprom_error, MarlinSettings::validating;
|
|
|
|
bool MarlinSettings::size_error(const uint16_t size PORTARG_AFTER) {
|
|
if (size != datasize()) {
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
SERIAL_ERROR_START_P(port);
|
|
SERIAL_ERRORLNPGM_P(port, "EEPROM datasize error.");
|
|
#endif
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* M500 - Store Configuration
|
|
*/
|
|
bool MarlinSettings::save(PORTARG_SOLO) {
|
|
float dummy = 0;
|
|
char ver[4] = "ERR";
|
|
|
|
uint16_t working_crc = 0;
|
|
|
|
EEPROM_START();
|
|
|
|
eeprom_error = false;
|
|
#if ENABLED(FLASH_EEPROM_EMULATION)
|
|
EEPROM_SKIP(ver); // Flash doesn't allow rewriting without erase
|
|
#else
|
|
EEPROM_WRITE(ver); // invalidate data first
|
|
#endif
|
|
EEPROM_SKIP(working_crc); // Skip the checksum slot
|
|
|
|
working_crc = 0; // clear before first "real data"
|
|
|
|
_FIELD_TEST(esteppers);
|
|
|
|
const uint8_t esteppers = COUNT(planner.axis_steps_per_mm) - XYZ;
|
|
EEPROM_WRITE(esteppers);
|
|
|
|
EEPROM_WRITE(planner.max_acceleration_mm_per_s2);
|
|
EEPROM_WRITE(planner.min_segment_time_us);
|
|
EEPROM_WRITE(planner.axis_steps_per_mm);
|
|
EEPROM_WRITE(planner.max_feedrate_mm_s);
|
|
EEPROM_WRITE(planner.acceleration);
|
|
EEPROM_WRITE(planner.retract_acceleration);
|
|
EEPROM_WRITE(planner.travel_acceleration);
|
|
EEPROM_WRITE(planner.min_feedrate_mm_s);
|
|
EEPROM_WRITE(planner.min_travel_feedrate_mm_s);
|
|
|
|
#if ENABLED(JUNCTION_DEVIATION)
|
|
const float planner_max_jerk[] = { float(DEFAULT_XJERK), float(DEFAULT_YJERK), float(DEFAULT_ZJERK), float(DEFAULT_EJERK) };
|
|
EEPROM_WRITE(planner_max_jerk);
|
|
EEPROM_WRITE(planner.junction_deviation_mm);
|
|
#else
|
|
EEPROM_WRITE(planner.max_jerk);
|
|
dummy = 0.02f;
|
|
EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
_FIELD_TEST(home_offset);
|
|
|
|
#if !HAS_HOME_OFFSET
|
|
const float home_offset[XYZ] = { 0 };
|
|
#endif
|
|
EEPROM_WRITE(home_offset);
|
|
|
|
#if HAS_HOTEND_OFFSET
|
|
// Skip hotend 0 which must be 0
|
|
for (uint8_t e = 1; e < HOTENDS; e++)
|
|
LOOP_XYZ(i) EEPROM_WRITE(hotend_offset[i][e]);
|
|
#endif
|
|
|
|
//
|
|
// Global Leveling
|
|
//
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
const float zfh = planner.z_fade_height;
|
|
#else
|
|
const float zfh = 10.0;
|
|
#endif
|
|
EEPROM_WRITE(zfh);
|
|
|
|
//
|
|
// Mesh Bed Leveling
|
|
//
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
// Compile time test that sizeof(mbl.z_values) is as expected
|
|
static_assert(
|
|
sizeof(mbl.z_values) == GRID_MAX_POINTS * sizeof(mbl.z_values[0][0]),
|
|
"MBL Z array is the wrong size."
|
|
);
|
|
const uint8_t mesh_num_x = GRID_MAX_POINTS_X, mesh_num_y = GRID_MAX_POINTS_Y;
|
|
EEPROM_WRITE(mbl.z_offset);
|
|
EEPROM_WRITE(mesh_num_x);
|
|
EEPROM_WRITE(mesh_num_y);
|
|
EEPROM_WRITE(mbl.z_values);
|
|
#else // For disabled MBL write a default mesh
|
|
dummy = 0;
|
|
const uint8_t mesh_num_x = 3, mesh_num_y = 3;
|
|
EEPROM_WRITE(dummy); // z_offset
|
|
EEPROM_WRITE(mesh_num_x);
|
|
EEPROM_WRITE(mesh_num_y);
|
|
for (uint8_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_WRITE(dummy);
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
_FIELD_TEST(zprobe_zoffset);
|
|
|
|
#if !HAS_BED_PROBE
|
|
const float zprobe_zoffset = 0;
|
|
#endif
|
|
EEPROM_WRITE(zprobe_zoffset);
|
|
|
|
//
|
|
// Planar Bed Leveling matrix
|
|
//
|
|
|
|
#if ABL_PLANAR
|
|
EEPROM_WRITE(planner.bed_level_matrix);
|
|
#else
|
|
dummy = 0;
|
|
for (uint8_t q = 9; q--;) EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Bilinear Auto Bed Leveling
|
|
//
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
// Compile time test that sizeof(z_values) is as expected
|
|
static_assert(
|
|
sizeof(z_values) == GRID_MAX_POINTS * sizeof(z_values[0][0]),
|
|
"Bilinear Z array is the wrong size."
|
|
);
|
|
const uint8_t grid_max_x = GRID_MAX_POINTS_X, grid_max_y = GRID_MAX_POINTS_Y;
|
|
EEPROM_WRITE(grid_max_x); // 1 byte
|
|
EEPROM_WRITE(grid_max_y); // 1 byte
|
|
EEPROM_WRITE(bilinear_grid_spacing); // 2 ints
|
|
EEPROM_WRITE(bilinear_start); // 2 ints
|
|
EEPROM_WRITE(z_values); // 9-256 floats
|
|
#else
|
|
// For disabled Bilinear Grid write an empty 3x3 grid
|
|
const uint8_t grid_max_x = 3, grid_max_y = 3;
|
|
const int bilinear_start[2] = { 0 }, bilinear_grid_spacing[2] = { 0 };
|
|
dummy = 0;
|
|
EEPROM_WRITE(grid_max_x);
|
|
EEPROM_WRITE(grid_max_y);
|
|
EEPROM_WRITE(bilinear_grid_spacing);
|
|
EEPROM_WRITE(bilinear_start);
|
|
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_WRITE(dummy);
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
|
|
_FIELD_TEST(planner_leveling_active);
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
EEPROM_WRITE(planner.leveling_active);
|
|
EEPROM_WRITE(ubl.storage_slot);
|
|
#else
|
|
const bool ubl_active = false;
|
|
const int8_t storage_slot = -1;
|
|
EEPROM_WRITE(ubl_active);
|
|
EEPROM_WRITE(storage_slot);
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|
#if HAS_SERVOS
|
|
EEPROM_WRITE(servo_angles);
|
|
#endif
|
|
|
|
// 11 floats for DELTA / [XYZ]_DUAL_ENDSTOPS
|
|
#if ENABLED(DELTA)
|
|
|
|
_FIELD_TEST(delta_height);
|
|
|
|
EEPROM_WRITE(delta_height); // 1 float
|
|
EEPROM_WRITE(delta_endstop_adj); // 3 floats
|
|
EEPROM_WRITE(delta_radius); // 1 float
|
|
EEPROM_WRITE(delta_diagonal_rod); // 1 float
|
|
EEPROM_WRITE(delta_segments_per_second); // 1 float
|
|
EEPROM_WRITE(delta_calibration_radius); // 1 float
|
|
EEPROM_WRITE(delta_tower_angle_trim); // 3 floats
|
|
|
|
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
_FIELD_TEST(x_endstop_adj);
|
|
|
|
// Write dual endstops in X, Y, Z order. Unused = 0.0
|
|
dummy = 0;
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
EEPROM_WRITE(endstops.x_endstop_adj); // 1 float
|
|
#else
|
|
EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
EEPROM_WRITE(endstops.y_endstop_adj); // 1 float
|
|
#else
|
|
EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
EEPROM_WRITE(endstops.z_endstop_adj); // 1 float
|
|
#else
|
|
EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
#endif
|
|
|
|
_FIELD_TEST(lcd_preheat_hotend_temp);
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
constexpr int16_t lcd_preheat_hotend_temp[2] = { PREHEAT_1_TEMP_HOTEND, PREHEAT_2_TEMP_HOTEND },
|
|
lcd_preheat_bed_temp[2] = { PREHEAT_1_TEMP_BED, PREHEAT_2_TEMP_BED },
|
|
lcd_preheat_fan_speed[2] = { PREHEAT_1_FAN_SPEED, PREHEAT_2_FAN_SPEED };
|
|
#endif
|
|
|
|
EEPROM_WRITE(lcd_preheat_hotend_temp);
|
|
EEPROM_WRITE(lcd_preheat_bed_temp);
|
|
EEPROM_WRITE(lcd_preheat_fan_speed);
|
|
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
if (e < HOTENDS) {
|
|
EEPROM_WRITE(PID_PARAM(Kp, e));
|
|
EEPROM_WRITE(PID_PARAM(Ki, e));
|
|
EEPROM_WRITE(PID_PARAM(Kd, e));
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
EEPROM_WRITE(PID_PARAM(Kc, e));
|
|
#else
|
|
dummy = 1.0f; // 1.0 = default kc
|
|
EEPROM_WRITE(dummy);
|
|
#endif
|
|
}
|
|
else
|
|
#endif // !PIDTEMP
|
|
{
|
|
dummy = DUMMY_PID_VALUE; // When read, will not change the existing value
|
|
EEPROM_WRITE(dummy); // Kp
|
|
dummy = 0;
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy); // Ki, Kd, Kc
|
|
}
|
|
|
|
} // Hotends Loop
|
|
|
|
_FIELD_TEST(lpq_len);
|
|
|
|
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
const int16_t LPQ_LEN = 20;
|
|
#endif
|
|
EEPROM_WRITE(LPQ_LEN);
|
|
|
|
#if DISABLED(PIDTEMPBED)
|
|
dummy = DUMMY_PID_VALUE;
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
|
|
#else
|
|
EEPROM_WRITE(thermalManager.bedKp);
|
|
EEPROM_WRITE(thermalManager.bedKi);
|
|
EEPROM_WRITE(thermalManager.bedKd);
|
|
#endif
|
|
|
|
_FIELD_TEST(lcd_contrast);
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
const int16_t lcd_contrast = 32;
|
|
#endif
|
|
EEPROM_WRITE(lcd_contrast);
|
|
|
|
#if DISABLED(FWRETRACT)
|
|
const bool autoretract_enabled = false;
|
|
const float autoretract_defaults[] = { 3, 45, 0, 0, 0, 13, 0, 8 };
|
|
EEPROM_WRITE(autoretract_enabled);
|
|
EEPROM_WRITE(autoretract_defaults);
|
|
#else
|
|
EEPROM_WRITE(fwretract.autoretract_enabled);
|
|
EEPROM_WRITE(fwretract.retract_length);
|
|
EEPROM_WRITE(fwretract.retract_feedrate_mm_s);
|
|
EEPROM_WRITE(fwretract.retract_zlift);
|
|
EEPROM_WRITE(fwretract.retract_recover_length);
|
|
EEPROM_WRITE(fwretract.retract_recover_feedrate_mm_s);
|
|
EEPROM_WRITE(fwretract.swap_retract_length);
|
|
EEPROM_WRITE(fwretract.swap_retract_recover_length);
|
|
EEPROM_WRITE(fwretract.swap_retract_recover_feedrate_mm_s);
|
|
#endif
|
|
|
|
//
|
|
// Volumetric & Filament Size
|
|
//
|
|
|
|
_FIELD_TEST(parser_volumetric_enabled);
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
|
|
EEPROM_WRITE(parser.volumetric_enabled);
|
|
|
|
// Save filament sizes
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
if (q < COUNT(planner.filament_size)) dummy = planner.filament_size[q];
