You cannot select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
8033 lines
249 KiB
C++
8033 lines
249 KiB
C++
/**
|
|
* Marlin 3D Printer Firmware
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
*
|
|
* Based on Sprinter and grbl.
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*
|
|
*/
|
|
|
|
/**
|
|
*
|
|
* About Marlin
|
|
*
|
|
* This firmware is a mashup between Sprinter and grbl.
|
|
* - https://github.com/kliment/Sprinter
|
|
* - https://github.com/simen/grbl/tree
|
|
*
|
|
* It has preliminary support for Matthew Roberts advance algorithm
|
|
* - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
|
|
*/
|
|
|
|
#include "Marlin.h"
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
#include "vector_3.h"
|
|
#if ENABLED(AUTO_BED_LEVELING_GRID)
|
|
#include "qr_solve.h"
|
|
#endif
|
|
#endif // AUTO_BED_LEVELING_FEATURE
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
#include "mesh_bed_leveling.h"
|
|
#endif
|
|
|
|
#include "ultralcd.h"
|
|
#include "planner.h"
|
|
#include "stepper.h"
|
|
#include "endstops.h"
|
|
#include "temperature.h"
|
|
#include "cardreader.h"
|
|
#include "configuration_store.h"
|
|
#include "language.h"
|
|
#include "pins_arduino.h"
|
|
#include "math.h"
|
|
#include "buzzer.h"
|
|
|
|
#if ENABLED(USE_WATCHDOG)
|
|
#include "watchdog.h"
|
|
#endif
|
|
|
|
#if ENABLED(BLINKM)
|
|
#include "blinkm.h"
|
|
#include "Wire.h"
|
|
#endif
|
|
|
|
#if HAS_SERVOS
|
|
#include "servo.h"
|
|
#endif
|
|
|
|
#if HAS_DIGIPOTSS
|
|
#include <SPI.h>
|
|
#endif
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
#include "stepper_dac.h"
|
|
#endif
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
#include "twibus.h"
|
|
#endif
|
|
|
|
/**
|
|
* Look here for descriptions of G-codes:
|
|
* - http://linuxcnc.org/handbook/gcode/g-code.html
|
|
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
|
|
*
|
|
* Help us document these G-codes online:
|
|
* - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin
|
|
* - http://reprap.org/wiki/G-code
|
|
*
|
|
* -----------------
|
|
* Implemented Codes
|
|
* -----------------
|
|
*
|
|
* "G" Codes
|
|
*
|
|
* G0 -> G1
|
|
* G1 - Coordinated Movement X Y Z E
|
|
* G2 - CW ARC
|
|
* G3 - CCW ARC
|
|
* G4 - Dwell S<seconds> or P<milliseconds>
|
|
* G10 - retract filament according to settings of M207
|
|
* G11 - retract recover filament according to settings of M208
|
|
* G28 - Home one or more axes
|
|
* G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
|
|
* G30 - Single Z probe, probes bed at current XY location.
|
|
* G31 - Dock sled (Z_PROBE_SLED only)
|
|
* G32 - Undock sled (Z_PROBE_SLED only)
|
|
* G90 - Use Absolute Coordinates
|
|
* G91 - Use Relative Coordinates
|
|
* G92 - Set current position to coordinates given
|
|
*
|
|
* "M" Codes
|
|
*
|
|
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
|
|
* M1 - Same as M0
|
|
* M17 - Enable/Power all stepper motors
|
|
* M18 - Disable all stepper motors; same as M84
|
|
* M20 - List SD card
|
|
* M21 - Init SD card
|
|
* M22 - Release SD card
|
|
* M23 - Select SD file (M23 filename.g)
|
|
* M24 - Start/resume SD print
|
|
* M25 - Pause SD print
|
|
* M26 - Set SD position in bytes (M26 S12345)
|
|
* M27 - Report SD print status
|
|
* M28 - Start SD write (M28 filename.g)
|
|
* M29 - Stop SD write
|
|
* M30 - Delete file from SD (M30 filename.g)
|
|
* M31 - Output time since last M109 or SD card start to serial
|
|
* M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
|
|
* syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
|
|
* Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
|
|
* The '#' is necessary when calling from within sd files, as it stops buffer prereading
|
|
* M33 - Get the longname version of a path
|
|
* M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
|
|
* M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
|
|
* M75 - Start the print job timer
|
|
* M76 - Pause the print job timer
|
|
* M77 - Stop the print job timer
|
|
* M78 - Show statistical information about the print jobs
|
|
* M80 - Turn on Power Supply
|
|
* M81 - Turn off Power Supply
|
|
* M82 - Set E codes absolute (default)
|
|
* M83 - Set E codes relative while in Absolute Coordinates (G90) mode
|
|
* M84 - Disable steppers until next move,
|
|
* or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
|
|
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
* M92 - Set planner.axis_steps_per_unit - same syntax as G92
|
|
* M104 - Set extruder target temp
|
|
* M105 - Read current temp
|
|
* M106 - Fan on
|
|
* M107 - Fan off
|
|
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
|
|
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
|
|
* IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
|
|
* M110 - Set the current line number
|
|
* M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
|
|
* M112 - Emergency stop
|
|
* M113 - Get or set the timeout interval for Host Keepalive "busy" messages
|
|
* M114 - Output current position to serial port
|
|
* M115 - Capabilities string
|
|
* M117 - Display a message on the controller screen
|
|
* M119 - Output Endstop status to serial port
|
|
* M120 - Enable endstop detection
|
|
* M121 - Disable endstop detection
|
|
* M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
|
|
* M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
|
|
* M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
* M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
|
|
* M140 - Set bed target temp
|
|
* M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
|
|
* M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
|
|
* M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
* M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
|
|
* M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
|
|
* M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
|
* M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
|
|
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
|
|
* M206 - Set additional homing offset
|
|
* M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
|
|
* M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
|
* M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
* M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
* M220 - Set speed factor override percentage: S<factor in percent>
|
|
* M221 - Set extrude factor override percentage: S<factor in percent>
|
|
* M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
|
|
* M240 - Trigger a camera to take a photograph
|
|
* M250 - Set LCD contrast C<contrast value> (value 0..63)
|
|
* M280 - Set servo position absolute. P: servo index, S: angle or microseconds
|
|
* M300 - Play beep sound S<frequency Hz> P<duration ms>
|
|
* M301 - Set PID parameters P I and D
|
|
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
|
|
* M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
|
|
* M304 - Set bed PID parameters P I and D
|
|
* M380 - Activate solenoid on active extruder
|
|
* M381 - Disable all solenoids
|
|
* M400 - Finish all moves
|
|
* M401 - Lower Z probe if present
|
|
* M402 - Raise Z probe if present
|
|
* M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
|
|
* M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
|
|
* M406 - Turn off Filament Sensor extrusion control
|
|
* M407 - Display measured filament diameter
|
|
* M410 - Quickstop. Abort all the planned moves
|
|
* M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
|
|
* M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
|
|
* M428 - Set the home_offset logically based on the current_position
|
|
* M500 - Store parameters in EEPROM
|
|
* M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
|
|
* M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
|
|
* M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
|
|
* M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
* M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
* M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
|
|
* M666 - Set delta endstop adjustment
|
|
* M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
|
|
* M907 - Set digital trimpot motor current using axis codes.
|
|
* M908 - Control digital trimpot directly.
|
|
* M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value
|
|
* M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C
|
|
* M350 - Set microstepping mode.
|
|
* M351 - Toggle MS1 MS2 pins directly.
|
|
*
|
|
* ************ SCARA Specific - This can change to suit future G-code regulations
|
|
* M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
* M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
* M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
* M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
* M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
|
* M365 - SCARA calibration: Scaling factor, X, Y, Z axis
|
|
* ************* SCARA End ***************
|
|
*
|
|
* ************ Custom codes - This can change to suit future G-code regulations
|
|
* M100 - Watch Free Memory (For Debugging Only)
|
|
* M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
|
|
|
|
|
|
* M928 - Start SD logging (M928 filename.g) - ended by M29
|
|
* M999 - Restart after being stopped by error
|
|
*
|
|
* "T" Codes
|
|
*
|
|
* T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
|
|
*
|
|
*/
|
|
|
|
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
void gcode_M100();
|
|
#endif
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
CardReader card;
|
|
#endif
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
TWIBus i2c;
|
|
#endif
|
|
|
|
bool Running = true;
|
|
|
|
uint8_t marlin_debug_flags = DEBUG_NONE;
|
|
|
|
static float feedrate = 1500.0, saved_feedrate;
|
|
float current_position[NUM_AXIS] = { 0.0 };
|
|
static float destination[NUM_AXIS] = { 0.0 };
|
|
bool axis_known_position[3] = { false };
|
|
bool axis_homed[3] = { false };
|
|
|
|
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
|
|
|
|
static char* current_command, *current_command_args;
|
|
static int cmd_queue_index_r = 0;
|
|
static int cmd_queue_index_w = 0;
|
|
static int commands_in_queue = 0;
|
|
static char command_queue[BUFSIZE][MAX_CMD_SIZE];
|
|
|
|
const float homing_feedrate[] = HOMING_FEEDRATE;
|
|
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
|
|
int feedrate_multiplier = 100; //100->1 200->2
|
|
int saved_feedrate_multiplier;
|
|
int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
|
|
bool volumetric_enabled = false;
|
|
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
|
|
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
|
|
|
|
// The distance that XYZ has been offset by G92. Reset by G28.
|
|
float position_shift[3] = { 0 };
|
|
|
|
// This offset is added to the configured home position.
|
|
// Set by M206, M428, or menu item. Saved to EEPROM.
|
|
float home_offset[3] = { 0 };
|
|
|
|
// Software Endstops. Default to configured limits.
|
|
float sw_endstop_min[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
|
|
float sw_endstop_max[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
|
|
|
|
#if FAN_COUNT > 0
|
|
int fanSpeeds[FAN_COUNT] = { 0 };
|
|
#endif
|
|
|
|
// The active extruder (tool). Set with T<extruder> command.
|
|
uint8_t active_extruder = 0;
|
|
|
|
// Relative Mode. Enable with G91, disable with G90.
|
|
static bool relative_mode = false;
|
|
|
|
bool cancel_heatup = false;
|
|
|
|
const char errormagic[] PROGMEM = "Error:";
|
|
const char echomagic[] PROGMEM = "echo:";
|
|
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
|
|
|
|
static int serial_count = 0;
|
|
|
|
// GCode parameter pointer used by code_seen(), code_value(), etc.
|
|
static char* seen_pointer;
|
|
|
|
// Next Immediate GCode Command pointer. NULL if none.