|
|
EEPROM_WRITE(dummy);
|
|
}
|
|
|
|
#else
|
|
|
|
const bool volumetric_enabled = false;
|
|
dummy = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
EEPROM_WRITE(volumetric_enabled);
|
|
for (uint8_t q = MAX_EXTRUDERS; q--;) EEPROM_WRITE(dummy);
|
|
|
|
#endif
|
|
|
|
//
|
|
// Save TMC2130 or TMC2208 Configuration, and placeholder values
|
|
//
|
|
|
|
_FIELD_TEST(tmc_stepper_current);
|
|
|
|
uint16_t tmc_stepper_current[TMC_AXES] = {
|
|
#if HAS_TRINAMIC
|
|
#if AXIS_IS_TMC(X)
|
|
stepperX.getCurrent(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if AXIS_IS_TMC(Y)
|
|
stepperY.getCurrent(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if AXIS_IS_TMC(Z)
|
|
stepperZ.getCurrent(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if AXIS_IS_TMC(X2)
|
|
stepperX2.getCurrent(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if AXIS_IS_TMC(Y2)
|
|
stepperY2.getCurrent(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if AXIS_IS_TMC(Z2)
|
|
stepperZ2.getCurrent(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if AXIS_IS_TMC(E0)
|
|
stepperE0.getCurrent(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if AXIS_IS_TMC(E1)
|
|
stepperE1.getCurrent(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if AXIS_IS_TMC(E2)
|
|
stepperE2.getCurrent(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if AXIS_IS_TMC(E3)
|
|
stepperE3.getCurrent(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if AXIS_IS_TMC(E4)
|
|
stepperE4.getCurrent()
|
|
#else
|
|
0
|
|
#endif
|
|
#else
|
|
0
|
|
#endif
|
|
};
|
|
EEPROM_WRITE(tmc_stepper_current);
|
|
|
|
//
|
|
// Save TMC2130 or TMC2208 Hybrid Threshold, and placeholder values
|
|
//
|
|
|
|
_FIELD_TEST(tmc_hybrid_threshold);
|
|
|
|
uint32_t tmc_hybrid_threshold[TMC_AXES] = {
|
|
#if ENABLED(HYBRID_THRESHOLD)
|
|
#if AXIS_HAS_STEALTHCHOP(X)
|
|
TMC_GET_PWMTHRS(X, X),
|
|
#else
|
|
X_HYBRID_THRESHOLD,
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
TMC_GET_PWMTHRS(Y, Y),
|
|
#else
|
|
Y_HYBRID_THRESHOLD,
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
TMC_GET_PWMTHRS(Z, Z),
|
|
#else
|
|
Z_HYBRID_THRESHOLD,
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
TMC_GET_PWMTHRS(X, X2),
|
|
#else
|
|
X2_HYBRID_THRESHOLD,
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
TMC_GET_PWMTHRS(Y, Y2),
|
|
#else
|
|
Y2_HYBRID_THRESHOLD,
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
TMC_GET_PWMTHRS(Z, Z2),
|
|
#else
|
|
Z2_HYBRID_THRESHOLD,
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
TMC_GET_PWMTHRS(E, E0),
|
|
#else
|
|
E0_HYBRID_THRESHOLD,
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(E1)
|
|
TMC_GET_PWMTHRS(E, E1),
|
|
#else
|
|
E1_HYBRID_THRESHOLD,
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(E2)
|
|
TMC_GET_PWMTHRS(E, E2),
|
|
#else
|
|
E2_HYBRID_THRESHOLD,
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(E3)
|
|
TMC_GET_PWMTHRS(E, E3),
|
|
#else
|
|
E3_HYBRID_THRESHOLD,
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(E4)
|
|
TMC_GET_PWMTHRS(E, E4)
|
|
#else
|
|
E4_HYBRID_THRESHOLD
|
|
#endif
|
|
#else
|
|
100, 100, 3, // X, Y, Z
|
|
100, 100, 3, // X2, Y2, Z2
|
|
30, 30, 30, 30, 30 // E0, E1, E2, E3, E4
|
|
#endif
|
|
};
|
|
EEPROM_WRITE(tmc_hybrid_threshold);
|
|
|
|
//
|
|
// TMC2130 Sensorless homing threshold
|
|
//
|
|
int16_t tmc_sgt[XYZ] = {
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
#if X_SENSORLESS
|
|
stepperX.sgt(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if Y_SENSORLESS
|
|
stepperY.sgt(),
|
|
#else
|
|
0,
|
|
#endif
|
|
#if Z_SENSORLESS
|
|
stepperZ.sgt()
|
|
#else
|
|
0
|
|
#endif
|
|
#else
|
|
0
|
|
#endif
|
|
};
|
|
EEPROM_WRITE(tmc_sgt);
|
|
|
|
//
|
|
// Linear Advance
|
|
//
|
|
|
|
_FIELD_TEST(planner_extruder_advance_K);
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
EEPROM_WRITE(planner.extruder_advance_K);
|
|
#else
|
|
dummy = 0;
|
|
EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
_FIELD_TEST(motor_current_setting);
|
|
|
|
#if HAS_MOTOR_CURRENT_PWM
|
|
for (uint8_t q = XYZ; q--;) EEPROM_WRITE(stepper.motor_current_setting[q]);
|
|
#else
|
|
const uint32_t dummyui32[XYZ] = { 0 };
|
|
EEPROM_WRITE(dummyui32);
|
|
#endif
|
|
|
|
//
|
|
// CNC Coordinate Systems
|
|
//
|
|
|
|
_FIELD_TEST(coordinate_system);
|
|
|
|
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
EEPROM_WRITE(gcode.coordinate_system); // 27 floats
|
|
#else
|
|
dummy = 0;
|
|
for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Skew correction factors
|
|
//
|
|
|
|
_FIELD_TEST(planner_xy_skew_factor);
|
|
|
|
#if ENABLED(SKEW_CORRECTION)
|
|
EEPROM_WRITE(planner.xy_skew_factor);
|
|
EEPROM_WRITE(planner.xz_skew_factor);
|
|
EEPROM_WRITE(planner.yz_skew_factor);
|
|
#else
|
|
dummy = 0;
|
|
for (uint8_t q = 3; q--;) EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Advanced Pause filament load & unload lengths
|
|
//
|
|
|
|
_FIELD_TEST(filament_change_unload_length);
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
if (q < COUNT(filament_change_unload_length)) dummy = filament_change_unload_length[q];
|
|
EEPROM_WRITE(dummy);
|
|
}
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
if (q < COUNT(filament_change_load_length)) dummy = filament_change_load_length[q];
|
|
EEPROM_WRITE(dummy);
|
|
}
|
|
#else
|
|
dummy = 0;
|
|
for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_WRITE(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Validate CRC and Data Size
|
|
//
|
|
if (!eeprom_error) {
|
|
const uint16_t eeprom_size = eeprom_index - (EEPROM_OFFSET),
|
|
final_crc = working_crc;
|
|
|
|
// Write the EEPROM header
|
|
eeprom_index = EEPROM_OFFSET;
|
|
|
|
EEPROM_WRITE(version);
|
|
EEPROM_WRITE(final_crc);
|
|
|
|
// Report storage size
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
SERIAL_ECHO_START_P(port);
|
|
SERIAL_ECHOPAIR_P(port, "Settings Stored (", eeprom_size);
|
|
SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)final_crc);
|
|
SERIAL_ECHOLNPGM_P(port, ")");
|
|
#endif
|
|
|
|
eeprom_error |= size_error(eeprom_size);
|
|
}
|
|
EEPROM_FINISH();
|
|
|
|
//
|
|
// UBL Mesh
|
|
//
|
|
#if ENABLED(UBL_SAVE_ACTIVE_ON_M500)
|
|
if (ubl.storage_slot >= 0)
|
|
store_mesh(ubl.storage_slot);
|
|
#endif
|
|
|
|
return !eeprom_error;
|
|
}
|
|
|
|
/**
|
|
* M501 - Retrieve Configuration
|
|
*/
|
|
bool MarlinSettings::_load(PORTARG_SOLO) {
|
|
uint16_t working_crc = 0;
|
|
|
|
EEPROM_START();
|
|
|
|
char stored_ver[4];
|
|
EEPROM_READ_ALWAYS(stored_ver);
|
|
|
|
uint16_t stored_crc;
|
|
EEPROM_READ_ALWAYS(stored_crc);
|
|
|
|
// Version has to match or defaults are used
|
|
if (strncmp(version, stored_ver, 3) != 0) {
|
|
if (stored_ver[3] != '\0') {
|
|
stored_ver[0] = '?';
|
|
stored_ver[1] = '\0';
|
|
}
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
SERIAL_ECHO_START_P(port);
|
|
SERIAL_ECHOPGM_P(port, "EEPROM version mismatch ");
|
|
SERIAL_ECHOPAIR_P(port, "(EEPROM=", stored_ver);
|
|
SERIAL_ECHOLNPGM_P(port, " Marlin=" EEPROM_VERSION ")");
|
|
#endif
|
|
eeprom_error = true;
|
|
}
|
|
else {
|
|
float dummy = 0;
|
|
#if DISABLED(AUTO_BED_LEVELING_UBL) || DISABLED(FWRETRACT) || ENABLED(NO_VOLUMETRICS)
|
|
bool dummyb;
|
|
#endif
|
|
|
|
working_crc = 0; // Init to 0. Accumulated by EEPROM_READ
|
|
|
|
_FIELD_TEST(esteppers);
|
|
|
|
// Number of esteppers may change
|
|
uint8_t esteppers;
|
|
EEPROM_READ_ALWAYS(esteppers);
|
|
|
|
//
|
|
// Planner Motion
|
|
//
|
|
|
|
// Get only the number of E stepper parameters previously stored
|
|
// Any steppers added later are set to their defaults
|
|
const uint32_t def1[] = DEFAULT_MAX_ACCELERATION;
|
|
const float def2[] = DEFAULT_AXIS_STEPS_PER_UNIT, def3[] = DEFAULT_MAX_FEEDRATE;
|
|
|
|
uint32_t tmp1[XYZ + esteppers];
|
|
EEPROM_READ(tmp1); // max_acceleration_mm_per_s2
|
|
EEPROM_READ(planner.min_segment_time_us);
|
|
|
|
float tmp2[XYZ + esteppers], tmp3[XYZ + esteppers];
|
|
EEPROM_READ(tmp2); // axis_steps_per_mm
|
|
EEPROM_READ(tmp3); // max_feedrate_mm_s
|
|
if (!validating) LOOP_XYZE_N(i) {
|
|
planner.max_acceleration_mm_per_s2[i] = i < XYZ + esteppers ? tmp1[i] : def1[i < COUNT(def1) ? i : COUNT(def1) - 1];
|
|
planner.axis_steps_per_mm[i] = i < XYZ + esteppers ? tmp2[i] : def2[i < COUNT(def2) ? i : COUNT(def2) - 1];
|
|
planner.max_feedrate_mm_s[i] = i < XYZ + esteppers ? tmp3[i] : def3[i < COUNT(def3) ? i : COUNT(def3) - 1];
|
|
}
|
|
|
|
EEPROM_READ(planner.acceleration);
|
|
EEPROM_READ(planner.retract_acceleration);
|
|
EEPROM_READ(planner.travel_acceleration);
|
|
EEPROM_READ(planner.min_feedrate_mm_s);
|
|
EEPROM_READ(planner.min_travel_feedrate_mm_s);
|
|
|
|
#if ENABLED(JUNCTION_DEVIATION)
|
|
for (uint8_t q = 4; q--;) EEPROM_READ(dummy);
|
|
EEPROM_READ(planner.junction_deviation_mm);
|
|
#else
|
|
EEPROM_READ(planner.max_jerk);