|
|
const char* queued_commands_P = NULL;
|
|
|
|
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
|
|
|
|
// Inactivity shutdown
|
|
millis_t previous_cmd_ms = 0;
|
|
static millis_t max_inactive_time = 0;
|
|
static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL;
|
|
|
|
// Print Job Timer
|
|
#if ENABLED(PRINTCOUNTER)
|
|
PrintCounter print_job_timer = PrintCounter();
|
|
#else
|
|
Stopwatch print_job_timer = Stopwatch();
|
|
#endif
|
|
|
|
static uint8_t target_extruder;
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
int xy_travel_speed = XY_TRAVEL_SPEED;
|
|
float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
|
|
#endif
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
|
|
float z_endstop_adj = 0;
|
|
#endif
|
|
|
|
// Extruder offsets
|
|
#if EXTRUDERS > 1
|
|
#ifndef EXTRUDER_OFFSET_X
|
|
#define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder
|
|
#endif
|
|
#ifndef EXTRUDER_OFFSET_Y
|
|
#define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder
|
|
#endif
|
|
float extruder_offset[][EXTRUDERS] = {
|
|
EXTRUDER_OFFSET_X,
|
|
EXTRUDER_OFFSET_Y
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
, { 0 } // Z offsets for each extruder
|
|
#endif
|
|
};
|
|
#endif
|
|
|
|
#if HAS_SERVO_ENDSTOPS
|
|
const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
|
|
const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
int baricuda_valve_pressure = 0;
|
|
int baricuda_e_to_p_pressure = 0;
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
bool autoretract_enabled = false;
|
|
bool retracted[EXTRUDERS] = { false };
|
|
bool retracted_swap[EXTRUDERS] = { false };
|
|
|
|
float retract_length = RETRACT_LENGTH;
|
|
float retract_length_swap = RETRACT_LENGTH_SWAP;
|
|
float retract_feedrate = RETRACT_FEEDRATE;
|
|
float retract_zlift = RETRACT_ZLIFT;
|
|
float retract_recover_length = RETRACT_RECOVER_LENGTH;
|
|
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
|
|
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
|
|
|
|
#endif // FWRETRACT
|
|
|
|
#if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
|
|
bool powersupply =
|
|
#if ENABLED(PS_DEFAULT_OFF)
|
|
false
|
|
#else
|
|
true
|
|
#endif
|
|
;
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
#define TOWER_1 X_AXIS
|
|
#define TOWER_2 Y_AXIS
|
|
#define TOWER_3 Z_AXIS
|
|
|
|
float delta[3] = { 0 };
|
|
#define SIN_60 0.8660254037844386
|
|
#define COS_60 0.5
|
|
float endstop_adj[3] = { 0 };
|
|
// these are the default values, can be overriden with M665
|
|
float delta_radius = DELTA_RADIUS;
|
|
float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
|
|
float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
|
|
float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
|
|
float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
|
|
float delta_tower3_x = 0; // back middle tower
|
|
float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
|
|
float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
|
|
float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
|
|
float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
|
|
float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
|
|
float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
|
|
float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
|
|
float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
|
|
//float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
|
|
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
int delta_grid_spacing[2] = { 0, 0 };
|
|
float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
|
|
#endif
|
|
#else
|
|
static bool home_all_axis = true;
|
|
#endif
|
|
|
|
#if ENABLED(SCARA)
|
|
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
|
|
static float delta[3] = { 0 };
|
|
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
//Variables for Filament Sensor input
|
|
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
|
|
bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
|
|
float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
|
|
int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100
|
|
int filwidth_delay_index1 = 0; //index into ring buffer
|
|
int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
|
|
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
static bool filament_ran_out = false;
|
|
#endif
|
|
|
|
static bool send_ok[BUFSIZE];
|
|
|
|
#if HAS_SERVOS
|
|
Servo servo[NUM_SERVOS];
|
|
#endif
|
|
|
|
#ifdef CHDK
|
|
millis_t chdkHigh = 0;
|
|
boolean chdkActive = false;
|
|
#endif
|
|
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
int lpq_len = 20;
|
|
#endif
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
|
// States for managing Marlin and host communication
|
|
// Marlin sends messages if blocked or busy
|
|
enum MarlinBusyState {
|
|
NOT_BUSY, // Not in a handler
|
|
IN_HANDLER, // Processing a GCode
|
|
IN_PROCESS, // Known to be blocking command input (as in G29)
|
|
PAUSED_FOR_USER, // Blocking pending any input
|
|
PAUSED_FOR_INPUT // Blocking pending text input (concept)
|
|
};
|
|
|
|
static MarlinBusyState busy_state = NOT_BUSY;
|
|
static millis_t next_busy_signal_ms = 0;
|
|
uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL;
|
|
#define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0)
|
|
#else
|
|
#define host_keepalive() ;
|
|
#define KEEPALIVE_STATE(n) ;
|
|
#endif // HOST_KEEPALIVE_FEATURE
|
|
|
|
/**
|
|
* ***************************************************************************
|
|
* ******************************** FUNCTIONS ********************************
|
|
* ***************************************************************************
|
|
*/
|
|
|
|
void stop();
|
|
|
|
void get_available_commands();
|
|
void process_next_command();
|
|
|
|
void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise);
|
|
|
|
void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
|
|
|
|
static void report_current_position();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
void print_xyz(const char* prefix, const float x, const float y, const float z) {
|
|
SERIAL_ECHO(prefix);
|
|
SERIAL_ECHOPAIR(": (", x);
|
|
SERIAL_ECHOPAIR(", ", y);
|
|
SERIAL_ECHOPAIR(", ", z);
|
|
SERIAL_ECHOLNPGM(")");
|
|
}
|
|
void print_xyz(const char* prefix, const float xyz[]) {
|
|
print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
|
|
}
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
void print_xyz(const char* prefix, const vector_3 &xyz) {
|
|
print_xyz(prefix, xyz.x, xyz.y, xyz.z);
|
|
}
|
|
#endif
|
|
#define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0)
|
|
#endif
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
|
inline void sync_plan_position_delta() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position);
|
|
#endif
|
|
calculate_delta(current_position);
|
|
planner.set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
|
|
float extrude_min_temp = EXTRUDE_MINTEMP;
|
|
#endif
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
#include "SdFatUtil.h"
|
|
int freeMemory() { return SdFatUtil::FreeRam(); }
|
|
#else
|
|
extern "C" {
|
|
extern unsigned int __bss_end;
|
|
extern unsigned int __heap_start;
|
|
extern void* __brkval;
|
|
|
|
int freeMemory() {
|
|
int free_memory;
|
|
if ((int)__brkval == 0)
|
|
free_memory = ((int)&free_memory) - ((int)&__bss_end);
|
|
else
|
|
free_memory = ((int)&free_memory) - ((int)__brkval);
|
|
return free_memory;
|
|
}
|
|
}
|
|
#endif //!SDSUPPORT
|
|
|
|
/**
|
|
* Inject the next "immediate" command, when possible.
|
|
* Return true if any immediate commands remain to inject.
|
|
*/
|
|
static bool drain_queued_commands_P() {
|
|
if (queued_commands_P != NULL) {
|
|
size_t i = 0;
|
|
char c, cmd[30];
|
|
strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
|
|
cmd[sizeof(cmd) - 1] = '\0';
|
|
while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
|
|
cmd[i] = '\0';
|
|
if (enqueue_and_echo_command(cmd)) { // success?
|
|
if (c) // newline char?
|
|
queued_commands_P += i + 1; // advance to the next command
|
|
else
|
|
queued_commands_P = NULL; // nul char? no more commands
|
|
}
|
|
}
|
|
return (queued_commands_P != NULL); // return whether any more remain
|
|
}
|
|
|
|
/**
|
|
* Record one or many commands to run from program memory.
|
|
* Aborts the current queue, if any.
|
|
* Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
|
|
*/
|
|
void enqueue_and_echo_commands_P(const char* pgcode) {
|
|
queued_commands_P = pgcode;
|
|
drain_queued_commands_P(); // first command executed asap (when possible)
|
|
}
|
|
|
|
/**
|
|
* Once a new command is in the ring buffer, call this to commit it
|
|
*/
|
|
inline void _commit_command(bool say_ok) {
|
|
send_ok[cmd_queue_index_w] = say_ok;
|
|
cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
|
|
commands_in_queue++;
|
|
}
|
|
|
|
/**
|
|
* Copy a command directly into the main command buffer, from RAM.
|
|
* Returns true if successfully adds the command
|
|
*/
|
|
inline bool _enqueuecommand(const char* cmd, bool say_ok=false) {
|
|
if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
|
|
strcpy(command_queue[cmd_queue_index_w], cmd);
|
|
_commit_command(say_ok);
|
|
return true;
|
|
}
|
|
|
|
void enqueue_and_echo_command_now(const char* cmd) {
|
|
while (!enqueue_and_echo_command(cmd)) idle();
|
|
}
|
|
|
|
/**
|
|
* Enqueue with Serial Echo
|
|
*/
|
|
bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) {
|
|
if (_enqueuecommand(cmd, say_ok)) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_Enqueueing);
|
|
SERIAL_ECHO(cmd);
|
|
SERIAL_ECHOLNPGM("\"");
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
void setup_killpin() {
|
|
#if HAS_KILL
|
|
SET_INPUT(KILL_PIN);
|
|
WRITE(KILL_PIN, HIGH);
|
|
#endif
|
|
}
|
|
|
|
void setup_filrunoutpin() {
|
|
#if HAS_FILRUNOUT
|
|
pinMode(FILRUNOUT_PIN, INPUT);
|
|
#if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
|
|
WRITE(FILRUNOUT_PIN, HIGH);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
// Set home pin
|
|
void setup_homepin(void) {
|
|
#if HAS_HOME
|
|
SET_INPUT(HOME_PIN);
|
|
WRITE(HOME_PIN, HIGH);
|
|
#endif
|
|
}
|
|
|
|
|
|
void setup_photpin() {
|
|
#if HAS_PHOTOGRAPH
|
|
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void setup_powerhold() {
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
#if HAS_POWER_SWITCH
|
|
#if ENABLED(PS_DEFAULT_OFF)
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#else
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
|
|
#endif
|
|
#endif
|
|
}
|
|
|
|
void suicide() {
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, LOW);
|
|
#endif
|
|
}
|
|
|
|
void servo_init() {
|
|
#if NUM_SERVOS >= 1 && HAS_SERVO_0
|
|
servo[0].attach(SERVO0_PIN);
|
|
servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
|
|
#endif
|
|
#if NUM_SERVOS >= 2 && HAS_SERVO_1
|
|
servo[1].attach(SERVO1_PIN);
|
|
servo[1].detach();
|
|
#endif
|
|
#if NUM_SERVOS >= 3 && HAS_SERVO_2
|
|
servo[2].attach(SERVO2_PIN);
|
|
servo[2].detach();
|
|
#endif
|
|
#if NUM_SERVOS >= 4 && HAS_SERVO_3
|
|
servo[3].attach(SERVO3_PIN);
|
|
servo[3].detach();
|
|
#endif
|
|
|
|
#if HAS_SERVO_ENDSTOPS
|
|
|
|
endstops.enable_z_probe(false);
|
|
|
|
/**
|
|
* Set position of all defined Servo Endstops
|
|
*
|
|
* ** UNSAFE! - NEEDS UPDATE! **
|
|
*
|
|
* The servo might be deployed and positioned too low to stow
|
|
* when starting up the machine or rebooting the board.
|
|
* There's no way to know where the nozzle is positioned until
|
|
* homing has been done - no homing with z-probe without init!
|
|
*
|
|
*/
|
|
for (int i = 0; i < 3; i++)
|
|
if (servo_endstop_id[i] >= 0)
|
|
servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
|
|
|
|
#endif // HAS_SERVO_ENDSTOPS
|
|
|
|
}
|
|
|
|
/**
|
|
* Stepper Reset (RigidBoard, et.al.)
|
|
*/
|
|
#if HAS_STEPPER_RESET
|
|
void disableStepperDrivers() {
|
|
pinMode(STEPPER_RESET_PIN, OUTPUT);
|
|
digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
|
|
}
|
|
void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
|
|
#endif
|
|
|
|
/**
|
|
* Marlin entry-point: Set up before the program loop
|
|
* - Set up the kill pin, filament runout, power hold
|
|
* - Start the serial port
|
|
* - Print startup messages and diagnostics
|
|
* - Get EEPROM or default settings
|
|
* - Initialize managers for:
|
|
* • temperature
|
|
* • planner
|
|
* • watchdog
|
|
* • stepper
|
|
* • photo pin
|
|
* • servos
|
|
* • LCD controller
|
|
* • Digipot I2C
|
|
* • Z probe sled
|
|
* • status LEDs
|
|
*/
|
|
void setup() {
|
|
|
|
#ifdef DISABLE_JTAG
|
|
// Disable JTAG on AT90USB chips to free up pins for IO
|
|
MCUCR = 0x80;
|
|
MCUCR = 0x80;
|
|
#endif
|
|
|
|
setup_killpin();
|
|
setup_filrunoutpin();
|
|
setup_powerhold();
|
|
|
|
#if HAS_STEPPER_RESET
|
|
disableStepperDrivers();
|
|
#endif
|
|
|
|
MYSERIAL.begin(BAUDRATE);
|
|
SERIAL_PROTOCOLLNPGM("start");
|
|
SERIAL_ECHO_START;
|
|
|
|
// Check startup - does nothing if bootloader sets MCUSR to 0
|
|
byte mcu = MCUSR;
|
|
if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
|
|
if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
|
|
if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
|
|
if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
|
|
if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
|
|
MCUSR = 0;
|
|
|
|
SERIAL_ECHOPGM(MSG_MARLIN);
|
|
SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
|
|
|
|
#ifdef STRING_DISTRIBUTION_DATE
|
|
#ifdef STRING_CONFIG_H_AUTHOR
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
|
|
SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
|
|
SERIAL_ECHOPGM(MSG_AUTHOR);
|
|
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
|
|
SERIAL_ECHOPGM("Compiled: ");
|
|
SERIAL_ECHOLNPGM(__DATE__);
|
|
#endif // STRING_CONFIG_H_AUTHOR
|
|
#endif // STRING_DISTRIBUTION_DATE
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_FREE_MEMORY);
|
|
SERIAL_ECHO(freeMemory());
|
|
SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
|
|
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
|
|
|
|
// Send "ok" after commands by default
|
|
for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true;
|
|
|
|
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
|
|
Config_RetrieveSettings();
|
|
|
|
lcd_init();
|
|
|
|
tp_init(); // Initialize temperature loop
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
|
// Vital to init kinematic equivalent for X0 Y0 Z0
|
|
sync_plan_position_delta();
|
|
#endif
|
|
|
|
#if ENABLED(USE_WATCHDOG)
|
|
watchdog_init();
|
|
#endif
|
|
|
|
stepper.init(); // Initialize stepper, this enables interrupts!