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Home Offset (M206)
|
|
//
|
|
|
|
_FIELD_TEST(home_offset);
|
|
|
|
#if !HAS_HOME_OFFSET
|
|
float home_offset[XYZ];
|
|
#endif
|
|
EEPROM_READ(home_offset);
|
|
|
|
//
|
|
// Hotend Offsets, if any
|
|
//
|
|
|
|
#if HAS_HOTEND_OFFSET
|
|
// Skip hotend 0 which must be 0
|
|
for (uint8_t e = 1; e < HOTENDS; e++)
|
|
LOOP_XYZ(i) EEPROM_READ(hotend_offset[i][e]);
|
|
#endif
|
|
|
|
//
|
|
// Global Leveling
|
|
//
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
EEPROM_READ(new_z_fade_height);
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Mesh (Manual) Bed Leveling
|
|
//
|
|
|
|
uint8_t mesh_num_x, mesh_num_y;
|
|
EEPROM_READ(dummy);
|
|
EEPROM_READ_ALWAYS(mesh_num_x);
|
|
EEPROM_READ_ALWAYS(mesh_num_y);
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
if (!validating) mbl.z_offset = dummy;
|
|
if (mesh_num_x == GRID_MAX_POINTS_X && mesh_num_y == GRID_MAX_POINTS_Y) {
|
|
// EEPROM data fits the current mesh
|
|
EEPROM_READ(mbl.z_values);
|
|
}
|
|
else {
|
|
// EEPROM data is stale
|
|
if (!validating) mbl.reset();
|
|
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
|
|
}
|
|
#else
|
|
// MBL is disabled - skip the stored data
|
|
for (uint16_t q = mesh_num_x * mesh_num_y; q--;) EEPROM_READ(dummy);
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
_FIELD_TEST(zprobe_zoffset);
|
|
|
|
#if !HAS_BED_PROBE
|
|
float zprobe_zoffset;
|
|
#endif
|
|
EEPROM_READ(zprobe_zoffset);
|
|
|
|
//
|
|
// Planar Bed Leveling matrix
|
|
//
|
|
|
|
#if ABL_PLANAR
|
|
EEPROM_READ(planner.bed_level_matrix);
|
|
#else
|
|
for (uint8_t q = 9; q--;) EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Bilinear Auto Bed Leveling
|
|
//
|
|
|
|
uint8_t grid_max_x, grid_max_y;
|
|
EEPROM_READ_ALWAYS(grid_max_x); // 1 byte
|
|
EEPROM_READ_ALWAYS(grid_max_y); // 1 byte
|
|
#if ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
if (grid_max_x == GRID_MAX_POINTS_X && grid_max_y == GRID_MAX_POINTS_Y) {
|
|
if (!validating) set_bed_leveling_enabled(false);
|
|
EEPROM_READ(bilinear_grid_spacing); // 2 ints
|
|
EEPROM_READ(bilinear_start); // 2 ints
|
|
EEPROM_READ(z_values); // 9 to 256 floats
|
|
}
|
|
else // EEPROM data is stale
|
|
#endif // AUTO_BED_LEVELING_BILINEAR
|
|
{
|
|
// Skip past disabled (or stale) Bilinear Grid data
|
|
int bgs[2], bs[2];
|
|
EEPROM_READ(bgs);
|
|
EEPROM_READ(bs);
|
|
for (uint16_t q = grid_max_x * grid_max_y; q--;) EEPROM_READ(dummy);
|
|
}
|
|
|
|
//
|
|
// Unified Bed Leveling active state
|
|
//
|
|
|
|
_FIELD_TEST(planner_leveling_active);
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
EEPROM_READ(planner.leveling_active);
|
|
EEPROM_READ(ubl.storage_slot);
|
|
#else
|
|
uint8_t dummyui8;
|
|
EEPROM_READ(dummyb);
|
|
EEPROM_READ(dummyui8);
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|
//
|
|
// SERVO_ANGLES
|
|
//
|
|
#if HAS_SERVOS
|
|
EEPROM_READ(servo_angles);
|
|
#endif
|
|
|
|
|
|
//
|
|
// DELTA Geometry or Dual Endstops offsets
|
|
//
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
_FIELD_TEST(delta_height);
|
|
|
|
EEPROM_READ(delta_height); // 1 float
|
|
EEPROM_READ(delta_endstop_adj); // 3 floats
|
|
EEPROM_READ(delta_radius); // 1 float
|
|
EEPROM_READ(delta_diagonal_rod); // 1 float
|
|
EEPROM_READ(delta_segments_per_second); // 1 float
|
|
EEPROM_READ(delta_calibration_radius); // 1 float
|
|
EEPROM_READ(delta_tower_angle_trim); // 3 floats
|
|
|
|
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
_FIELD_TEST(x_endstop_adj);
|
|
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
EEPROM_READ(endstops.x_endstop_adj); // 1 float
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
EEPROM_READ(endstops.y_endstop_adj); // 1 float
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
EEPROM_READ(endstops.z_endstop_adj); // 1 float
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
#endif
|
|
|
|
//
|
|
// LCD Preheat settings
|
|
//
|
|
|
|
_FIELD_TEST(lcd_preheat_hotend_temp);
|
|
|
|
#if DISABLED(ULTIPANEL)
|
|
int16_t lcd_preheat_hotend_temp[2], lcd_preheat_bed_temp[2], lcd_preheat_fan_speed[2];
|
|
#endif
|
|
EEPROM_READ(lcd_preheat_hotend_temp); // 2 floats
|
|
EEPROM_READ(lcd_preheat_bed_temp); // 2 floats
|
|
EEPROM_READ(lcd_preheat_fan_speed); // 2 floats
|
|
|
|
//EEPROM_ASSERT(
|
|
// WITHIN(lcd_preheat_fan_speed, 0, 255),
|
|
// "lcd_preheat_fan_speed out of range"
|
|
//);
|
|
|
|
//
|
|
// Hotend PID
|
|
//
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
for (uint8_t e = 0; e < MAX_EXTRUDERS; e++) {
|
|
EEPROM_READ(dummy); // Kp
|
|
if (e < HOTENDS && dummy != DUMMY_PID_VALUE) {
|
|
// do not need to scale PID values as the values in EEPROM are already scaled
|
|
if (!validating) PID_PARAM(Kp, e) = dummy;
|
|
EEPROM_READ(PID_PARAM(Ki, e));
|
|
EEPROM_READ(PID_PARAM(Kd, e));
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
EEPROM_READ(PID_PARAM(Kc, e));
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
}
|
|
else {
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // Ki, Kd, Kc
|
|
}
|
|
}
|
|
#else // !PIDTEMP
|
|
// 4 x 4 = 16 slots for PID parameters
|
|
for (uint8_t q = MAX_EXTRUDERS * 4; q--;) EEPROM_READ(dummy); // Kp, Ki, Kd, Kc
|
|
#endif // !PIDTEMP
|
|
|
|
//
|
|
// PID Extrusion Scaling
|
|
//
|
|
|
|
_FIELD_TEST(lpq_len);
|
|
|
|
#if DISABLED(PID_EXTRUSION_SCALING)
|
|
int16_t LPQ_LEN;
|
|
#endif
|
|
EEPROM_READ(LPQ_LEN);
|
|
|
|
//
|
|
// Heated Bed PID
|
|
//
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
EEPROM_READ(dummy); // bedKp
|
|
if (dummy != DUMMY_PID_VALUE) {
|
|
if (!validating) thermalManager.bedKp = dummy;
|
|
EEPROM_READ(thermalManager.bedKi);
|
|
EEPROM_READ(thermalManager.bedKd);
|
|
}
|
|
#else
|
|
for (uint8_t q=3; q--;) EEPROM_READ(dummy); // bedKp, bedKi, bedKd
|
|
#endif
|
|
|
|
//
|
|
// LCD Contrast
|
|
//
|
|
|
|
_FIELD_TEST(lcd_contrast);
|
|
|
|
#if !HAS_LCD_CONTRAST
|
|
int16_t lcd_contrast;
|
|
#endif
|
|
EEPROM_READ(lcd_contrast);
|
|
|
|
//
|
|
// Firmware Retraction
|
|
//
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
EEPROM_READ(fwretract.autoretract_enabled);
|
|
EEPROM_READ(fwretract.retract_length);
|
|
EEPROM_READ(fwretract.retract_feedrate_mm_s);
|
|
EEPROM_READ(fwretract.retract_zlift);
|
|
EEPROM_READ(fwretract.retract_recover_length);
|
|
EEPROM_READ(fwretract.retract_recover_feedrate_mm_s);
|
|
EEPROM_READ(fwretract.swap_retract_length);
|
|
EEPROM_READ(fwretract.swap_retract_recover_length);
|
|
EEPROM_READ(fwretract.swap_retract_recover_feedrate_mm_s);
|
|
#else
|
|
EEPROM_READ(dummyb);
|
|
for (uint8_t q=8; q--;) EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Volumetric & Filament Size
|
|
//
|
|
|
|
_FIELD_TEST(parser_volumetric_enabled);
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
|
|
EEPROM_READ(parser.volumetric_enabled);
|
|
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
EEPROM_READ(dummy);
|
|
if (!validating && q < COUNT(planner.filament_size))
|
|
planner.filament_size[q] = dummy;
|
|
}
|
|
|
|
#else
|
|
|
|
EEPROM_READ(dummyb);
|
|
for (uint8_t q=MAX_EXTRUDERS; q--;) EEPROM_READ(dummy);
|
|
|
|
#endif
|
|
|
|
if (!validating) reset_stepper_drivers();
|
|
|
|
//
|
|
// TMC2130 Stepper Settings
|
|
//
|
|
|
|
_FIELD_TEST(tmc_stepper_current);
|
|
|
|
#if HAS_TRINAMIC
|
|
|
|
#define SET_CURR(Q) stepper##Q.setCurrent(currents[TMC_##Q] ? currents[TMC_##Q] : Q##_CURRENT, R_SENSE, HOLD_MULTIPLIER)
|
|
uint16_t currents[TMC_AXES];
|
|
EEPROM_READ(currents);
|
|
if (!validating) {
|
|
#if AXIS_IS_TMC(X)
|
|
SET_CURR(X);
|
|
#endif
|
|
#if AXIS_IS_TMC(Y)
|
|
SET_CURR(Y);
|
|
#endif
|
|
#if AXIS_IS_TMC(Z)
|
|
SET_CURR(Z);
|
|
#endif
|
|
#if AXIS_IS_TMC(X2)
|
|
SET_CURR(X2);
|
|
#endif
|
|
#if AXIS_IS_TMC(Y2)
|
|
SET_CURR(Y2);
|
|
#endif
|
|
#if AXIS_IS_TMC(Z2)
|
|
SET_CURR(Z2);
|
|
#endif
|
|
#if AXIS_IS_TMC(E0)
|
|
SET_CURR(E0);
|
|
#endif
|
|
#if AXIS_IS_TMC(E1)
|
|
SET_CURR(E1);
|
|
#endif
|
|
#if AXIS_IS_TMC(E2)
|
|
SET_CURR(E2);
|
|
#endif
|
|
#if AXIS_IS_TMC(E3)
|
|
SET_CURR(E3);
|
|
#endif
|
|
#if AXIS_IS_TMC(E4)
|
|
SET_CURR(E4);
|
|
#endif
|
|
}
|
|
#else
|
|
uint16_t val;
|
|
for (uint8_t q=TMC_AXES; q--;) EEPROM_READ(val);
|
|
#endif
|
|
|
|
#if ENABLED(HYBRID_THRESHOLD)
|
|
#define TMC_SET_PWMTHRS(A,Q) tmc_set_pwmthrs(stepper##Q, tmc_hybrid_threshold[TMC_##Q], planner.axis_steps_per_mm[_AXIS(A)])
|
|
uint32_t tmc_hybrid_threshold[TMC_AXES];
|
|
EEPROM_READ(tmc_hybrid_threshold);
|
|
if (!validating) {
|
|
#if AXIS_HAS_STEALTHCHOP(X)
|
|
TMC_SET_PWMTHRS(X, X);
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(Y)
|
|
TMC_SET_PWMTHRS(Y, Y);
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(Z)
|
|
TMC_SET_PWMTHRS(Z, Z);
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(X2)
|
|
TMC_SET_PWMTHRS(X, X2);
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(Y2)
|
|
TMC_SET_PWMTHRS(Y, Y2);