|
|
setup_photpin();
|
|
servo_init();
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
|
|
#endif
|
|
|
|
#if HAS_STEPPER_RESET
|
|
enableStepperDrivers();
|
|
#endif
|
|
|
|
#if ENABLED(DIGIPOT_I2C)
|
|
digipot_i2c_init();
|
|
#endif
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
pinMode(SLED_PIN, OUTPUT);
|
|
digitalWrite(SLED_PIN, LOW); // turn it off
|
|
#endif // Z_PROBE_SLED
|
|
|
|
setup_homepin();
|
|
|
|
#ifdef STAT_LED_RED
|
|
pinMode(STAT_LED_RED, OUTPUT);
|
|
digitalWrite(STAT_LED_RED, LOW); // turn it off
|
|
#endif
|
|
|
|
#ifdef STAT_LED_BLUE
|
|
pinMode(STAT_LED_BLUE, OUTPUT);
|
|
digitalWrite(STAT_LED_BLUE, LOW); // turn it off
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* The main Marlin program loop
|
|
*
|
|
* - Save or log commands to SD
|
|
* - Process available commands (if not saving)
|
|
* - Call heater manager
|
|
* - Call inactivity manager
|
|
* - Call endstop manager
|
|
* - Call LCD update
|
|
*/
|
|
void loop() {
|
|
if (commands_in_queue < BUFSIZE) get_available_commands();
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
card.checkautostart(false);
|
|
#endif
|
|
|
|
if (commands_in_queue) {
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
if (card.saving) {
|
|
char* command = command_queue[cmd_queue_index_r];
|
|
if (strstr_P(command, PSTR("M29"))) {
|
|
// M29 closes the file
|
|
card.closefile();
|
|
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
|
|
ok_to_send();
|
|
}
|
|
else {
|
|
// Write the string from the read buffer to SD
|
|
card.write_command(command);
|
|
if (card.logging)
|
|
process_next_command(); // The card is saving because it's logging
|
|
else
|
|
ok_to_send();
|
|
}
|
|
}
|
|
else
|
|
process_next_command();
|
|
|
|
#else
|
|
|
|
process_next_command();
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
commands_in_queue--;
|
|
cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
|
|
}
|
|
endstops.report_state();
|
|
idle();
|
|
}
|
|
|
|
void gcode_line_error(const char* err, bool doFlush = true) {
|
|
SERIAL_ERROR_START;
|
|
serialprintPGM(err);
|
|
SERIAL_ERRORLN(gcode_LastN);
|
|
//Serial.println(gcode_N);
|
|
if (doFlush) FlushSerialRequestResend();
|
|
serial_count = 0;
|
|
}
|
|
|
|
inline void get_serial_commands() {
|
|
static char serial_line_buffer[MAX_CMD_SIZE];
|
|
static boolean serial_comment_mode = false;
|
|
|
|
// If the command buffer is empty for too long,
|
|
// send "wait" to indicate Marlin is still waiting.
|
|
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
|
|
static millis_t last_command_time = 0;
|
|
millis_t ms = millis();
|
|
if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) {
|
|
SERIAL_ECHOLNPGM(MSG_WAIT);
|
|
last_command_time = ms;
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* Loop while serial characters are incoming and the queue is not full
|
|
*/
|
|
while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
|
|
|
|
char serial_char = MYSERIAL.read();
|
|
|
|
/**
|
|
* If the character ends the line
|
|
*/
|
|
if (serial_char == '\n' || serial_char == '\r') {
|
|
|
|
serial_comment_mode = false; // end of line == end of comment
|
|
|
|
if (!serial_count) continue; // skip empty lines
|
|
|
|
serial_line_buffer[serial_count] = 0; // terminate string
|
|
serial_count = 0; //reset buffer
|
|
|
|
char* command = serial_line_buffer;
|
|
|
|
while (*command == ' ') command++; // skip any leading spaces
|
|
char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line
|
|
char* apos = strchr(command, '*');
|
|
|
|
if (npos) {
|
|
|
|
boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
|
|
|
|
if (M110) {
|
|
char* n2pos = strchr(command + 4, 'N');
|
|
if (n2pos) npos = n2pos;
|
|
}
|
|
|
|
gcode_N = strtol(npos + 1, NULL, 10);
|
|
|
|
if (gcode_N != gcode_LastN + 1 && !M110) {
|
|
gcode_line_error(PSTR(MSG_ERR_LINE_NO));
|
|
return;
|
|
}
|
|
|
|
if (apos) {
|
|
byte checksum = 0, count = 0;
|
|
while (command[count] != '*') checksum ^= command[count++];
|
|
|
|
if (strtol(apos + 1, NULL, 10) != checksum) {
|
|
gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
|
|
return;
|
|
}
|
|
// if no errors, continue parsing
|
|
}
|
|
else {
|
|
gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
|
|
return;
|
|
}
|
|
|
|
gcode_LastN = gcode_N;
|
|
// if no errors, continue parsing
|
|
}
|
|
else if (apos) { // No '*' without 'N'
|
|
gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
|
|
return;
|
|
}
|
|
|
|
// Movement commands alert when stopped
|
|
if (IsStopped()) {
|
|
char* gpos = strchr(command, 'G');
|
|
if (gpos) {
|
|
int codenum = strtol(gpos + 1, NULL, 10);
|
|
switch (codenum) {
|
|
case 0:
|
|
case 1:
|
|
case 2:
|
|
case 3:
|
|
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If command was e-stop process now
|
|
if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
|
|
|
|
#if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0
|
|
last_command_time = ms;
|
|
#endif
|
|
|
|
// Add the command to the queue
|
|
_enqueuecommand(serial_line_buffer, true);
|
|
}
|
|
else if (serial_count >= MAX_CMD_SIZE - 1) {
|
|
// Keep fetching, but ignore normal characters beyond the max length
|
|
// The command will be injected when EOL is reached
|
|
}
|
|
else if (serial_char == '\\') { // Handle escapes
|
|
if (MYSERIAL.available() > 0) {
|
|
// if we have one more character, copy it over
|
|
serial_char = MYSERIAL.read();
|
|
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
|
|
}
|
|
// otherwise do nothing
|
|
}
|
|
else { // it's not a newline, carriage return or escape char
|
|
if (serial_char == ';') serial_comment_mode = true;
|
|
if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char;
|
|
}
|
|
|
|
} // queue has space, serial has data
|
|
}
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
inline void get_sdcard_commands() {
|
|
static bool stop_buffering = false,
|
|
sd_comment_mode = false;
|
|
|
|
if (!card.sdprinting) return;
|
|
|
|
/**
|
|
* '#' stops reading from SD to the buffer prematurely, so procedural
|
|
* macro calls are possible. If it occurs, stop_buffering is triggered
|
|
* and the buffer is run dry; this character _can_ occur in serial com
|
|
* due to checksums, however, no checksums are used in SD printing.
|
|
*/
|
|
|
|
if (commands_in_queue == 0) stop_buffering = false;
|
|
|
|
uint16_t sd_count = 0;
|
|
bool card_eof = card.eof();
|
|
while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) {
|
|
int16_t n = card.get();
|
|
char sd_char = (char)n;
|
|
card_eof = card.eof();
|
|
if (card_eof || n == -1
|
|
|| sd_char == '\n' || sd_char == '\r'
|
|
|| ((sd_char == '#' || sd_char == ':') && !sd_comment_mode)
|
|
) {
|
|
if (card_eof) {
|
|
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
|
|
print_job_timer.stop();
|
|
char time[30];
|
|
millis_t t = print_job_timer.duration();
|
|
int hours = t / 60 / 60, minutes = (t / 60) % 60;
|
|
sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(time);
|
|
lcd_setstatus(time, true);
|
|
card.printingHasFinished();
|
|
card.checkautostart(true);
|
|
}
|
|
if (sd_char == '#') stop_buffering = true;
|
|
|
|
sd_comment_mode = false; //for new command
|
|
|
|
if (!sd_count) continue; //skip empty lines
|
|
|
|
command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string
|
|
sd_count = 0; //clear buffer
|
|
|
|
_commit_command(false);
|
|
}
|
|
else if (sd_count >= MAX_CMD_SIZE - 1) {
|
|
/**
|
|
* Keep fetching, but ignore normal characters beyond the max length
|
|
* The command will be injected when EOL is reached
|
|
*/
|
|
}
|
|
else {
|
|
if (sd_char == ';') sd_comment_mode = true;
|
|
if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
/**
|
|
* Add to the circular command queue the next command from:
|
|
* - The command-injection queue (queued_commands_P)
|
|
* - The active serial input (usually USB)
|
|
* - The SD card file being actively printed
|
|
*/
|
|
void get_available_commands() {
|
|
|
|
// if any immediate commands remain, don't get other commands yet
|
|
if (drain_queued_commands_P()) return;
|
|
|
|
get_serial_commands();
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
get_sdcard_commands();
|
|
#endif
|
|
}
|
|
|
|
bool code_has_value() {
|
|
int i = 1;
|
|
char c = seen_pointer[i];
|
|
while (c == ' ') c = seen_pointer[++i];
|
|
if (c == '-' || c == '+') c = seen_pointer[++i];
|
|
if (c == '.') c = seen_pointer[++i];
|
|
return NUMERIC(c);
|
|
}
|
|
|
|
float code_value() {
|
|
float ret;
|
|
char* e = strchr(seen_pointer, 'E');
|
|
if (e) {
|
|
*e = 0;
|
|
ret = strtod(seen_pointer + 1, NULL);
|
|
*e = 'E';
|
|
}
|
|
else
|
|
ret = strtod(seen_pointer + 1, NULL);
|
|
return ret;
|
|
}
|
|
|
|
long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
|
|
|
|
int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
|
|
|
|
bool code_seen(char code) {
|
|
seen_pointer = strchr(current_command_args, code);
|
|
return (seen_pointer != NULL); // Return TRUE if the code-letter was found
|
|
}
|
|
|
|
/**
|
|
* Set target_extruder from the T parameter or the active_extruder
|
|
*
|
|
* Returns TRUE if the target is invalid
|
|
*/
|
|
bool get_target_extruder_from_command(int code) {
|
|
if (code_seen('T')) {
|
|
short t = code_value_short();
|
|
if (t >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_CHAR('M');
|
|
SERIAL_ECHO(code);
|
|
SERIAL_ECHOPAIR(" " MSG_INVALID_EXTRUDER " ", t);
|
|
SERIAL_EOL;
|
|
return true;
|
|
}
|
|
target_extruder = t;
|
|
}
|
|
else
|
|
target_extruder = active_extruder;
|
|
|
|
return false;
|
|
}
|
|
|
|
#define DEFINE_PGM_READ_ANY(type, reader) \
|
|
static inline type pgm_read_any(const type *p) \
|
|
{ return pgm_read_##reader##_near(p); }
|
|
|
|
DEFINE_PGM_READ_ANY(float, float);
|
|
DEFINE_PGM_READ_ANY(signed char, byte);
|
|
|
|
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
|
|
static const PROGMEM type array##_P[3] = \
|
|
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
|
|
static inline type array(int axis) \
|
|
{ return pgm_read_any(&array##_P[axis]); }
|
|
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
|
|
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
|
|
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
|
|
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
#define DXC_FULL_CONTROL_MODE 0
|
|
#define DXC_AUTO_PARK_MODE 1
|
|
#define DXC_DUPLICATION_MODE 2
|
|
|
|
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
|
|
static float x_home_pos(int extruder) {
|
|
if (extruder == 0)
|
|
return base_home_pos(X_AXIS) + home_offset[X_AXIS];
|
|
else
|
|
/**
|
|
* In dual carriage mode the extruder offset provides an override of the
|
|
* second X-carriage offset when homed - otherwise X2_HOME_POS is used.