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(Z2)
|
|
TMC_SET_PWMTHRS(Z, Z2);
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(E0)
|
|
TMC_SET_PWMTHRS(E, E0);
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(E1)
|
|
TMC_SET_PWMTHRS(E, E1);
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(E2)
|
|
TMC_SET_PWMTHRS(E, E2);
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(E3)
|
|
TMC_SET_PWMTHRS(E, E3);
|
|
#endif
|
|
#if AXIS_HAS_STEALTHCHOP(E4)
|
|
TMC_SET_PWMTHRS(E, E4);
|
|
#endif
|
|
}
|
|
#else
|
|
uint32_t thrs_val;
|
|
for (uint8_t q=TMC_AXES; q--;) EEPROM_READ(thrs_val);
|
|
#endif
|
|
|
|
/*
|
|
* TMC2130 Sensorless homing threshold.
|
|
* X and X2 use the same value
|
|
* Y and Y2 use the same value
|
|
* Z and Z2 use the same value
|
|
*/
|
|
int16_t tmc_sgt[XYZ];
|
|
EEPROM_READ(tmc_sgt);
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
if (!validating) {
|
|
#ifdef X_HOMING_SENSITIVITY
|
|
#if AXIS_HAS_STALLGUARD(X)
|
|
stepperX.sgt(tmc_sgt[0]);
|
|
#endif
|
|
#if AXIS_HAS_STALLGUARD(X2)
|
|
stepperX2.sgt(tmc_sgt[0]);
|
|
#endif
|
|
#endif
|
|
#ifdef Y_HOMING_SENSITIVITY
|
|
#if AXIS_HAS_STALLGUARD(Y)
|
|
stepperY.sgt(tmc_sgt[1]);
|
|
#endif
|
|
#if AXIS_HAS_STALLGUARD(Y2)
|
|
stepperY2.sgt(tmc_sgt[1]);
|
|
#endif
|
|
#endif
|
|
#ifdef Z_HOMING_SENSITIVITY
|
|
#if AXIS_HAS_STALLGUARD(Z)
|
|
stepperZ.sgt(tmc_sgt[2]);
|
|
#endif
|
|
#if AXIS_HAS_STALLGUARD(Z2)
|
|
stepperZ2.sgt(tmc_sgt[2]);
|
|
#endif
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
//
|
|
// Linear Advance
|
|
//
|
|
|
|
_FIELD_TEST(planner_extruder_advance_K);
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
EEPROM_READ(planner.extruder_advance_K);
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Motor Current PWM
|
|
//
|
|
|
|
_FIELD_TEST(motor_current_setting);
|
|
|
|
#if HAS_MOTOR_CURRENT_PWM
|
|
for (uint8_t q = XYZ; q--;) EEPROM_READ(stepper.motor_current_setting[q]);
|
|
#else
|
|
uint32_t dummyui32[XYZ];
|
|
EEPROM_READ(dummyui32);
|
|
#endif
|
|
|
|
//
|
|
// CNC Coordinate System
|
|
//
|
|
|
|
_FIELD_TEST(coordinate_system);
|
|
|
|
#if ENABLED(CNC_COORDINATE_SYSTEMS)
|
|
if (!validating) (void)gcode.select_coordinate_system(-1); // Go back to machine space
|
|
EEPROM_READ(gcode.coordinate_system); // 27 floats
|
|
#else
|
|
for (uint8_t q = MAX_COORDINATE_SYSTEMS * XYZ; q--;) EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Skew correction factors
|
|
//
|
|
|
|
_FIELD_TEST(planner_xy_skew_factor);
|
|
|
|
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
EEPROM_READ(planner.xy_skew_factor);
|
|
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
EEPROM_READ(planner.xz_skew_factor);
|
|
EEPROM_READ(planner.yz_skew_factor);
|
|
#else
|
|
EEPROM_READ(dummy);
|
|
EEPROM_READ(dummy);
|
|
#endif
|
|
#else
|
|
for (uint8_t q = 3; q--;) EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
//
|
|
// Advanced Pause filament load & unload lengths
|
|
//
|
|
|
|
_FIELD_TEST(filament_change_unload_length);
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
EEPROM_READ(dummy);
|
|
if (!validating && q < COUNT(filament_change_unload_length)) filament_change_unload_length[q] = dummy;
|
|
}
|
|
for (uint8_t q = 0; q < MAX_EXTRUDERS; q++) {
|
|
EEPROM_READ(dummy);
|
|
if (!validating && q < COUNT(filament_change_load_length)) filament_change_load_length[q] = dummy;
|
|
}
|
|
#else
|
|
for (uint8_t q = MAX_EXTRUDERS * 2; q--;) EEPROM_READ(dummy);
|
|
#endif
|
|
|
|
eeprom_error = size_error(eeprom_index - (EEPROM_OFFSET));
|
|
if (eeprom_error) {
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
SERIAL_ECHO_START_P(port);
|
|
SERIAL_ECHOPAIR_P(port, "Index: ", int(eeprom_index - (EEPROM_OFFSET)));
|
|
SERIAL_ECHOLNPAIR_P(port, " Size: ", datasize());
|
|
#endif
|
|
}
|
|
else if (working_crc != stored_crc) {
|
|
eeprom_error = true;
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
SERIAL_ERROR_START_P(port);
|
|
SERIAL_ERRORPGM_P(port, "EEPROM CRC mismatch - (stored) ");
|
|
SERIAL_ERROR_P(port, stored_crc);
|
|
SERIAL_ERRORPGM_P(port, " != ");
|
|
SERIAL_ERROR_P(port, working_crc);
|
|
SERIAL_ERRORLNPGM_P(port, " (calculated)!");
|
|
#endif
|
|
}
|
|
else if (!validating) {
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
SERIAL_ECHO_START_P(port);
|
|
SERIAL_ECHO_P(port, version);
|
|
SERIAL_ECHOPAIR_P(port, " stored settings retrieved (", eeprom_index - (EEPROM_OFFSET));
|
|
SERIAL_ECHOPAIR_P(port, " bytes; crc ", (uint32_t)working_crc);
|
|
SERIAL_ECHOLNPGM_P(port, ")");
|
|
#endif
|
|
}
|
|
|
|
if (!validating && !eeprom_error) postprocess();
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
if (!validating) {
|
|
ubl.report_state();
|
|
|
|
if (!ubl.sanity_check()) {
|
|
SERIAL_EOL_P(port);
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
ubl.echo_name();
|
|
SERIAL_ECHOLNPGM_P(port, " initialized.\n");
|
|
#endif
|
|
}
|
|
else {
|
|
eeprom_error = true;
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
SERIAL_PROTOCOLPGM_P(port, "?Can't enable ");
|
|
ubl.echo_name();
|
|
SERIAL_PROTOCOLLNPGM_P(port, ".");
|
|
#endif
|
|
ubl.reset();
|
|
}
|
|
|
|
if (ubl.storage_slot >= 0) {
|
|
load_mesh(ubl.storage_slot);
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
SERIAL_ECHOPAIR_P(port, "Mesh ", ubl.storage_slot);
|
|
SERIAL_ECHOLNPGM_P(port, " loaded from storage.");
|
|
#endif
|
|
}
|
|
else {
|
|
ubl.reset();
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
SERIAL_ECHOLNPGM_P(port, "UBL System reset()");
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT) && DISABLED(DISABLE_M503)
|
|
if (!validating) report(PORTVAR_SOLO);
|
|
#endif
|
|
EEPROM_FINISH();
|
|
|
|
return !eeprom_error;
|
|
}
|
|
|
|
bool MarlinSettings::validate(PORTARG_SOLO) {
|
|
validating = true;
|
|
const bool success = _load(PORTVAR_SOLO);
|
|
validating = false;
|
|
return success;
|
|
}
|
|
|
|
bool MarlinSettings::load(PORTARG_SOLO) {
|
|
if (validate(PORTVAR_SOLO)) return _load(PORTVAR_SOLO);
|
|
reset();
|
|
return true;
|
|
}
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
void ubl_invalid_slot(const int s) {
|
|
SERIAL_PROTOCOLLNPGM("?Invalid slot.");
|
|
SERIAL_PROTOCOL(s);
|
|
SERIAL_PROTOCOLLNPGM(" mesh slots available.");
|
|
}
|
|
#endif
|
|
|
|
const uint16_t MarlinSettings::meshes_end = persistentStore.capacity() - 129; // 128 (+1 because of the change to capacity rather than last valid address)
|
|
// is a placeholder for the size of the MAT; the MAT will always
|
|
// live at the very end of the eeprom
|
|
|
|
uint16_t MarlinSettings::meshes_start_index() {
|
|
return (datasize() + EEPROM_OFFSET + 32) & 0xFFF8; // Pad the end of configuration data so it can float up
|
|
// or down a little bit without disrupting the mesh data
|
|
}
|
|
|
|
uint16_t MarlinSettings::calc_num_meshes() {
|
|
return (meshes_end - meshes_start_index()) / sizeof(ubl.z_values);
|
|
}
|
|
|
|
int MarlinSettings::mesh_slot_offset(const int8_t slot) {
|
|
return meshes_end - (slot + 1) * sizeof(ubl.z_values);
|
|
}
|
|
|
|
void MarlinSettings::store_mesh(const int8_t slot) {
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
const int16_t a = calc_num_meshes();
|
|
if (!WITHIN(slot, 0, a - 1)) {
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
ubl_invalid_slot(a);
|
|
SERIAL_PROTOCOLPAIR("E2END=", persistentStore.capacity() - 1);
|
|
SERIAL_PROTOCOLPAIR(" meshes_end=", meshes_end);
|
|
SERIAL_PROTOCOLLNPAIR(" slot=", slot);
|
|
SERIAL_EOL();
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
int pos = mesh_slot_offset(slot);
|
|
uint16_t crc = 0;
|
|
|
|
persistentStore.access_start();
|
|
const bool status = persistentStore.write_data(pos, (uint8_t *)&ubl.z_values, sizeof(ubl.z_values), &crc);
|
|
persistentStore.access_finish();
|
|
|
|
if (status)
|
|
SERIAL_PROTOCOLPGM("?Unable to save mesh data.\n");
|
|
|
|
// Write crc to MAT along with other data, or just tack on to the beginning or end
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
if (!status)
|
|
SERIAL_PROTOCOLLNPAIR("Mesh saved in slot ", slot);
|
|
#endif
|
|
|
|
#else
|
|
|
|
// Other mesh types
|
|
|
|
#endif
|
|
}
|
|
|
|
void MarlinSettings::load_mesh(const int8_t slot, void * const into/*=NULL*/) {
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
const int16_t a = settings.calc_num_meshes();
|
|
|
|
if (!WITHIN(slot, 0, a - 1)) {
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
ubl_invalid_slot(a);
|
|
#endif
|
|
return;
|
|
}
|
|
|
|
int pos = mesh_slot_offset(slot);
|
|
uint16_t crc = 0;
|
|
uint8_t * const dest = into ? (uint8_t*)into : (uint8_t*)&ubl.z_values;
|
|
|
|
persistentStore.access_start();
|
|
const uint16_t status = persistentStore.read_data(pos, dest, sizeof(ubl.z_values), &crc);
|
|
persistentStore.access_finish();
|
|
|
|
if (status)
|
|
SERIAL_PROTOCOLPGM("?Unable to load mesh data.\n");