|
|
* This allow soft recalibration of the second extruder offset position
|
|
* without firmware reflash (through the M218 command).
|
|
*/
|
|
return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
|
|
}
|
|
|
|
static int x_home_dir(int extruder) {
|
|
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
|
|
}
|
|
|
|
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
|
|
static bool active_extruder_parked = false; // used in mode 1 & 2
|
|
static float raised_parked_position[NUM_AXIS]; // used in mode 1
|
|
static millis_t delayed_move_time = 0; // used in mode 1
|
|
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
|
|
static float duplicate_extruder_temp_offset = 0; // used in mode 2
|
|
bool extruder_duplication_enabled = false; // used in mode 2
|
|
|
|
#endif //DUAL_X_CARRIAGE
|
|
|
|
/**
|
|
* Software endstops can be used to monitor the open end of
|
|
* an axis that has a hardware endstop on the other end. Or
|
|
* they can prevent axes from moving past endstops and grinding.
|
|
*
|
|
* To keep doing their job as the coordinate system changes,
|
|
* the software endstop positions must be refreshed to remain
|
|
* at the same positions relative to the machine.
|
|
*/
|
|
static void update_software_endstops(AxisEnum axis) {
|
|
float offs = home_offset[axis] + position_shift[axis];
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (axis == X_AXIS) {
|
|
float dual_max_x = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
|
|
if (active_extruder != 0) {
|
|
sw_endstop_min[X_AXIS] = X2_MIN_POS + offs;
|
|
sw_endstop_max[X_AXIS] = dual_max_x + offs;
|
|
return;
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
|
sw_endstop_min[X_AXIS] = base_min_pos(X_AXIS) + offs;
|
|
sw_endstop_max[X_AXIS] = min(base_max_pos(X_AXIS), dual_max_x - duplicate_extruder_x_offset) + offs;
|
|
return;
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
sw_endstop_min[axis] = base_min_pos(axis) + offs;
|
|
sw_endstop_max[axis] = base_max_pos(axis) + offs;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Change the home offset for an axis, update the current
|
|
* position and the software endstops to retain the same
|
|
* relative distance to the new home.
|
|
*
|
|
* Since this changes the current_position, code should
|
|
* call sync_plan_position soon after this.
|
|
*/
|
|
static void set_home_offset(AxisEnum axis, float v) {
|
|
current_position[axis] += v - home_offset[axis];
|
|
home_offset[axis] = v;
|
|
update_software_endstops(axis);
|
|
}
|
|
|
|
static void set_axis_is_at_home(AxisEnum axis) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("set_axis_is_at_home(", axis);
|
|
SERIAL_ECHOLNPGM(") >>>");
|
|
}
|
|
#endif
|
|
|
|
position_shift[axis] = 0;
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (axis == X_AXIS && (active_extruder != 0 || dual_x_carriage_mode == DXC_DUPLICATION_MODE)) {
|
|
if (active_extruder != 0)
|
|
current_position[X_AXIS] = x_home_pos(active_extruder);
|
|
else
|
|
current_position[X_AXIS] = base_home_pos(X_AXIS) + home_offset[X_AXIS];
|
|
update_software_endstops(X_AXIS);
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(SCARA)
|
|
|
|
if (axis == X_AXIS || axis == Y_AXIS) {
|
|
|
|
float homeposition[3];
|
|
for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
|
|
|
|
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
|
|
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
|
|
|
|
/**
|
|
* Works out real Homeposition angles using inverse kinematics,
|
|
* and calculates homing offset using forward kinematics
|
|
*/
|
|
calculate_delta(homeposition);
|
|
|
|
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
|
|
|
|
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
|
|
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
calculate_SCARA_forward_Transform(delta);
|
|
|
|
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
|
|
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
|
|
current_position[axis] = delta[axis];
|
|
|
|
/**
|
|
* SCARA home positions are based on configuration since the actual
|
|
* limits are determined by the inverse kinematic transform.
|
|
*/
|
|
sw_endstop_min[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
|
|
sw_endstop_max[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
|
|
}
|
|
else
|
|
#endif
|
|
{
|
|
current_position[axis] = base_home_pos(axis) + home_offset[axis];
|
|
update_software_endstops(axis);
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
|
|
if (axis == Z_AXIS) {
|
|
current_position[Z_AXIS] -= zprobe_zoffset;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset);
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]);
|
|
DEBUG_POS("", current_position);
|
|
}
|
|
#endif
|
|
}
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis);
|
|
SERIAL_ECHOLNPGM(")");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Some planner shorthand inline functions
|
|
*/
|
|
inline void set_homing_bump_feedrate(AxisEnum axis) {
|
|
const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
|
|
int hbd = homing_bump_divisor[axis];
|
|
if (hbd < 1) {
|
|
hbd = 10;
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
|
|
}
|
|
feedrate = homing_feedrate[axis] / hbd;
|
|
}
|
|
//
|
|
// line_to_current_position
|
|
// Move the planner to the current position from wherever it last moved
|
|
// (or from wherever it has been told it is located).
|
|
//
|
|
inline void line_to_current_position() {
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder);
|
|
}
|
|
inline void line_to_z(float zPosition) {
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder);
|
|
}
|
|
//
|
|
// line_to_destination
|
|
// Move the planner, not necessarily synced with current_position
|
|
//
|
|
inline void line_to_destination(float mm_m) {
|
|
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder);
|
|
}
|
|
inline void line_to_destination() {
|
|
line_to_destination(feedrate);
|
|
}
|
|
/**
|
|
* sync_plan_position
|
|
* Set planner / stepper positions to the cartesian current_position.
|
|
* The stepper code translates these coordinates into step units.
|
|
* Allows translation between steps and units (mm) for cartesian & core robots
|
|
*/
|
|
inline void sync_plan_position() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position);
|
|
#endif
|
|
planner.set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
}
|
|
inline void sync_plan_position_e() { planner.set_e_position(current_position[E_AXIS]); }
|
|
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
|
|
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
|
|
|
|
static void setup_for_endstop_move() {
|
|
saved_feedrate = feedrate;
|
|
saved_feedrate_multiplier = feedrate_multiplier;
|
|
feedrate_multiplier = 100;
|
|
refresh_cmd_timeout();
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > endstops.enable()");
|
|
#endif
|
|
endstops.enable();
|
|
}
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
|
|
#if ENABLED(DELTA)
|
|
/**
|
|
* Calculate delta, start a line, and set current_position to destination
|
|
*/
|
|
void prepare_move_raw() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination);
|
|
#endif
|
|
refresh_cmd_timeout();
|
|
calculate_delta(destination);
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
|
|
set_current_to_destination();
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_GRID)
|
|
|
|
#if DISABLED(DELTA)
|
|
|
|
static void set_bed_level_equation_lsq(double* plane_equation_coefficients) {
|
|
|
|
//planner.bed_level_matrix.debug("bed level before");
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
planner.bed_level_matrix.set_to_identity();
|
|
if (DEBUGGING(LEVELING)) {
|
|
vector_3 uncorrected_position = planner.adjusted_position();
|
|
DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position);
|
|
DEBUG_POS(">>> set_bed_level_equation_lsq", current_position);
|
|
}
|
|
#endif
|
|
|
|
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
|
|
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
vector_3 corrected_position = planner.adjusted_position();
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", corrected_position);
|
|
#endif
|
|
|
|
sync_plan_position();
|
|
}
|
|
|
|
#endif // !DELTA
|
|
|
|
#else // !AUTO_BED_LEVELING_GRID
|
|
|
|
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
|
|
|
|
planner.bed_level_matrix.set_to_identity();
|
|
|
|
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
|
|
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
|
|
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
|
|
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
|
|
|
|
if (planeNormal.z < 0) {
|
|
planeNormal.x = -planeNormal.x;
|
|
planeNormal.y = -planeNormal.y;
|
|
planeNormal.z = -planeNormal.z;
|
|
}
|
|
|
|
planner.bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
|
|
|
|
vector_3 corrected_position = planner.adjusted_position();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
vector_3 uncorrected_position = corrected_position;
|
|
DEBUG_POS("set_bed_level_equation_3pts", uncorrected_position);
|
|
}
|
|
#endif
|
|
|
|
current_position[X_AXIS] = corrected_position.x;
|
|
current_position[Y_AXIS] = corrected_position.y;
|
|
current_position[Z_AXIS] = corrected_position.z;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", corrected_position);
|
|
#endif
|
|
|
|
sync_plan_position();
|
|
}
|
|
|
|
#endif // !AUTO_BED_LEVELING_GRID
|
|
|
|
static void run_z_probe() {
|
|
|
|
/**
|
|
* To prevent stepper_inactive_time from running out and
|
|
* EXTRUDER_RUNOUT_PREVENT from extruding
|
|
*/
|
|
refresh_cmd_timeout();
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
float start_z = current_position[Z_AXIS];
|
|
long start_steps = stepper.position(Z_AXIS);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
|
|
#endif
|
|
|
|
// move down slowly until you find the bed
|
|
feedrate = homing_feedrate[Z_AXIS] / 4;
|
|
destination[Z_AXIS] = -10;
|
|
prepare_move_raw(); // this will also set_current_to_destination
|
|
stepper.synchronize();
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
|
|
/**
|
|
* We have to let the planner know where we are right now as it
|
|
* is not where we said to go.
|
|
*/
|
|
long stop_steps = stepper.position(Z_AXIS);
|
|
float mm = start_z - float(start_steps - stop_steps) / planner.axis_steps_per_unit[Z_AXIS];
|
|
current_position[Z_AXIS] = mm;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position);
|
|
#endif
|
|
|
|
sync_plan_position_delta();
|
|
|
|
#else // !DELTA
|
|
|
|
planner.bed_level_matrix.set_to_identity();
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
// Move down until the Z probe (or endstop?) is triggered
|
|
float zPosition = -(Z_MAX_LENGTH + 10);
|
|
line_to_z(zPosition);
|
|
stepper.synchronize();
|
|
|
|
// Tell the planner where we ended up - Get this from the stepper handler
|
|
zPosition = stepper.get_axis_position_mm(Z_AXIS);
|
|
planner.set_position(
|
|
current_position[X_AXIS], current_position[Y_AXIS], zPosition,
|
|
current_position[E_AXIS]
|
|
);
|
|
|
|
// move up the retract distance
|
|
zPosition += home_bump_mm(Z_AXIS);
|
|
line_to_z(zPosition);
|
|
stepper.synchronize();
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
|
|
// move back down slowly to find bed
|
|
set_homing_bump_feedrate(Z_AXIS);
|
|
|
|
zPosition -= home_bump_mm(Z_AXIS) * 2;
|
|
line_to_z(zPosition);
|
|
stepper.synchronize();
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
|
|
// Get the current stepper position after bumping an endstop
|
|
current_position[Z_AXIS] = stepper.get_axis_position_mm(Z_AXIS);
|
|
sync_plan_position();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position);
|
|
#endif
|
|
|
|
#endif // !DELTA
|
|
}
|
|
|
|
/**
|
|
* Plan a move to (X, Y, Z) and set the current_position
|
|
* The final current_position may not be the one that was requested
|
|
*/
|
|
static void do_blocking_move_to(float x, float y, float z) {
|
|
float oldFeedRate = feedrate;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z);
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
feedrate = XY_TRAVEL_SPEED;
|
|
|
|
destination[X_AXIS] = x;
|
|
destination[Y_AXIS] = y;
|
|
destination[Z_AXIS] = z;
|
|
prepare_move_raw(); // this will also set_current_to_destination
|
|
stepper.synchronize();
|
|
|
|
#else
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
current_position[Z_AXIS] = z;
|
|
line_to_current_position();
|
|
stepper.synchronize();
|
|
|
|
feedrate = xy_travel_speed;
|
|
|
|
current_position[X_AXIS] = x;
|
|
current_position[Y_AXIS] = y;
|
|
line_to_current_position();
|
|
stepper.synchronize();
|
|
|
|
#endif
|
|
|
|
feedrate = oldFeedRate;
|
|
}
|
|
|
|
inline void do_blocking_move_to_xy(float x, float y) {
|
|
do_blocking_move_to(x, y, current_position[Z_AXIS]);
|
|
}
|
|
|
|
inline void do_blocking_move_to_x(float x) {
|
|
do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]);
|
|
}
|
|
|
|
inline void do_blocking_move_to_z(float z) {
|
|
do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z);
|
|
}
|
|
|
|
inline void raise_z_after_probing() {
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING);
|
|
}
|
|
|
|
static void clean_up_after_endstop_move() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops.not_homing()");
|
|
#endif
|
|
endstops.not_homing();
|
|
feedrate = saved_feedrate;
|
|
feedrate_multiplier = saved_feedrate_multiplier;
|
|
refresh_cmd_timeout();
|
|
}
|
|
|
|
#if ENABLED(HAS_Z_MIN_PROBE)
|
|
|
|
static void deploy_z_probe() {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position);
|
|
#endif
|
|
|
|
if (endstops.z_probe_enabled) return;
|
|
|
|
#if HAS_SERVO_ENDSTOPS
|
|
|
|
// Engage Z Servo endstop if enabled
|
|
if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
|
|
|
|
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
|
|
|
|
// If endstop is already false, the Z probe is deployed
|
|
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
|
|
if (z_probe_endstop)
|
|
#else
|
|
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
|
if (z_min_endstop)
|
|
#endif
|
|
{
|
|
|
|
// Move to the start position to initiate deployment
|
|
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
|
|
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
|
|
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
|
|
prepare_move_raw(); // this will also set_current_to_destination
|
|
|
|
// Move to engage deployment
|
|
if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE)
|
|
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
|
|
if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X)
|
|
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
|
|
if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y)
|
|
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
|
|
if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z)
|
|
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
|
|
prepare_move_raw();
|
|
|
|
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
|
|
if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
|
|
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
|
|
|
|
// Move to trigger deployment
|
|
if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE)
|
|
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
|
|
if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X)
|
|
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
|
|
if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y)
|
|
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
|
|
if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z)
|
|
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
|
|
|
|
prepare_move_raw();
|
|
#endif
|
|
}
|
|
|
|
// Partially Home X,Y for safety
|
|
destination[X_AXIS] = destination[X_AXIS] * 0.75;
|
|
destination[Y_AXIS] = destination[Y_AXIS] * 0.75;
|
|
prepare_move_raw(); // this will also set_current_to_destination
|
|
|
|
stepper.synchronize();
|
|
|
|
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
|
|
if (z_probe_endstop)
|
|
#else
|
|
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
|
if (z_min_endstop)
|
|
#endif
|
|
{
|
|
if (IsRunning()) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
|
|
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
}
|
|
stop();
|
|
}
|
|
|
|
#endif // Z_PROBE_ALLEN_KEY
|
|
|
|
#if ENABLED(FIX_MOUNTED_PROBE)
|
|
// Noting to be done. Just set endstops.z_probe_enabled
|
|
#endif
|
|
|
|
endstops.enable_z_probe();
|
|
|
|
}
|
|
|
|
static void stow_z_probe(bool doRaise = true) {
|
|
#if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0))
|
|
UNUSED(doRaise);
|
|
#endif
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position);
|
|
#endif
|
|
|
|
if (!endstops.z_probe_enabled) return;
|
|
|
|
#if HAS_SERVO_ENDSTOPS
|
|
|
|
// Retract Z Servo endstop if enabled
|
|
if (servo_endstop_id[Z_AXIS] >= 0) {
|
|
|
|
#if Z_RAISE_AFTER_PROBING > 0
|
|
if (doRaise) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING);
|
|
SERIAL_EOL;
|
|
SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()");
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
raise_z_after_probing(); // this also updates current_position
|
|
stepper.synchronize();
|
|
}
|
|
#endif
|
|
|
|
// Change the Z servo angle
|
|
servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
|
|
}
|
|
|
|
#elif ENABLED(Z_PROBE_ALLEN_KEY)
|
|
|
|
// Move up for safety
|
|
feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
|
|
|
|
#if Z_RAISE_AFTER_PROBING > 0
|
|
destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
|
|
prepare_move_raw(); // this will also set_current_to_destination
|
|
#endif
|
|
|
|
// Move to the start position to initiate retraction
|
|
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
|
|
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
|
|
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
|
|
prepare_move_raw();
|
|
|
|
// Move the nozzle down to push the Z probe into retracted position
|
|
if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE)
|
|
feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
|
|
if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X)
|
|
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
|
|
if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y)
|
|
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
|
|
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
|
|
prepare_move_raw();
|
|
|
|
// Move up for safety
|
|
if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE)
|
|
feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
|
|
if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X)
|
|
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
|
|
if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y)
|
|
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
|
|
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
|
|
prepare_move_raw();
|
|
|
|
// Home XY for safety
|
|
feedrate = homing_feedrate[X_AXIS] / 2;
|
|
destination[X_AXIS] = 0;
|
|
destination[Y_AXIS] = 0;
|
|
prepare_move_raw(); // this will also set_current_to_destination
|
|
|
|
stepper.synchronize();
|
|
|
|
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
|
|
if (!z_probe_endstop)
|
|
#else
|
|
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
|
|
if (!z_min_endstop)
|
|
#endif
|
|
{
|
|
if (IsRunning()) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
|
|
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
|
|
}
|
|
stop();
|
|
}
|
|
#endif // Z_PROBE_ALLEN_KEY
|
|
|
|
#if ENABLED(FIX_MOUNTED_PROBE)
|
|
// Nothing to do here. Just clear endstops.z_probe_enabled
|
|
#endif
|
|
|
|
endstops.enable_z_probe(false);
|
|
}
|
|
#endif // HAS_Z_MIN_PROBE
|
|
|
|
enum ProbeAction {
|
|
ProbeStay = 0,
|
|
ProbeDeploy = _BV(0),
|
|
ProbeStow = _BV(1),
|
|
ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
|
|
};
|
|
|
|
// Probe bed height at position (x,y), returns the measured z value
|
|
static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("probe_pt >>>");
|
|
SERIAL_ECHOPAIR("> ProbeAction:", probe_action);
|
|
SERIAL_EOL;
|
|
DEBUG_POS("", current_position);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
|
|
SERIAL_EOL;
|
|
SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
// Move Z up to the z_before height, then move the Z probe to the given XY
|
|
do_blocking_move_to_z(z_before); // this also updates current_position
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER));
|
|
SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
// this also updates current_position
|
|
do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER));
|
|
|
|
#if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
|
|
if (probe_action & ProbeDeploy) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy");
|
|
#endif
|
|
deploy_z_probe();
|
|
}
|
|
#endif
|
|
|
|
run_z_probe();
|
|
float measured_z = current_position[Z_AXIS];
|
|
|
|
#if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
|
|
if (probe_action & ProbeStow) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
|
|
#endif
|
|
stow_z_probe();
|
|
}
|
|
#endif
|
|
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM("Bed X: ");
|
|
SERIAL_PROTOCOL_F(x, 3);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
SERIAL_PROTOCOL_F(y, 3);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
SERIAL_PROTOCOL_F(measured_z, 3);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt");
|
|
#endif
|
|
|
|
return measured_z;
|
|
}
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
/**
|
|
* All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
|
|
*/
|
|
static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
|
|
if (bed_level[x][y] != 0.0) {
|
|
return; // Don't overwrite good values.
|
|
}
|
|
float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right.
|
|
float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back.
|
|
float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal.
|
|
float median = c; // Median is robust (ignores outliers).
|
|
if (a < b) {
|
|
if (b < c) median = b;
|
|
if (c < a) median = a;
|
|
}
|
|
else { // b <= a
|
|
if (c < b) median = b;
|
|
if (a < c) median = a;
|
|
}
|
|
bed_level[x][y] = median;
|
|
}
|
|
|
|
/**
|
|
* Fill in the unprobed points (corners of circular print surface)
|
|
* using linear extrapolation, away from the center.
|
|
*/
|
|
static void extrapolate_unprobed_bed_level() {
|
|
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
|
|
for (int y = 0; y <= half; y++) {
|
|
for (int x = 0; x <= half; x++) {
|
|
if (x + y < 3) continue;
|
|
extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0);
|
|
extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0);
|
|
extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0);
|
|
extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0);
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Print calibration results for plotting or manual frame adjustment.
|
|
*/
|
|
static void print_bed_level() {
|
|
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
|
|
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
|
|
SERIAL_PROTOCOL_F(bed_level[x][y], 2);
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Reset calibration results to zero.
|
|
*/
|
|
void reset_bed_level() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level");
|
|
#endif
|
|
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
|
|
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
|
|
bed_level[x][y] = 0.0;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // DELTA
|
|
|
|
#if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
|
|
|
|
void raise_z_for_servo() {
|
|
float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
|
|
/**
|
|
* The zprobe_zoffset is negative any switch below the nozzle, so
|
|
* multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe
|
|
*/
|
|
z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos;
|
|
if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
|
|
}
|
|
|
|
#endif
|
|
|
|
#endif // AUTO_BED_LEVELING_FEATURE
|
|
|
|
#if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
static void axis_unhomed_error() {
|
|
LCD_MESSAGEPGM(MSG_YX_UNHOMED);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_YX_UNHOMED);
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
|
|
#ifndef SLED_DOCKING_OFFSET
|
|
#define SLED_DOCKING_OFFSET 0
|
|
#endif
|
|
|
|
/**
|
|
* Method to dock/undock a sled designed by Charles Bell.
|
|
*
|
|
* dock[in] If true, move to MAX_X and engage the electromagnet
|
|
* offset[in] The additional distance to move to adjust docking location
|
|
*/
|
|
static void dock_sled(bool dock, int offset = 0) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("dock_sled(", dock);
|
|
SERIAL_ECHOLNPGM(")");
|
|
}
|
|
#endif
|
|
|
|
if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
|
|
axis_unhomed_error();
|
|
return;
|
|
}
|
|
|
|
if (endstops.z_probe_enabled == !dock) return; // already docked/undocked?
|
|
|
|
float oldXpos = current_position[X_AXIS]; // save x position
|
|
if (dock) {
|
|
#if Z_RAISE_AFTER_PROBING > 0
|
|
raise_z_after_probing(); // raise Z
|
|
#endif
|
|
// Dock sled a bit closer to ensure proper capturing
|
|
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1);
|
|
digitalWrite(SLED_PIN, LOW); // turn off magnet
|
|
}
|
|
else {
|
|
float z_loc = current_position[Z_AXIS];
|
|
if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
|
|
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
|
|
digitalWrite(SLED_PIN, HIGH); // turn on magnet
|
|
}
|
|
do_blocking_move_to_x(oldXpos); // return to position before docking
|
|
|
|
endstops.enable_z_probe(!dock); // logically disable docked probe
|
|
}
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
|
|
|
|
/**
|
|
* Home an individual axis
|
|
*/
|
|
|
|
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
|
|
|
|
static void homeaxis(AxisEnum axis) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR(">>> homeaxis(", axis);
|
|
SERIAL_ECHOLNPGM(")");
|
|
}
|
|
#endif
|
|
#define HOMEAXIS_DO(LETTER) \
|
|
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
|
|
|
|
if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
|
|
|
|
int axis_home_dir =
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
(axis == X_AXIS) ? x_home_dir(active_extruder) :
|
|
#endif
|
|
home_dir(axis);
|
|
|
|
// Set the axis position as setup for the move
|
|
current_position[axis] = 0;
|
|
sync_plan_position();
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
#define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY
|
|
#define _Z_PROBE_SUBTEST false // Z will never be invoked
|
|
#define _Z_DEPLOY (dock_sled(false))
|
|
#define _Z_STOW (dock_sled(true))
|
|
#elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
|
|
#define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY
|
|
#define _Z_PROBE_SUBTEST false // Z will never be invoked
|
|
#define _Z_DEPLOY (deploy_z_probe())
|
|
#define _Z_STOW (stow_z_probe())
|
|
#elif HAS_SERVO_ENDSTOPS
|
|
#define _Z_SERVO_TEST true // servo.move X, Y, Z
|
|
#define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe
|
|
#endif
|
|
|
|
if (axis == Z_AXIS) {
|
|
// If there's a Z probe that needs deployment...
|
|
#if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
|
|
// ...and homing Z towards the bed? Deploy it.