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
else
|
|
SERIAL_PROTOCOLLNPAIR("Mesh loaded from slot ", slot);
|
|
#endif
|
|
EEPROM_FINISH();
|
|
|
|
#else
|
|
|
|
// Other mesh types
|
|
|
|
#endif
|
|
}
|
|
|
|
//void MarlinSettings::delete_mesh() { return; }
|
|
//void MarlinSettings::defrag_meshes() { return; }
|
|
|
|
#endif // AUTO_BED_LEVELING_UBL
|
|
|
|
#else // !EEPROM_SETTINGS
|
|
|
|
bool MarlinSettings::save(PORTARG_SOLO) {
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
SERIAL_ERROR_START_P(port);
|
|
SERIAL_ERRORLNPGM_P(port, "EEPROM disabled");
|
|
#endif
|
|
return false;
|
|
}
|
|
|
|
#endif // !EEPROM_SETTINGS
|
|
|
|
/**
|
|
* M502 - Reset Configuration
|
|
*/
|
|
void MarlinSettings::reset(PORTARG_SOLO) {
|
|
static const float tmp1[] PROGMEM = DEFAULT_AXIS_STEPS_PER_UNIT, tmp2[] PROGMEM = DEFAULT_MAX_FEEDRATE;
|
|
static const uint32_t tmp3[] PROGMEM = DEFAULT_MAX_ACCELERATION;
|
|
LOOP_XYZE_N(i) {
|
|
planner.axis_steps_per_mm[i] = pgm_read_float(&tmp1[i < COUNT(tmp1) ? i : COUNT(tmp1) - 1]);
|
|
planner.max_feedrate_mm_s[i] = pgm_read_float(&tmp2[i < COUNT(tmp2) ? i : COUNT(tmp2) - 1]);
|
|
planner.max_acceleration_mm_per_s2[i] = pgm_read_dword_near(&tmp3[i < COUNT(tmp3) ? i : COUNT(tmp3) - 1]);
|
|
}
|
|
|
|
planner.min_segment_time_us = DEFAULT_MINSEGMENTTIME;
|
|
planner.acceleration = DEFAULT_ACCELERATION;
|
|
planner.retract_acceleration = DEFAULT_RETRACT_ACCELERATION;
|
|
planner.travel_acceleration = DEFAULT_TRAVEL_ACCELERATION;
|
|
planner.min_feedrate_mm_s = DEFAULT_MINIMUMFEEDRATE;
|
|
planner.min_travel_feedrate_mm_s = DEFAULT_MINTRAVELFEEDRATE;
|
|
|
|
#if ENABLED(JUNCTION_DEVIATION)
|
|
planner.junction_deviation_mm = float(JUNCTION_DEVIATION_MM);
|
|
#else
|
|
planner.max_jerk[X_AXIS] = DEFAULT_XJERK;
|
|
planner.max_jerk[Y_AXIS] = DEFAULT_YJERK;
|
|
planner.max_jerk[Z_AXIS] = DEFAULT_ZJERK;
|
|
planner.max_jerk[E_AXIS] = DEFAULT_EJERK;
|
|
#endif
|
|
|
|
#if HAS_HOME_OFFSET
|
|
ZERO(home_offset);
|
|
#endif
|
|
|
|
#if HAS_HOTEND_OFFSET
|
|
constexpr float tmp4[XYZ][HOTENDS] = { HOTEND_OFFSET_X, HOTEND_OFFSET_Y, HOTEND_OFFSET_Z };
|
|
static_assert(
|
|
tmp4[X_AXIS][0] == 0 && tmp4[Y_AXIS][0] == 0 && tmp4[Z_AXIS][0] == 0,
|
|
"Offsets for the first hotend must be 0.0."
|
|
);
|
|
LOOP_XYZ(i) HOTEND_LOOP() hotend_offset[i][e] = tmp4[i][e];
|
|
#endif
|
|
|
|
//
|
|
// Global Leveling
|
|
//
|
|
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
new_z_fade_height = 0.0;
|
|
#endif
|
|
|
|
#if HAS_LEVELING
|
|
reset_bed_level();
|
|
#endif
|
|
|
|
#if HAS_BED_PROBE
|
|
zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
#endif
|
|
|
|
//
|
|
// Servo Angles
|
|
//
|
|
|
|
#if HAS_SERVOS
|
|
#if ENABLED(SWITCHING_EXTRUDER)
|
|
#if EXTRUDERS > 3
|
|
#define REQ_ANGLES 4
|
|
#else
|
|
#define REQ_ANGLES 2
|
|
#endif
|
|
const uint8_t extruder_angles[2] = SWITCHING_EXTRUDER_SERVO_ANGLES;
|
|
static_assert(COUNT(extruder_angles) == REQ_ANGLES, "SWITCHING_EXTRUDER_SERVO_ANGLES needs " STRINGIFY(REQ_ANGLES) " angles.");
|
|
servo_angles[SWITCHING_EXTRUDER_SERVO_NR][0] = extruder_angles[0];
|
|
servo_angles[SWITCHING_EXTRUDER_SERVO_NR][1] = extruder_angles[1];
|
|
#endif
|
|
|
|
#if ENABLED(SWITCHING_NOZZLE)
|
|
const uint8_t nozzel_angles[2] = SWITCHING_NOZZLE_SERVO_ANGLES;
|
|
servo_angles[SWITCHING_NOZZLE_SERVO_NR][0] = nozzel_angles[0];
|
|
servo_angles[SWITCHING_NOZZLE_SERVO_NR][1] = nozzel_angles[1];
|
|
#endif
|
|
|
|
#if defined(Z_SERVO_ANGLES) && defined(Z_PROBE_SERVO_NR)
|
|
const uint8_t z_probe_angles[2] = Z_SERVO_ANGLES;
|
|
servo_angles[Z_PROBE_SERVO_NR][0] = z_probe_angles[0];
|
|
servo_angles[Z_PROBE_SERVO_NR][1] = z_probe_angles[1];
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
const float adj[ABC] = DELTA_ENDSTOP_ADJ,
|
|
dta[ABC] = DELTA_TOWER_ANGLE_TRIM;
|
|
delta_height = DELTA_HEIGHT;
|
|
COPY(delta_endstop_adj, adj);
|
|
delta_radius = DELTA_RADIUS;
|
|
delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
|
delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
|
delta_calibration_radius = DELTA_CALIBRATION_RADIUS;
|
|
COPY(delta_tower_angle_trim, dta);
|
|
|
|
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
endstops.x_endstop_adj = (
|
|
#ifdef X_DUAL_ENDSTOPS_ADJUSTMENT
|
|
X_DUAL_ENDSTOPS_ADJUSTMENT
|
|
#else
|
|
0
|
|
#endif
|
|
);
|
|
#endif
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
endstops.y_endstop_adj = (
|
|
#ifdef Y_DUAL_ENDSTOPS_ADJUSTMENT
|
|
Y_DUAL_ENDSTOPS_ADJUSTMENT
|
|
#else
|
|
0
|
|
#endif
|
|
);
|
|
#endif
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
endstops.z_endstop_adj = (
|
|
#ifdef Z_DUAL_ENDSTOPS_ADJUSTMENT
|
|
Z_DUAL_ENDSTOPS_ADJUSTMENT
|
|
#else
|
|
0
|
|
#endif
|
|
);
|
|
#endif
|
|
|
|
#endif
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
lcd_preheat_hotend_temp[0] = PREHEAT_1_TEMP_HOTEND;
|
|
lcd_preheat_hotend_temp[1] = PREHEAT_2_TEMP_HOTEND;
|
|
lcd_preheat_bed_temp[0] = PREHEAT_1_TEMP_BED;
|
|
lcd_preheat_bed_temp[1] = PREHEAT_2_TEMP_BED;
|
|
lcd_preheat_fan_speed[0] = PREHEAT_1_FAN_SPEED;
|
|
lcd_preheat_fan_speed[1] = PREHEAT_2_FAN_SPEED;
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
#if ENABLED(PID_PARAMS_PER_HOTEND) && HOTENDS > 1
|
|
HOTEND_LOOP()
|
|
#endif
|
|
{
|
|
PID_PARAM(Kp, e) = float(DEFAULT_Kp);
|
|
PID_PARAM(Ki, e) = scalePID_i(DEFAULT_Ki);
|
|
PID_PARAM(Kd, e) = scalePID_d(DEFAULT_Kd);
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
PID_PARAM(Kc, e) = DEFAULT_Kc;
|
|
#endif
|
|
}
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
thermalManager.lpq_len = 20; // default last-position-queue size
|
|
#endif
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
thermalManager.bedKp = DEFAULT_bedKp;
|
|
thermalManager.bedKi = scalePID_i(DEFAULT_bedKi);
|
|
thermalManager.bedKd = scalePID_d(DEFAULT_bedKd);
|
|
#endif
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
lcd_contrast = DEFAULT_LCD_CONTRAST;
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
fwretract.reset();
|
|
#endif
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
|
|
parser.volumetric_enabled =
|
|
#if ENABLED(VOLUMETRIC_DEFAULT_ON)
|
|
true
|
|
#else
|
|
false
|
|
#endif
|
|
;
|
|
for (uint8_t q = 0; q < COUNT(planner.filament_size); q++)
|
|
planner.filament_size[q] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
|
|
#endif
|
|
|
|
endstops.enable_globally(
|
|
#if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT)
|
|
true
|
|
#else
|
|
false
|
|
#endif
|
|
);
|
|
|
|
reset_stepper_drivers();
|
|
|
|
#if ENABLED(LIN_ADVANCE)
|
|
planner.extruder_advance_K = LIN_ADVANCE_K;
|
|
#endif
|
|
|
|
#if HAS_MOTOR_CURRENT_PWM
|
|
uint32_t tmp_motor_current_setting[XYZ] = PWM_MOTOR_CURRENT;
|
|
for (uint8_t q = XYZ; q--;)
|
|
stepper.digipot_current(q, (stepper.motor_current_setting[q] = tmp_motor_current_setting[q]));
|
|
#endif
|
|
|
|
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
planner.xy_skew_factor = XY_SKEW_FACTOR;
|
|
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
planner.xz_skew_factor = XZ_SKEW_FACTOR;
|
|
planner.yz_skew_factor = YZ_SKEW_FACTOR;
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
for (uint8_t e = 0; e < EXTRUDERS; e++) {
|
|
filament_change_unload_length[e] = FILAMENT_CHANGE_UNLOAD_LENGTH;
|
|
filament_change_load_length[e] = FILAMENT_CHANGE_FAST_LOAD_LENGTH;
|
|
}
|
|
#endif
|
|
|
|
postprocess();
|
|
|
|
#if ENABLED(EEPROM_CHITCHAT)
|
|
SERIAL_ECHO_START_P(port);
|
|
SERIAL_ECHOLNPGM_P(port, "Hardcoded Default Settings Loaded");
|
|
#endif
|
|
}
|
|
|
|
#if DISABLED(DISABLE_M503)
|
|
|
|
#define CONFIG_ECHO_START do{ if (!forReplay) SERIAL_ECHO_START_P(port); }while(0)
|
|
|
|
#if HAS_TRINAMIC
|
|
void say_M906(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M906"); }
|
|
#if ENABLED(HYBRID_THRESHOLD)
|
|
void say_M913(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M913"); }
|
|
#endif
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
void say_M914(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M914"); }
|
|
#endif
|
|
#endif
|
|
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
void say_M603(PORTARG_SOLO) { SERIAL_ECHOPGM_P(port, " M603 "); }
|
|
#endif
|
|
|
|
inline void say_units(
|
|
#if NUM_SERIAL > 1
|
|
const int8_t port,
|
|
#endif
|
|
const bool colon
|
|
) {
|
|
serialprintPGM_P(port,
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
parser.linear_unit_factor != 1.0 ? PSTR(" (in)") :
|
|
#endif
|
|
PSTR(" (mm)")
|
|
);
|
|
if (colon) SERIAL_ECHOLNPGM_P(port, ":");
|
|
}
|
|
#if NUM_SERIAL > 1
|
|
#define SAY_UNITS_P(PORT, COLON) say_units(PORT, COLON)
|
|
#else
|
|
#define SAY_UNITS_P(PORT, COLON) say_units(COLON)
|
|
#endif
|
|
|
|
/**
|
|
* M503 - Report current settings in RAM
|
|
*
|
|
* Unless specifically disabled, M503 is available even without EEPROM
|
|
*/
|
|