|
|
if (axis_home_dir < 0) _Z_DEPLOY;
|
|
#endif
|
|
}
|
|
|
|
#if HAS_SERVO_ENDSTOPS
|
|
// Engage an X or Y Servo endstop if enabled
|
|
if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
|
|
servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
|
|
if (_Z_PROBE_SUBTEST) endstops.z_probe_enabled = true;
|
|
}
|
|
#endif
|
|
|
|
// Set a flag for Z motor locking
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
if (axis == Z_AXIS) stepper.set_homing_flag(true);
|
|
#endif
|
|
|
|
// Move towards the endstop until an endstop is triggered
|
|
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
|
|
feedrate = homing_feedrate[axis];
|
|
line_to_destination();
|
|
stepper.synchronize();
|
|
|
|
// Set the axis position as setup for the move
|
|
current_position[axis] = 0;
|
|
sync_plan_position();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
|
|
#endif
|
|
endstops.enable(false); // Disable endstops while moving away
|
|
|
|
// Move away from the endstop by the axis HOME_BUMP_MM
|
|
destination[axis] = -home_bump_mm(axis) * axis_home_dir;
|
|
line_to_destination();
|
|
stepper.synchronize();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
|
|
#endif
|
|
endstops.enable(true); // Enable endstops for next homing move
|
|
|
|
// Slow down the feedrate for the next move
|
|
set_homing_bump_feedrate(axis);
|
|
|
|
// Move slowly towards the endstop until triggered
|
|
destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
|
|
line_to_destination();
|
|
stepper.synchronize();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position);
|
|
#endif
|
|
|
|
#if ENABLED(Z_DUAL_ENDSTOPS)
|
|
if (axis == Z_AXIS) {
|
|
float adj = fabs(z_endstop_adj);
|
|
bool lockZ1;
|
|
if (axis_home_dir > 0) {
|
|
adj = -adj;
|
|
lockZ1 = (z_endstop_adj > 0);
|
|
}
|
|
else
|
|
lockZ1 = (z_endstop_adj < 0);
|
|
|
|
if (lockZ1) stepper.set_z_lock(true); else stepper.set_z2_lock(true);
|
|
sync_plan_position();
|
|
|
|
// Move to the adjusted endstop height
|
|
feedrate = homing_feedrate[axis];
|
|
destination[Z_AXIS] = adj;
|
|
line_to_destination();
|
|
stepper.synchronize();
|
|
|
|
if (lockZ1) stepper.set_z_lock(false); else stepper.set_z2_lock(false);
|
|
stepper.set_homing_flag(false);
|
|
} // Z_AXIS
|
|
#endif
|
|
|
|
#if ENABLED(DELTA)
|
|
// retrace by the amount specified in endstop_adj
|
|
if (endstop_adj[axis] * axis_home_dir < 0) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(false)");
|
|
#endif
|
|
endstops.enable(false); // Disable endstops while moving away
|
|
sync_plan_position();
|
|
destination[axis] = endstop_adj[axis];
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
|
|
DEBUG_POS("", destination);
|
|
}
|
|
#endif
|
|
line_to_destination();
|
|
stepper.synchronize();
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> endstops.enable(true)");
|
|
#endif
|
|
endstops.enable(true); // Enable endstops for next homing move
|
|
}
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
else {
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// Set the axis position to its home position (plus home offsets)
|
|
set_axis_is_at_home(axis);
|
|
sync_plan_position();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position);
|
|
#endif
|
|
|
|
destination[axis] = current_position[axis];
|
|
feedrate = 0.0;
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
axis_known_position[axis] = true;
|
|
axis_homed[axis] = true;
|
|
|
|
// Put away the Z probe
|
|
#if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE)
|
|
if (axis == Z_AXIS && axis_home_dir < 0) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW));
|
|
#endif
|
|
_Z_STOW;
|
|
}
|
|
#endif
|
|
|
|
// Retract Servo endstop if enabled
|
|
#if HAS_SERVO_ENDSTOPS
|
|
if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
|
|
#endif
|
|
servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
|
|
if (_Z_PROBE_SUBTEST) endstops.enable_z_probe(false);
|
|
}
|
|
#endif
|
|
|
|
}
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("<<< homeaxis(", axis);
|
|
SERIAL_ECHOLNPGM(")");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
void retract(bool retracting, bool swapping = false) {
|
|
|
|
if (retracting == retracted[active_extruder]) return;
|
|
|
|
float oldFeedrate = feedrate;
|
|
|
|
set_destination_to_current();
|
|
|
|
if (retracting) {
|
|
|
|
feedrate = retract_feedrate * 60;
|
|
current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
|
|
sync_plan_position_e();
|
|
prepare_move();
|
|
|
|
if (retract_zlift > 0.01) {
|
|
current_position[Z_AXIS] -= retract_zlift;
|
|
#if ENABLED(DELTA)
|
|
sync_plan_position_delta();
|
|
#else
|
|
sync_plan_position();
|
|
#endif
|
|
prepare_move();
|
|
}
|
|
}
|
|
else {
|
|
|
|
if (retract_zlift > 0.01) {
|
|
current_position[Z_AXIS] += retract_zlift;
|
|
#if ENABLED(DELTA)
|
|
sync_plan_position_delta();
|
|
#else
|
|
sync_plan_position();
|
|
#endif
|
|
}
|
|
|
|
feedrate = retract_recover_feedrate * 60;
|
|
float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
|
|
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
|
|
sync_plan_position_e();
|
|
prepare_move();
|
|
}
|
|
|
|
feedrate = oldFeedrate;
|
|
retracted[active_extruder] = retracting;
|
|
|
|
} // retract()
|
|
|
|
#endif // FWRETRACT
|
|
|
|
/**
|
|
* ***************************************************************************
|
|
* ***************************** G-CODE HANDLING *****************************
|
|
* ***************************************************************************
|
|
*/
|
|
|
|
/**
|
|
* Set XYZE destination and feedrate from the current GCode command
|
|
*
|
|
* - Set destination from included axis codes
|
|
* - Set to current for missing axis codes
|
|
* - Set the feedrate, if included
|
|
*/
|
|
void gcode_get_destination() {
|
|
for (int i = 0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i]))
|
|
destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
|
|
else
|
|
destination[i] = current_position[i];
|
|
}
|
|
if (code_seen('F')) {
|
|
float next_feedrate = code_value();
|
|
if (next_feedrate > 0.0) feedrate = next_feedrate;
|
|
}
|
|
}
|
|
|
|
void unknown_command_error() {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
|
|
SERIAL_ECHO(current_command);
|
|
SERIAL_ECHOPGM("\"\n");
|
|
}
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
|
/**
|
|
* Output a "busy" message at regular intervals
|
|
* while the machine is not accepting commands.
|
|
*/
|
|
void host_keepalive() {
|
|
millis_t ms = millis();
|
|
if (host_keepalive_interval && busy_state != NOT_BUSY) {
|
|
if (PENDING(ms, next_busy_signal_ms)) return;
|
|
switch (busy_state) {
|
|
case IN_HANDLER:
|
|
case IN_PROCESS:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING);
|
|
break;
|
|
case PAUSED_FOR_USER:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER);
|
|
break;
|
|
case PAUSED_FOR_INPUT:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
next_busy_signal_ms = ms + host_keepalive_interval * 1000UL;
|
|
}
|
|
|
|
#endif //HOST_KEEPALIVE_FEATURE
|
|
|
|
/**
|
|
* G0, G1: Coordinated movement of X Y Z E axes
|
|
*/
|
|
inline void gcode_G0_G1() {
|
|
if (IsRunning()) {
|
|
gcode_get_destination(); // For X Y Z E F
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
|
|
float echange = destination[E_AXIS] - current_position[E_AXIS];
|
|
// Is this move an attempt to retract or recover?
|
|
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
|
|
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
|
|
sync_plan_position_e(); // AND from the planner
|
|
retract(!retracted[active_extruder]);
|
|
return;
|
|
}
|
|
}
|
|
|
|
#endif //FWRETRACT
|
|
|
|
prepare_move();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* G2: Clockwise Arc
|
|
* G3: Counterclockwise Arc
|
|
*/
|
|
inline void gcode_G2_G3(bool clockwise) {
|
|
if (IsRunning()) {
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
bool relative_mode_backup = relative_mode;
|
|
relative_mode = true;
|
|
#endif
|
|
|
|
gcode_get_destination();
|
|
|
|
#if ENABLED(SF_ARC_FIX)
|
|
relative_mode = relative_mode_backup;
|
|
#endif
|
|
|
|
// Center of arc as offset from current_position
|
|
float arc_offset[2] = {
|
|
code_seen('I') ? code_value() : 0,
|
|
code_seen('J') ? code_value() : 0
|
|
};
|
|
|
|
// Send an arc to the planner
|
|
plan_arc(destination, arc_offset, clockwise);
|
|
|
|
refresh_cmd_timeout();
|
|
}
|
|
}
|
|
|
|
/**
|
|
* G4: Dwell S<seconds> or P<milliseconds>
|
|
*/
|
|
inline void gcode_G4() {
|
|
millis_t codenum = 0;
|
|
|
|
if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
|
|
if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait
|
|
|
|
stepper.synchronize();
|
|
refresh_cmd_timeout();
|
|
codenum += previous_cmd_ms; // keep track of when we started waiting
|
|
|
|
if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
|
|
|
|
while (PENDING(millis(), codenum)) idle();
|
|
}
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
/**
|
|
* G10 - Retract filament according to settings of M207
|
|
* G11 - Recover filament according to settings of M208
|
|
*/
|
|
inline void gcode_G10_G11(bool doRetract=false) {
|
|
#if EXTRUDERS > 1
|
|
if (doRetract) {
|
|
retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
|
|
}
|
|
#endif
|
|
retract(doRetract
|
|
#if EXTRUDERS > 1
|
|
, retracted_swap[active_extruder]
|
|
#endif
|
|
);
|
|
}
|
|
|
|
#endif //FWRETRACT
|
|
|
|
/**
|
|
* G28: Home all axes according to settings
|
|
*
|
|
* Parameters
|
|
*
|
|
* None Home to all axes with no parameters.
|
|
* With QUICK_HOME enabled XY will home together, then Z.
|
|
*
|
|
* Cartesian parameters
|
|
*
|
|
* X Home to the X endstop
|
|
* Y Home to the Y endstop
|
|
* Z Home to the Z endstop
|
|
*
|
|
*/
|
|
inline void gcode_G28() {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>");
|
|
#endif
|
|
|
|
// Wait for planner moves to finish!
|
|
stepper.synchronize();
|
|
|
|
// For auto bed leveling, clear the level matrix
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
planner.bed_level_matrix.set_to_identity();
|
|
#if ENABLED(DELTA)
|
|
reset_bed_level();
|
|
#endif
|
|
#endif
|
|
|
|
/**
|
|
* For mesh bed leveling deactivate the mesh calculations, will be turned
|
|
* on again when homing all axis
|
|
*/
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
uint8_t mbl_was_active = mbl.active;
|
|
mbl.active = false;
|
|
#endif
|
|
|
|
setup_for_endstop_move();
|
|
|
|
/**
|
|
* Directly after a reset this is all 0. Later we get a hint if we have
|
|
* to raise z or not.
|
|
*/
|
|
set_destination_to_current();
|
|
|
|
feedrate = 0.0;
|
|
|
|
#if ENABLED(DELTA)
|
|
/**
|
|
* A delta can only safely home all axis at the same time
|
|
* all axis have to home at the same time
|
|
*/
|
|
|
|
// Pretend the current position is 0,0,0
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
|
|
sync_plan_position();
|
|
|
|
// Move all carriages up together until the first endstop is hit.
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH);
|
|
feedrate = 1.732 * homing_feedrate[X_AXIS];
|
|
line_to_destination();
|
|
stepper.synchronize();
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
|
|
// Destination reached
|
|
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
|
|
|
|
// take care of back off and rehome now we are all at the top
|
|
HOMEAXIS(X);
|
|
HOMEAXIS(Y);
|
|
HOMEAXIS(Z);
|
|
|
|
sync_plan_position_delta();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position);
|
|
#endif
|
|
|
|
#else // NOT DELTA
|
|
|
|
bool homeX = code_seen(axis_codes[X_AXIS]),
|
|
homeY = code_seen(axis_codes[Y_AXIS]),
|
|
homeZ = code_seen(axis_codes[Z_AXIS]);
|
|
|
|
home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
|
|
|
|
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
|
|
|
|
if (home_all_axis || homeZ) {
|
|
HOMEAXIS(Z);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position);
|
|
#endif
|
|
}
|
|
|
|
#elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0
|
|
|
|
// Raise Z before homing any other axes and z is not already high enough (never lower z)
|
|
if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) {
|
|
destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING;
|
|
feedrate = planner.max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING));
|
|
SERIAL_EOL;
|
|
DEBUG_POS("> (home_all_axis || homeZ)", current_position);
|
|
DEBUG_POS("> (home_all_axis || homeZ)", destination);
|
|
}
|
|
#endif
|
|
line_to_destination();
|
|
stepper.synchronize();
|
|
|
|
/**
|
|
* Update the current Z position even if it currently not real from
|
|
* Z-home otherwise each call to line_to_destination() will want to
|
|
* move Z-axis by MIN_Z_HEIGHT_FOR_HOMING.
|
|
*/
|
|
current_position[Z_AXIS] = destination[Z_AXIS];
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(QUICK_HOME)
|
|
|
|
if (home_all_axis || (homeX && homeY)) { // First diagonal move
|
|
|
|
current_position[X_AXIS] = current_position[Y_AXIS] = 0;
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
int x_axis_home_dir = x_home_dir(active_extruder);
|
|
extruder_duplication_enabled = false;
|
|
#else
|
|
int x_axis_home_dir = home_dir(X_AXIS);
|
|
#endif
|
|
|
|
sync_plan_position();
|
|
|
|
float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
|
|
mlratio = mlx > mly ? mly / mlx : mlx / mly;
|
|
|
|
destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
|
|
destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
|
|
feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
|
|
line_to_destination();
|
|
stepper.synchronize();
|
|
|
|
set_axis_is_at_home(X_AXIS);
|
|
set_axis_is_at_home(Y_AXIS);
|
|
sync_plan_position();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position);
|
|
#endif
|
|
|
|
destination[X_AXIS] = current_position[X_AXIS];
|
|
destination[Y_AXIS] = current_position[Y_AXIS];
|
|
line_to_destination();
|
|
feedrate = 0.0;
|
|
stepper.synchronize();
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
#if DISABLED(SCARA)
|
|
current_position[Z_AXIS] = destination[Z_AXIS];
|
|
#endif
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position);
|
|
#endif
|
|
}
|
|
|
|
#endif // QUICK_HOME
|
|
|
|
#if ENABLED(HOME_Y_BEFORE_X)
|
|
// Home Y
|
|
if (home_all_axis || homeY) HOMEAXIS(Y);
|
|
#endif
|
|
|
|
// Home X
|
|
if (home_all_axis || homeX) {
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
int tmp_extruder = active_extruder;
|
|
extruder_duplication_enabled = false;
|
|
active_extruder = !active_extruder;
|
|
HOMEAXIS(X);
|
|
inactive_extruder_x_pos = current_position[X_AXIS];
|
|
active_extruder = tmp_extruder;
|
|
HOMEAXIS(X);
|
|
// reset state used by the different modes
|
|
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
|
delayed_move_time = 0;
|
|
active_extruder_parked = true;
|
|
#else
|
|
HOMEAXIS(X);
|
|
#endif
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position);
|
|
#endif
|
|
}
|
|
|
|
#if DISABLED(HOME_Y_BEFORE_X)
|
|
// Home Y
|
|
if (home_all_axis || homeY) {
|
|
HOMEAXIS(Y);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
// Home Z last if homing towards the bed
|
|
#if Z_HOME_DIR < 0
|
|
|
|
if (home_all_axis || homeZ) {
|
|
|
|
#if ENABLED(Z_SAFE_HOMING)
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
|
|
}
|
|
#endif
|
|
|
|
if (home_all_axis) {
|
|
|
|
/**
|
|
* At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height
|
|
* No need to move Z any more as this height should already be safe
|
|
* enough to reach Z_SAFE_HOMING XY positions.
|
|
* Just make sure the planner is in sync.
|
|
*/
|
|
sync_plan_position();
|
|
|
|
/**
|
|
* Set the Z probe (or just the nozzle) destination to the safe
|
|
* homing point
|
|
*/
|
|
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER));
|
|
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER));
|
|
destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height
|
|
feedrate = XY_TRAVEL_SPEED;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position);
|
|
DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination);
|
|
}
|
|
#endif
|
|
|
|
// Move in the XY plane
|
|
line_to_destination();
|
|
stepper.synchronize();
|
|
|
|
/**
|
|
* Update the current positions for XY, Z is still at least at
|
|
* MIN_Z_HEIGHT_FOR_HOMING height, no changes there.
|
|
*/
|
|
current_position[X_AXIS] = destination[X_AXIS];
|
|
current_position[Y_AXIS] = destination[Y_AXIS];
|
|
|
|
// Home the Z axis
|
|
HOMEAXIS(Z);
|
|
}
|
|
|
|
else if (homeZ) { // Don't need to Home Z twice
|
|
|
|
// Let's see if X and Y are homed
|
|
if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) {
|
|
|
|
/**
|
|
* Make sure the Z probe is within the physical limits
|
|
* NOTE: This doesn't necessarily ensure the Z probe is also
|
|
* within the bed!
|
|
*/
|
|
float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
|
|
if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
|
|
&& cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER)
|
|
&& cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)
|
|
&& cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) {
|
|
|
|
// Home the Z axis
|
|
HOMEAXIS(Z);
|
|
}
|
|
else {
|
|
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
|
|
}
|
|
}
|
|
else {
|
|
axis_unhomed_error();
|
|
}
|
|
|
|
} // !home_all_axes && homeZ
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
|
|
}
|
|
#endif
|
|
|
|
#else // !Z_SAFE_HOMING
|
|
|
|
HOMEAXIS(Z);
|
|
|
|
#endif // !Z_SAFE_HOMING
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position);
|
|
#endif
|
|
|
|
} // home_all_axis || homeZ
|
|
|
|
#endif // Z_HOME_DIR < 0
|
|
|
|
sync_plan_position();
|
|
|
|
#endif // else DELTA
|
|
|
|
#if ENABLED(SCARA)
|
|
sync_plan_position_delta();
|
|
#endif
|
|
|
|
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
|
|
endstops.enable(false);
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING endstops.enable(false)");
|
|
}
|
|
#endif
|
|
#endif
|
|
|
|
// For mesh leveling move back to Z=0
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
if (mbl_was_active && home_all_axis) {
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
|
sync_plan_position();
|
|
mbl.active = 1;
|
|
current_position[Z_AXIS] = 0.0;
|
|
set_destination_to_current();
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
line_to_destination();
|
|
stepper.synchronize();
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position);
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
feedrate = saved_feedrate;
|
|
feedrate_multiplier = saved_feedrate_multiplier;
|
|
refresh_cmd_timeout();
|
|
endstops.hit_on_purpose(); // clear endstop hit flags
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("<<< gcode_G28");
|
|
}
|
|
#endif
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset };
|
|
|
|
inline void _mbl_goto_xy(float x, float y) {
|
|
saved_feedrate = feedrate;
|
|
feedrate = homing_feedrate[X_AXIS];
|
|
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
|
|
#if MIN_Z_HEIGHT_FOR_HOMING > 0
|
|
+ MIN_Z_HEIGHT_FOR_HOMING
|
|
#endif
|
|
;
|
|
line_to_current_position();
|
|
|
|
current_position[X_AXIS] = x + home_offset[X_AXIS];
|
|
current_position[Y_AXIS] = y + home_offset[Y_AXIS];
|
|
line_to_current_position();
|
|
|
|
#if MIN_Z_HEIGHT_FOR_HOMING > 0
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
|
line_to_current_position();
|
|
#endif
|
|
|
|
feedrate = saved_feedrate;
|
|
stepper.synchronize();
|
|
}
|
|
|
|
/**
|
|
* G29: Mesh-based Z probe, probes a grid and produces a
|
|
* mesh to compensate for variable bed height
|
|
*
|
|
* Parameters With MESH_BED_LEVELING:
|
|
*
|
|
* S0 Produce a mesh report
|
|
* S1 Start probing mesh points
|
|
* S2 Probe the next mesh point
|
|
* S3 Xn Yn Zn.nn Manually modify a single point
|
|
* S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed.
|
|
*
|
|
* The S0 report the points as below
|
|
*
|
|
* +----> X-axis 1-n
|
|
* |
|
|
* |
|
|
* v Y-axis 1-n
|
|
*
|
|
*/
|
|
inline void gcode_G29() {
|
|
|
|
static int probe_point = -1;
|
|
MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
|
|
if (state < 0 || state > 4) {
|
|
SERIAL_PROTOCOLLNPGM("S out of range (0-4).");
|
|
return;
|
|
}
|
|
|
|
int ix, iy;
|
|
float z;
|
|
|
|
switch (state) {
|
|
case MeshReport:
|
|
if (mbl.active) {
|
|
SERIAL_PROTOCOLPGM("Num X,Y: ");
|
|
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
|
|
SERIAL_PROTOCOLCHAR(',');
|
|
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
|
|
SERIAL_PROTOCOLPGM("\nZ search height: ");
|
|
SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
|
|
SERIAL_PROTOCOLPGM("\nZ offset: ");
|
|
SERIAL_PROTOCOL_F(mbl.z_offset, 5);
|
|
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
|
|
for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
|
|
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
|
|
SERIAL_PROTOCOLPGM(" ");
|
|
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
else
|
|
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
|
|
break;
|
|
|
|
case MeshStart:
|
|
mbl.reset();
|
|
probe_point = 0;
|
|
enqueue_and_echo_commands_P(PSTR("G28\nG29 S2"));
|
|
break;
|
|
|
|
case MeshNext:
|
|
if (probe_point < 0) {
|
|
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
|
|
return;
|
|
}
|
|
// For each G29 S2...
|
|
if (probe_point == 0) {
|
|
// For the intial G29 S2 make Z a positive value (e.g., 4.0)
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
|
|
sync_plan_position();
|
|
}
|
|
else {
|
|
// For G29 S2 after adjusting Z.
|
|
mbl.set_zigzag_z(probe_point - 1, current_position[Z_AXIS]);
|
|
}
|
|
// If there's another point to sample, move there with optional lift.
|
|
if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) {
|
|
mbl.zigzag(probe_point, ix, iy);
|
|
_mbl_goto_xy(mbl.get_x(ix), mbl.get_y(iy));
|
|
probe_point++;
|
|
}
|
|
else {
|
|
// One last "return to the bed" (as originally coded) at completion
|
|
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z
|
|
#if MIN_Z_HEIGHT_FOR_HOMING > 0
|
|
+ MIN_Z_HEIGHT_FOR_HOMING
|
|
#endif
|
|
;
|
|
line_to_current_position();
|
|
stepper.synchronize();
|
|
|
|
// After recording the last point, activate the mbl and home
|
|
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
|
|
probe_point = -1;
|
|
mbl.active = true;
|
|
enqueue_and_echo_commands_P(PSTR("G28"));
|
|
}
|
|
break;
|
|
|
|
case MeshSet:
|
|
if (code_seen('X')) {
|
|
ix = code_value_long() - 1;
|
|
if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
|
|
SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLPGM("X not entered.\n");
|
|
return;
|
|
}
|
|
if (code_seen('Y')) {
|
|
iy = code_value_long() - 1;
|
|
if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
|
|
SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
|
|
return;
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLPGM("Y not entered.\n");
|
|
return;
|
|
}
|
|
if (code_seen('Z')) {
|
|
z = code_value();
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLPGM("Z not entered.\n");
|
|
return;
|
|
}
|
|
mbl.z_values[iy][ix] = z;
|
|
break;
|
|
|
|
case MeshSetZOffset:
|
|
if (code_seen('Z')) {
|
|
z = code_value();
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLPGM("Z not entered.\n");
|
|
return;
|
|
}
|
|
mbl.z_offset = z;
|
|
|
|
} // switch(state)
|
|
}
|
|
|
|
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
|
|
void out_of_range_error(const char* p_edge) {
|
|
SERIAL_PROTOCOLPGM("?Probe ");
|
|
serialprintPGM(p_edge);
|
|
SERIAL_PROTOCOLLNPGM(" position out of range.");
|
|
}
|
|
|
|
/**
|
|
* G29: Detailed Z probe, probes the bed at 3 or more points.
|
|
* Will fail if the printer has not been homed with G28.
|
|
*
|
|
* Enhanced G29 Auto Bed Leveling Probe Routine
|
|
*
|
|
* Parameters With AUTO_BED_LEVELING_GRID:
|
|
*
|
|
* P Set the size of the grid that will be probed (P x P points).
|
|
* Not supported by non-linear delta printer bed leveling.
|
|
* Example: "G29 P4"
|
|
*
|
|
* S Set the XY travel speed between probe points (in mm/min)
|
|
*
|
|
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
|
|
* or clean the rotation Matrix. Useful to check the topology
|
|
* after a first run of G29.