void MarlinSettings::report(const bool forReplay
|
|
#if NUM_SERIAL > 1
|
|
, const int8_t port/*=-1*/
|
|
#endif
|
|
) {
|
|
/**
|
|
* Announce current units, in case inches are being displayed
|
|
*/
|
|
CONFIG_ECHO_START;
|
|
#if ENABLED(INCH_MODE_SUPPORT)
|
|
#define LINEAR_UNIT(N) (float(N) / parser.linear_unit_factor)
|
|
#define VOLUMETRIC_UNIT(N) (float(N) / (parser.volumetric_enabled ? parser.volumetric_unit_factor : parser.linear_unit_factor))
|
|
SERIAL_ECHOPGM_P(port, " G2");
|
|
SERIAL_CHAR_P(port, parser.linear_unit_factor == 1.0 ? '1' : '0');
|
|
SERIAL_ECHOPGM_P(port, " ;");
|
|
SAY_UNITS_P(port, false);
|
|
#else
|
|
#define LINEAR_UNIT(N) (N)
|
|
#define VOLUMETRIC_UNIT(N) (N)
|
|
SERIAL_ECHOPGM_P(port, " G21 ; Units in mm");
|
|
SAY_UNITS_P(port, false);
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
// Temperature units - for Ultipanel temperature options
|
|
|
|
CONFIG_ECHO_START;
|
|
#if ENABLED(TEMPERATURE_UNITS_SUPPORT)
|
|
#define TEMP_UNIT(N) parser.to_temp_units(N)
|
|
SERIAL_ECHOPGM_P(port, " M149 ");
|
|
SERIAL_CHAR_P(port, parser.temp_units_code());
|
|
SERIAL_ECHOPGM_P(port, " ; Units in ");
|
|
serialprintPGM_P(port, parser.temp_units_name());
|
|
#else
|
|
#define TEMP_UNIT(N) (N)
|
|
SERIAL_ECHOLNPGM_P(port, " M149 C ; Units in Celsius");
|
|
#endif
|
|
|
|
#endif
|
|
|
|
SERIAL_EOL_P(port);
|
|
|
|
#if DISABLED(NO_VOLUMETRICS)
|
|
|
|
/**
|
|
* Volumetric extrusion M200
|
|
*/
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPGM_P(port, "Filament settings:");
|
|
if (parser.volumetric_enabled)
|
|
SERIAL_EOL_P(port);
|
|
else
|
|
SERIAL_ECHOLNPGM_P(port, " Disabled");
|
|
}
|
|
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M200 D", LINEAR_UNIT(planner.filament_size[0]));
|
|
SERIAL_EOL_P(port);
|
|
#if EXTRUDERS > 1
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M200 T1 D", LINEAR_UNIT(planner.filament_size[1]));
|
|
SERIAL_EOL_P(port);
|
|
#if EXTRUDERS > 2
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M200 T2 D", LINEAR_UNIT(planner.filament_size[2]));
|
|
SERIAL_EOL_P(port);
|
|
#if EXTRUDERS > 3
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M200 T3 D", LINEAR_UNIT(planner.filament_size[3]));
|
|
SERIAL_EOL_P(port);
|
|
#if EXTRUDERS > 4
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M200 T4 D", LINEAR_UNIT(planner.filament_size[4]));
|
|
SERIAL_EOL_P(port);
|
|
#endif // EXTRUDERS > 4
|
|
#endif // EXTRUDERS > 3
|
|
#endif // EXTRUDERS > 2
|
|
#endif // EXTRUDERS > 1
|
|
|
|
if (!parser.volumetric_enabled) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, " M200 D0");
|
|
}
|
|
|
|
#endif // !NO_VOLUMETRICS
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Steps per unit:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M92 X", LINEAR_UNIT(planner.axis_steps_per_mm[X_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.axis_steps_per_mm[Y_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.axis_steps_per_mm[Z_AXIS]));
|
|
#if DISABLED(DISTINCT_E_FACTORS)
|
|
SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS]));
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
CONFIG_ECHO_START;
|
|
for (uint8_t i = 0; i < E_STEPPERS; i++) {
|
|
SERIAL_ECHOPAIR_P(port, " M92 T", (int)i);
|
|
SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.axis_steps_per_mm[E_AXIS + i]));
|
|
}
|
|
#endif
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Maximum feedrates (units/s):");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M203 X", LINEAR_UNIT(planner.max_feedrate_mm_s[X_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_feedrate_mm_s[Y_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_feedrate_mm_s[Z_AXIS]));
|
|
#if DISABLED(DISTINCT_E_FACTORS)
|
|
SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS]));
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
CONFIG_ECHO_START;
|
|
for (uint8_t i = 0; i < E_STEPPERS; i++) {
|
|
SERIAL_ECHOPAIR_P(port, " M203 T", (int)i);
|
|
SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_feedrate_mm_s[E_AXIS + i]));
|
|
}
|
|
#endif
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Maximum Acceleration (units/s2):");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M201 X", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[X_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Y_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_acceleration_mm_per_s2[Z_AXIS]));
|
|
#if DISABLED(DISTINCT_E_FACTORS)
|
|
SERIAL_ECHOPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS]));
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
#if ENABLED(DISTINCT_E_FACTORS)
|
|
CONFIG_ECHO_START;
|
|
for (uint8_t i = 0; i < E_STEPPERS; i++) {
|
|
SERIAL_ECHOPAIR_P(port, " M201 T", (int)i);
|
|
SERIAL_ECHOLNPAIR_P(port, " E", VOLUMETRIC_UNIT(planner.max_acceleration_mm_per_s2[E_AXIS + i]));
|
|
}
|
|
#endif
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Acceleration (units/s2): P<print_accel> R<retract_accel> T<travel_accel>");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M204 P", LINEAR_UNIT(planner.acceleration));
|
|
SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(planner.retract_acceleration));
|
|
SERIAL_ECHOLNPAIR_P(port, " T", LINEAR_UNIT(planner.travel_acceleration));
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPGM_P(port, "Advanced: B<min_segment_time_us> S<min_feedrate> T<min_travel_feedrate>");
|
|
#if ENABLED(JUNCTION_DEVIATION)
|
|
SERIAL_ECHOPGM_P(port, " J<junc_dev>");
|
|
#else
|
|
SERIAL_ECHOPGM_P(port, " X<max_x_jerk> Y<max_y_jerk> Z<max_z_jerk>");
|
|
#endif
|
|
#if DISABLED(JUNCTION_DEVIATION) || ENABLED(LIN_ADVANCE)
|
|
SERIAL_ECHOPGM_P(port, " E<max_e_jerk>");
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M205 B", LINEAR_UNIT(planner.min_segment_time_us));
|
|
SERIAL_ECHOPAIR_P(port, " S", LINEAR_UNIT(planner.min_feedrate_mm_s));
|
|
SERIAL_ECHOPAIR_P(port, " T", LINEAR_UNIT(planner.min_travel_feedrate_mm_s));
|
|
|
|
#if ENABLED(JUNCTION_DEVIATION)
|
|
SERIAL_ECHOPAIR_P(port, " J", LINEAR_UNIT(planner.junction_deviation_mm));
|
|
#else
|
|
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(planner.max_jerk[X_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(planner.max_jerk[Y_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.max_jerk[Z_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " E", LINEAR_UNIT(planner.max_jerk[E_AXIS]));
|
|
#endif
|
|
|
|
SERIAL_EOL_P(port);
|
|
|
|
#if HAS_M206_COMMAND
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Home offset:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M206 X", LINEAR_UNIT(home_offset[X_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(home_offset[Y_AXIS]));
|
|
SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(home_offset[Z_AXIS]));
|
|
#endif
|
|
|
|
#if HAS_HOTEND_OFFSET
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Hotend offsets:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
for (uint8_t e = 1; e < HOTENDS; e++) {
|
|
SERIAL_ECHOPAIR_P(port, " M218 T", (int)e);
|
|
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(hotend_offset[X_AXIS][e]));
|
|
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(hotend_offset[Y_AXIS][e]));
|
|
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(hotend_offset[Z_AXIS][e]));
|
|
SERIAL_EOL_P(port);
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Bed Leveling
|
|
*/
|
|
#if HAS_LEVELING
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Mesh Bed Leveling:");
|
|
}
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
ubl.echo_name();
|
|
SERIAL_ECHOLNPGM_P(port, ":");
|
|
}
|
|
|
|
#elif HAS_ABL
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Auto Bed Leveling:");
|
|
}
|
|
|
|
#endif
|
|
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M420 S", planner.leveling_active ? 1 : 0);
|
|
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
|
|
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(planner.z_fade_height));
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
if (leveling_is_valid()) {
|
|
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
|
|
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " G29 S3 X", (int)px + 1);
|
|
SERIAL_ECHOPAIR_P(port, " Y", (int)py + 1);
|
|
SERIAL_ECHOPGM_P(port, " Z");
|
|
SERIAL_ECHO_F_P(port, LINEAR_UNIT(mbl.z_values[px][py]), 5);
|
|
SERIAL_EOL_P(port);
|
|
}
|
|
}
|
|
}
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_UBL)
|
|
|
|
if (!forReplay) {
|
|
SERIAL_EOL_P(port);
|
|
ubl.report_state();
|
|
SERIAL_ECHOLNPAIR_P(port, "\nActive Mesh Slot: ", ubl.storage_slot);
|
|
SERIAL_ECHOPAIR_P(port, "EEPROM can hold ", calc_num_meshes());
|
|
SERIAL_ECHOLNPGM_P(port, " meshes.\n");
|
|
}
|
|
|
|
// ubl.report_current_mesh(PORTVAR_SOLO); // This is too verbose for large mesh's. A better (more terse)
|
|
// solution needs to be found.
|
|
#elif ENABLED(AUTO_BED_LEVELING_BILINEAR)
|
|
|
|
if (leveling_is_valid()) {
|
|
for (uint8_t py = 0; py < GRID_MAX_POINTS_Y; py++) {
|
|
for (uint8_t px = 0; px < GRID_MAX_POINTS_X; px++) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " G29 W I", (int)px);
|
|
SERIAL_ECHOPAIR_P(port, " J", (int)py);
|
|
SERIAL_ECHOPGM_P(port, " Z");
|
|
SERIAL_ECHO_F_P(port, LINEAR_UNIT(z_values[px][py]), 5);
|
|
SERIAL_EOL_P(port);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif // HAS_LEVELING
|
|
|
|
#if HAS_SERVOS
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Servo Angles:");
|
|
}
|
|
for (uint8_t i = 0; i < NUM_SERVOS; i++) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M281 P", i);
|
|
SERIAL_ECHOPAIR_P(port, " L",servo_angles[i][0]);
|
|
SERIAL_ECHOPAIR_P(port, " U",servo_angles[i][1]);
|
|
SERIAL_EOL_P(port);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M666 X", LINEAR_UNIT(delta_endstop_adj[X_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_endstop_adj[Y_AXIS]));
|
|
SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(delta_endstop_adj[Z_AXIS]));
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Delta settings: L<diagonal_rod> R<radius> H<height> S<segments_per_s> B<calibration radius> XYZ<tower angle corrections>");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M665 L", LINEAR_UNIT(delta_diagonal_rod));
|
|
SERIAL_ECHOPAIR_P(port, " R", LINEAR_UNIT(delta_radius));
|
|
SERIAL_ECHOPAIR_P(port, " H", LINEAR_UNIT(delta_height));
|
|
SERIAL_ECHOPAIR_P(port, " S", delta_segments_per_second);
|
|
SERIAL_ECHOPAIR_P(port, " B", LINEAR_UNIT(delta_calibration_radius));
|
|
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(delta_tower_angle_trim[A_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(delta_tower_angle_trim[B_AXIS]));
|
|
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(delta_tower_angle_trim[C_AXIS]));
|
|
SERIAL_EOL_P(port);
|
|
|
|
#elif ENABLED(X_DUAL_ENDSTOPS) || ENABLED(Y_DUAL_ENDSTOPS) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Endstop adjustment:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPGM_P(port, " M666");
|
|
#if ENABLED(X_DUAL_ENDSTOPS)
|
|
SERIAL_ECHOPAIR_P(port, " X", LINEAR_UNIT(endstops.x_endstop_adj));
|
|
#endif
|
|
#if ENABLED(Y_DUAL_ENDSTOPS)
|
|
SERIAL_ECHOPAIR_P(port, " Y", LINEAR_UNIT(endstops.y_endstop_adj));
|
|
#endif
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
SERIAL_ECHOPAIR_P(port, " Z", LINEAR_UNIT(endstops.z_endstop_adj));
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
|
|
#endif // [XYZ]_DUAL_ENDSTOPS
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Material heatup parameters:");
|
|
}
|
|
for (uint8_t i = 0; i < COUNT(lcd_preheat_hotend_temp); i++) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M145 S", (int)i);
|
|
SERIAL_ECHOPAIR_P(port, " H", TEMP_UNIT(lcd_preheat_hotend_temp[i]));
|
|
SERIAL_ECHOPAIR_P(port, " B", TEMP_UNIT(lcd_preheat_bed_temp[i]));
|
|
SERIAL_ECHOLNPAIR_P(port, " F", lcd_preheat_fan_speed[i]);
|
|
}
|
|
#endif // ULTIPANEL
|
|
|
|
#if HAS_PID_HEATING
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "PID settings:");
|
|
}
|
|
#if ENABLED(PIDTEMP)
|
|
#if HOTENDS > 1
|
|
if (forReplay) {
|
|
HOTEND_LOOP() {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M301 E", e);
|
|
SERIAL_ECHOPAIR_P(port, " P", PID_PARAM(Kp, e));
|
|
SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, e)));
|
|
SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, e)));
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, e));
|
|
if (e == 0) SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
}
|
|
}
|
|
else
|
|
#endif // HOTENDS > 1
|
|
// !forReplay || HOTENDS == 1
|
|
{
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M301 P", PID_PARAM(Kp, 0)); // for compatibility with hosts, only echo values for E0
|
|
SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(PID_PARAM(Ki, 0)));
|
|
SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(PID_PARAM(Kd, 0)));
|
|
#if ENABLED(PID_EXTRUSION_SCALING)
|
|
SERIAL_ECHOPAIR_P(port, " C", PID_PARAM(Kc, 0));
|
|
SERIAL_ECHOPAIR_P(port, " L", thermalManager.lpq_len);
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
}
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M304 P", thermalManager.bedKp);
|
|
SERIAL_ECHOPAIR_P(port, " I", unscalePID_i(thermalManager.bedKi));
|
|
SERIAL_ECHOPAIR_P(port, " D", unscalePID_d(thermalManager.bedKd));
|
|
SERIAL_EOL_P(port);
|
|
#endif
|
|
|
|
#endif // PIDTEMP || PIDTEMPBED
|
|
|
|
#if HAS_LCD_CONTRAST
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "LCD Contrast:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPAIR_P(port, " M250 C", lcd_contrast);
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Retract: S<length> F<units/m> Z<lift>");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M207 S", LINEAR_UNIT(fwretract.retract_length));
|
|
SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.swap_retract_length));
|
|
SERIAL_ECHOPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_feedrate_mm_s)));
|
|
SERIAL_ECHOLNPAIR_P(port, " Z", LINEAR_UNIT(fwretract.retract_zlift));
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Recover: S<length> F<units/m>");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPAIR_P(port, " M208 S", LINEAR_UNIT(fwretract.retract_recover_length));
|
|
SERIAL_ECHOPAIR_P(port, " W", LINEAR_UNIT(fwretract.swap_retract_recover_length));
|
|
SERIAL_ECHOLNPAIR_P(port, " F", MMS_TO_MMM(LINEAR_UNIT(fwretract.retract_recover_feedrate_mm_s)));
|
|
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Auto-Retract: S=0 to disable, 1 to interpret E-only moves as retract/recover");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPAIR_P(port, " M209 S", fwretract.autoretract_enabled ? 1 : 0);
|
|
|
|
#endif // FWRETRACT
|
|
|
|
/**
|
|
* Probe Offset
|
|
*/
|
|
#if HAS_BED_PROBE
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOPGM_P(port, "Z-Probe Offset (mm):");
|
|
SAY_UNITS_P(port, true);
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPAIR_P(port, " M851 Z", LINEAR_UNIT(zprobe_zoffset));
|
|
#endif
|
|
|
|
/**
|
|
* Bed Skew Correction
|
|
*/
|
|
#if ENABLED(SKEW_CORRECTION_GCODE)
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Skew Factor: ");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
#if ENABLED(SKEW_CORRECTION_FOR_Z)
|
|
SERIAL_ECHOPGM_P(port, " M852 I");
|
|
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xy_skew_factor), 6);
|
|
SERIAL_ECHOPGM_P(port, " J");
|
|
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xz_skew_factor), 6);
|
|
SERIAL_ECHOPGM_P(port, " K");
|
|
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.yz_skew_factor), 6);
|
|
SERIAL_EOL_P(port);
|
|
#else
|
|
SERIAL_ECHOPGM_P(port, " M852 S");
|
|
SERIAL_ECHO_F_P(port, LINEAR_UNIT(planner.xy_skew_factor), 6);
|
|
SERIAL_EOL_P(port);
|
|
#endif
|
|
#endif
|
|
|
|
#if HAS_TRINAMIC
|
|
|
|
/**
|
|
* TMC2130 / TMC2208 stepper driver current
|
|
*/
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Stepper driver current:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
|
|
say_M906(PORTVAR_SOLO);
|
|
#endif
|
|
#if AXIS_IS_TMC(X)
|
|
SERIAL_ECHOPAIR_P(port, " X", stepperX.getCurrent());
|
|
#endif
|
|
#if AXIS_IS_TMC(Y)
|
|
SERIAL_ECHOPAIR_P(port, " Y", stepperY.getCurrent());
|
|
#endif
|
|
#if AXIS_IS_TMC(Z)
|
|
SERIAL_ECHOPAIR_P(port, " Z", stepperZ.getCurrent());
|
|
#endif
|
|
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
|
|
SERIAL_EOL_P(port);
|
|
#endif
|
|
#if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
|
|
say_M906(PORTVAR_SOLO);
|
|
SERIAL_ECHOPGM_P(port, " I1");
|
|
#endif
|
|
#if AXIS_IS_TMC(X2)
|
|
SERIAL_ECHOPAIR_P(port, " X", stepperX2.getCurrent());
|
|
#endif
|
|
#if AXIS_IS_TMC(Y2)
|
|
SERIAL_ECHOPAIR_P(port, " Y", stepperY2.getCurrent());
|
|
#endif
|
|
#if AXIS_IS_TMC(Z2)
|
|
SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.getCurrent());
|
|
#endif
|
|
#if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
|
|
SERIAL_EOL_P(port);
|
|
#endif
|
|
#if AXIS_IS_TMC(E0)
|
|
say_M906(PORTVAR_SOLO);
|
|
SERIAL_ECHOLNPAIR_P(port, " T0 E", stepperE0.getCurrent());
|
|
#endif
|
|
#if E_STEPPERS > 1 && AXIS_IS_TMC(E1)
|
|
say_M906(PORTVAR_SOLO);
|
|
SERIAL_ECHOLNPAIR_P(port, " T1 E", stepperE1.getCurrent());
|
|
#endif
|
|
#if E_STEPPERS > 2 && AXIS_IS_TMC(E2)
|
|
say_M906(PORTVAR_SOLO);
|
|
SERIAL_ECHOLNPAIR_P(port, " T2 E", stepperE2.getCurrent());
|
|
#endif
|
|
#if E_STEPPERS > 3 && AXIS_IS_TMC(E3)
|
|
say_M906(PORTVAR_SOLO);
|
|
SERIAL_ECHOLNPAIR_P(port, " T3 E", stepperE3.getCurrent());
|
|
#endif
|
|
#if E_STEPPERS > 4 && AXIS_IS_TMC(E4)
|
|
say_M906(PORTVAR_SOLO);
|
|
SERIAL_ECHOLNPAIR_P(port, " T4 E", stepperE4.getCurrent());
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
|
|
/**
|
|
* TMC2130 / TMC2208 / TRAMS Hybrid Threshold
|
|
*/
|
|
#if ENABLED(HYBRID_THRESHOLD)
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Hybrid Threshold:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
|
|
say_M913(PORTVAR_SOLO);
|
|
#endif
|
|
#if AXIS_IS_TMC(X)
|
|
SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X));
|
|
#endif
|
|
#if AXIS_IS_TMC(Y)
|
|
SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y));
|
|
#endif
|
|
#if AXIS_IS_TMC(Z)
|
|
SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z));
|
|
#endif
|
|
#if AXIS_IS_TMC(X) || AXIS_IS_TMC(Y) || AXIS_IS_TMC(Z)
|
|
SERIAL_EOL_P(port);
|
|
#endif
|
|
#if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
|
|
say_M913(PORTVAR_SOLO);
|
|
SERIAL_ECHOPGM_P(port, " I1");
|
|
#endif
|
|
#if AXIS_IS_TMC(X2)
|
|
SERIAL_ECHOPAIR_P(port, " X", TMC_GET_PWMTHRS(X, X2));
|
|
#endif
|
|
#if AXIS_IS_TMC(Y2)
|
|
SERIAL_ECHOPAIR_P(port, " Y", TMC_GET_PWMTHRS(Y, Y2));
|
|
#endif
|
|
#if AXIS_IS_TMC(Z2)
|
|
SERIAL_ECHOPAIR_P(port, " Z", TMC_GET_PWMTHRS(Z, Z2));
|
|
#endif
|
|
#if AXIS_IS_TMC(X2) || AXIS_IS_TMC(Y2) || AXIS_IS_TMC(Z2)
|
|
SERIAL_EOL_P(port);
|
|
#endif
|
|
#if AXIS_IS_TMC(E0)
|
|
say_M913(PORTVAR_SOLO);
|
|
SERIAL_ECHOLNPAIR_P(port, " T0 E", TMC_GET_PWMTHRS(E, E0));
|
|
#endif
|
|
#if E_STEPPERS > 1 && AXIS_IS_TMC(E1)
|
|
say_M913(PORTVAR_SOLO);
|
|
SERIAL_ECHOLNPAIR_P(port, " T1 E", TMC_GET_PWMTHRS(E, E1));
|
|
#endif
|
|
#if E_STEPPERS > 2 && AXIS_IS_TMC(E2)
|
|
say_M913(PORTVAR_SOLO);
|
|
SERIAL_ECHOLNPAIR_P(port, " T2 E", TMC_GET_PWMTHRS(E, E2));
|
|
#endif
|
|
#if E_STEPPERS > 3 && AXIS_IS_TMC(E3)
|
|
say_M913(PORTVAR_SOLO);
|
|
SERIAL_ECHOLNPAIR_P(port, " T3 E", TMC_GET_PWMTHRS(E, E3));
|
|
#endif
|
|
#if E_STEPPERS > 4 && AXIS_IS_TMC(E4)
|
|
say_M913(PORTVAR_SOLO);
|
|
SERIAL_ECHOLNPAIR_P(port, " T4 E", TMC_GET_PWMTHRS(E, E4));
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
#endif // HYBRID_THRESHOLD
|
|
|
|
/**
|
|
* TMC2130 Sensorless homing thresholds
|
|
*/
|
|
#if ENABLED(SENSORLESS_HOMING)
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Sensorless homing threshold:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
#if X_SENSORLESS || Y_SENSORLESS || Z_SENSORLESS
|
|
say_M914(PORTVAR_SOLO);
|
|
#if X_SENSORLESS
|
|
SERIAL_ECHOPAIR_P(port, " X", stepperX.sgt());
|
|
#endif
|
|
#if Y_SENSORLESS
|
|
SERIAL_ECHOPAIR_P(port, " Y", stepperY.sgt());
|
|
#endif
|
|
#if Z_SENSORLESS
|
|
SERIAL_ECHOPAIR_P(port, " Z", stepperZ.sgt());
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
#endif
|
|
|
|
#define HAS_X2_SENSORLESS (defined(X_HOMING_SENSITIVITY) && AXIS_HAS_STALLGUARD(X2))
|
|
#define HAS_Y2_SENSORLESS (defined(Y_HOMING_SENSITIVITY) && AXIS_HAS_STALLGUARD(Y2))
|
|
#define HAS_Z2_SENSORLESS (defined(Z_HOMING_SENSITIVITY) && AXIS_HAS_STALLGUARD(Z2))
|
|
#if HAS_X2_SENSORLESS || HAS_Y2_SENSORLESS || HAS_Z2_SENSORLESS
|
|
say_M914(PORTVAR_SOLO);
|
|
SERIAL_ECHOPGM_P(port, " I1");
|
|
#if HAS_X2_SENSORLESS
|
|
SERIAL_ECHOPAIR_P(port, " X", stepperX2.sgt());
|
|
#endif
|
|
#if HAS_Y2_SENSORLESS
|
|
SERIAL_ECHOPAIR_P(port, " Y", stepperY2.sgt());
|
|
#endif
|
|
#if HAS_Z2_SENSORLESS
|
|
SERIAL_ECHOPAIR_P(port, " Z", stepperZ2.sgt());
|
|
#endif
|
|
SERIAL_EOL_P(port);
|
|
#endif
|
|
|
|
#endif // SENSORLESS_HOMING
|
|
|
|
#endif // HAS_TRINAMIC
|
|
|
|
/**
|
|
* Linear Advance
|
|
*/
|
|
#if ENABLED(LIN_ADVANCE)
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Linear Advance:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPAIR_P(port, " M900 K", planner.extruder_advance_K);
|
|
#endif
|
|
|
|
#if HAS_MOTOR_CURRENT_PWM
|
|
CONFIG_ECHO_START;
|
|
if (!forReplay) {
|
|
SERIAL_ECHOLNPGM_P(port, "Stepper motor currents:");
|
|
CONFIG_ECHO_START;
|
|
}
|
|
SERIAL_ECHOPAIR_P(port, " M907 X", stepper.motor_current_setting[0]);
|
|
SERIAL_ECHOPAIR_P(port, " Z", stepper.motor_current_setting[1]);
|
|
SERIAL_ECHOPAIR_P(port, " E", stepper.motor_current_setting[2]);
|
|
SERIAL_EOL_P(port);
|
|
#endif
|
|
|
|
/**
|
|
* Advanced Pause filament load & unload lengths
|
|
*/
|
|
#if ENABLED(ADVANCED_PAUSE_FEATURE)
|
|
if (!forReplay) {
|
|
CONFIG_ECHO_START;
|
|
SERIAL_ECHOLNPGM_P(port, "Filament load/unload lengths:");
|
|
}
|
|
CONFIG_ECHO_START;
|
|
#if EXTRUDERS == 1
|
|
say_M603(PORTVAR_SOLO);
|
|
SERIAL_ECHOPAIR_P(port, "L", LINEAR_UNIT(filament_change_load_length[0]));
|
|
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[0]));
|
|
#else
|
|
say_M603(PORTVAR_SOLO);
|
|
SERIAL_ECHOPAIR_P(port, "T0 L", LINEAR_UNIT(filament_change_load_length[0]));
|
|
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[0]));
|
|
CONFIG_ECHO_START;
|
|
say_M603(PORTVAR_SOLO);
|
|
SERIAL_ECHOPAIR_P(port, "T1 L", LINEAR_UNIT(filament_change_load_length[1]));
|
|
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[1]));
|
|
#if EXTRUDERS > 2
|
|
CONFIG_ECHO_START;
|
|
say_M603(PORTVAR_SOLO);
|
|
SERIAL_ECHOPAIR_P(port, "T2 L", LINEAR_UNIT(filament_change_load_length[2]));
|
|
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[2]));
|
|
#if EXTRUDERS > 3
|
|
CONFIG_ECHO_START;
|
|
say_M603(PORTVAR_SOLO);
|
|
SERIAL_ECHOPAIR_P(port, "T3 L", LINEAR_UNIT(filament_change_load_length[3]));
|
|
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[3]));
|
|
#if EXTRUDERS > 4
|
|
CONFIG_ECHO_START;
|
|
say_M603(PORTVAR_SOLO);
|
|
SERIAL_ECHOPAIR_P(port, "T4 L", LINEAR_UNIT(filament_change_load_length[4]));
|
|
SERIAL_ECHOLNPAIR_P(port, " U", LINEAR_UNIT(filament_change_unload_length[4]));
|
|
#endif // EXTRUDERS > 4
|
|
#endif // EXTRUDERS > 3
|
|
#endif // EXTRUDERS > 2
|
|
#endif // EXTRUDERS == 1
|
|
#endif // ADVANCED_PAUSE_FEATURE
|
|
}
|
|
|
|
#endif // !DISABLE_M503
|