|
|
*
|
|
* V Set the verbose level (0-4). Example: "G29 V3"
|
|
*
|
|
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
|
|
* This is useful for manual bed leveling and finding flaws in the bed (to
|
|
* assist with part placement).
|
|
* Not supported by non-linear delta printer bed leveling.
|
|
*
|
|
* F Set the Front limit of the probing grid
|
|
* B Set the Back limit of the probing grid
|
|
* L Set the Left limit of the probing grid
|
|
* R Set the Right limit of the probing grid
|
|
*
|
|
* Global Parameters:
|
|
*
|
|
* E/e By default G29 will engage the Z probe, test the bed, then disengage.
|
|
* Include "E" to engage/disengage the Z probe for each sample.
|
|
* There's no extra effect if you have a fixed Z probe.
|
|
* Usage: "G29 E" or "G29 e"
|
|
*
|
|
*/
|
|
inline void gcode_G29() {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("gcode_G29 >>>");
|
|
DEBUG_POS("", current_position);
|
|
}
|
|
#endif
|
|
|
|
// Don't allow auto-leveling without homing first
|
|
if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) {
|
|
axis_unhomed_error();
|
|
return;
|
|
}
|
|
|
|
int verbose_level = code_seen('V') ? code_value_short() : 1;
|
|
if (verbose_level < 0 || verbose_level > 4) {
|
|
SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
|
|
return;
|
|
}
|
|
|
|
bool dryrun = code_seen('D'),
|
|
deploy_probe_for_each_reading = code_seen('E');
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_GRID)
|
|
|
|
#if DISABLED(DELTA)
|
|
bool do_topography_map = verbose_level > 2 || code_seen('T');
|
|
#endif
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
|
|
if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
|
|
}
|
|
|
|
int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
|
|
|
|
#if DISABLED(DELTA)
|
|
if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
|
|
if (auto_bed_leveling_grid_points < 2) {
|
|
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
|
|
|
|
int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
|
|
right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
|
|
front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
|
|
back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
|
|
|
|
bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
|
|
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE),
|
|
right_out_r = right_probe_bed_position > MAX_PROBE_X,
|
|
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
|
|
front_out_f = front_probe_bed_position < MIN_PROBE_Y,
|
|
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE),
|
|
back_out_b = back_probe_bed_position > MAX_PROBE_Y,
|
|
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
|
|
|
|
if (left_out || right_out || front_out || back_out) {
|
|
if (left_out) {
|
|
out_of_range_error(PSTR("(L)eft"));
|
|
left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE);
|
|
}
|
|
if (right_out) {
|
|
out_of_range_error(PSTR("(R)ight"));
|
|
right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
|
|
}
|
|
if (front_out) {
|
|
out_of_range_error(PSTR("(F)ront"));
|
|
front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE);
|
|
}
|
|
if (back_out) {
|
|
out_of_range_error(PSTR("(B)ack"));
|
|
back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
|
|
}
|
|
return;
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_GRID
|
|
|
|
if (!dryrun) {
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE) && DISABLED(DELTA)
|
|
if (DEBUGGING(LEVELING)) {
|
|
vector_3 corrected_position = planner.adjusted_position();
|
|
DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position);
|
|
DEBUG_POS("BEFORE matrix.set_to_identity", current_position);
|
|
}
|
|
#endif
|
|
|
|
// make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
|
|
planner.bed_level_matrix.set_to_identity();
|
|
|
|
#if ENABLED(DELTA)
|
|
reset_bed_level();
|
|
#else //!DELTA
|
|
|
|
//vector_3 corrected_position = planner.adjusted_position();
|
|
//corrected_position.debug("position before G29");
|
|
vector_3 uncorrected_position = planner.adjusted_position();
|
|
//uncorrected_position.debug("position during G29");
|
|
current_position[X_AXIS] = uncorrected_position.x;
|
|
current_position[Y_AXIS] = uncorrected_position.y;
|
|
current_position[Z_AXIS] = uncorrected_position.z;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position);
|
|
#endif
|
|
|
|
sync_plan_position();
|
|
|
|
#endif // !DELTA
|
|
}
|
|
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
dock_sled(false); // engage (un-dock) the Z probe
|
|
#elif ENABLED(MECHANICAL_PROBE) || (ENABLED(DELTA) && SERVO_LEVELING)
|
|
deploy_z_probe();
|
|
#endif
|
|
|
|
stepper.synchronize();
|
|
|
|
setup_for_endstop_move();
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_GRID)
|
|
|
|
// probe at the points of a lattice grid
|
|
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
|
|
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
|
|
|
|
#if ENABLED(DELTA)
|
|
delta_grid_spacing[0] = xGridSpacing;
|
|
delta_grid_spacing[1] = yGridSpacing;
|
|
float zoffset = zprobe_zoffset;
|
|
if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value();
|
|
#else // !DELTA
|
|
/**
|
|
* solve the plane equation ax + by + d = z
|
|
* A is the matrix with rows [x y 1] for all the probed points
|
|
* B is the vector of the Z positions
|
|
* the normal vector to the plane is formed by the coefficients of the
|
|
* plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
|
|
* so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
|
|
*/
|
|
|
|
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
|
|
|
|
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
|
|
eqnBVector[abl2], // "B" vector of Z points
|
|
mean = 0.0;
|
|
int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
|
|
#endif // !DELTA
|
|
|
|
int probePointCounter = 0;
|
|
bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
|
|
|
|
for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
|
|
double yProbe = front_probe_bed_position + yGridSpacing * yCount;
|
|
int xStart, xStop, xInc;
|
|
|
|
if (zig) {
|
|
xStart = 0;
|
|
xStop = auto_bed_leveling_grid_points;
|
|
xInc = 1;
|
|
}
|
|
else {
|
|
xStart = auto_bed_leveling_grid_points - 1;
|
|
xStop = -1;
|
|
xInc = -1;
|
|
}
|
|
|
|
zig = !zig;
|
|
|
|
for (int xCount = xStart; xCount != xStop; xCount += xInc) {
|
|
double xProbe = left_probe_bed_position + xGridSpacing * xCount;
|
|
|
|
// raise extruder
|
|
float measured_z,
|
|
z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS];
|
|
|
|
if (probePointCounter) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
}
|
|
else {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]);
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(DELTA)
|
|
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
|
|
float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe);
|
|
if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue;
|
|
#endif //DELTA
|
|
|
|
ProbeAction act;
|
|
if (deploy_probe_for_each_reading) // G29 E - Stow between probes
|
|
act = ProbeDeployAndStow;
|
|
else if (yCount == 0 && xCount == xStart)
|
|
act = ProbeDeploy;
|
|
else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
|
|
act = ProbeStow;
|
|
else
|
|
act = ProbeStay;
|
|
|
|
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
|
|
|
|
#if DISABLED(DELTA)
|
|
mean += measured_z;
|
|
|
|
eqnBVector[probePointCounter] = measured_z;
|
|
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
|
|
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
|
|
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
|
|
indexIntoAB[xCount][yCount] = probePointCounter;
|
|
#else
|
|
bed_level[xCount][yCount] = measured_z + zoffset;
|
|
#endif
|
|
|
|
probePointCounter++;
|
|
|
|
idle();
|
|
|
|
} //xProbe
|
|
} //yProbe
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position);
|
|
#endif
|
|
|
|
clean_up_after_endstop_move();
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
if (!dryrun) extrapolate_unprobed_bed_level();
|
|
print_bed_level();
|
|
|
|
#else // !DELTA
|
|
|
|
// solve lsq problem
|
|
double plane_equation_coefficients[3];
|
|
qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
|
|
|
|
mean /= abl2;
|
|
|
|
if (verbose_level) {
|
|
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
|
|
SERIAL_PROTOCOLPGM(" b: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
|
|
SERIAL_PROTOCOLPGM(" d: ");
|
|
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
|
|
SERIAL_EOL;
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
|
|
SERIAL_PROTOCOL_F(mean, 8);
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
|
|
if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
|
|
|
|
// Show the Topography map if enabled
|
|
if (do_topography_map) {
|
|
|
|
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
|
|
SERIAL_PROTOCOLPGM(" +--- BACK --+\n");
|
|
SERIAL_PROTOCOLPGM(" | |\n");
|
|
SERIAL_PROTOCOLPGM(" L | (+) | R\n");
|
|
SERIAL_PROTOCOLPGM(" E | | I\n");
|
|
SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n");
|
|
SERIAL_PROTOCOLPGM(" T | | H\n");
|
|
SERIAL_PROTOCOLPGM(" | (-) | T\n");
|
|
SERIAL_PROTOCOLPGM(" | |\n");
|
|
SERIAL_PROTOCOLPGM(" O-- FRONT --+\n");
|
|
SERIAL_PROTOCOLPGM(" (0,0)\n");
|
|
|
|
float min_diff = 999;
|
|
|
|
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
|
|
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
|
|
int ind = indexIntoAB[xx][yy];
|
|
float diff = eqnBVector[ind] - mean;
|
|
|
|
float x_tmp = eqnAMatrix[ind + 0 * abl2],
|
|
y_tmp = eqnAMatrix[ind + 1 * abl2],
|
|
z_tmp = 0;
|
|
|
|
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
|
|
|
NOMORE(min_diff, eqnBVector[ind] - z_tmp);
|
|
|
|
if (diff >= 0.0)
|
|
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
|
|
else
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOL_F(diff, 5);
|
|
} // xx
|
|
SERIAL_EOL;
|
|
} // yy
|
|
SERIAL_EOL;
|
|
if (verbose_level > 3) {
|
|
SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
|
|
|
|
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
|
|
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
|
|
int ind = indexIntoAB[xx][yy];
|
|
float x_tmp = eqnAMatrix[ind + 0 * abl2],
|
|
y_tmp = eqnAMatrix[ind + 1 * abl2],
|
|
z_tmp = 0;
|
|
|
|
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
|
|
|
float diff = eqnBVector[ind] - z_tmp - min_diff;
|
|
if (diff >= 0.0)
|
|
SERIAL_PROTOCOLPGM(" +");
|
|
// Include + for column alignment
|
|
else
|
|
SERIAL_PROTOCOLCHAR(' ');
|
|
SERIAL_PROTOCOL_F(diff, 5);
|
|
} // xx
|
|
SERIAL_EOL;
|
|
} // yy
|
|
SERIAL_EOL;
|
|
}
|
|
} //do_topography_map
|
|
#endif //!DELTA
|
|
|
|
#else // !AUTO_BED_LEVELING_GRID
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("> 3-point Leveling");
|
|
}
|
|
#endif
|
|
|
|
// Actions for each probe
|
|
ProbeAction p1, p2, p3;
|
|
if (deploy_probe_for_each_reading)
|
|
p1 = p2 = p3 = ProbeDeployAndStow;
|
|
else
|
|
p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
|
|
|
|
// Probe at 3 arbitrary points
|
|
float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS],
|
|
ABL_PROBE_PT_1_Y + home_offset[Y_AXIS],
|
|
Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS],
|
|
p1, verbose_level),
|
|
z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS],
|
|
ABL_PROBE_PT_2_Y + home_offset[Y_AXIS],
|
|
current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
|
|
p2, verbose_level),
|
|
z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS],
|
|
ABL_PROBE_PT_3_Y + home_offset[Y_AXIS],
|
|
current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS,
|
|
p3, verbose_level);
|
|
clean_up_after_endstop_move();
|
|
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
|
|
|
|
#endif // !AUTO_BED_LEVELING_GRID
|
|
|
|
#if ENABLED(DELTA)
|
|
// Allen Key Probe for Delta
|
|
#if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING
|
|
stow_z_probe();
|
|
#elif Z_RAISE_AFTER_PROBING > 0
|
|
raise_z_after_probing(); // for non Allen Key probes, such as simple mechanical probe
|
|
#endif
|
|
#else // !DELTA
|
|
if (verbose_level > 0)
|
|
planner.bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
|
|
|
|
if (!dryrun) {
|
|
/**
|
|
* Correct the Z height difference from Z probe position and nozzle tip position.
|
|
* The Z height on homing is measured by Z probe, but the Z probe is quite far
|
|
* from the nozzle. When the bed is uneven, this height must be corrected.
|
|
*/
|
|
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
|
|
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
|
|
z_tmp = current_position[Z_AXIS],
|
|
real_z = stepper.get_axis_position_mm(Z_AXIS); //get the real Z (since planner.adjusted_position is now correcting the plane)
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
|
|
SERIAL_EOL;
|
|
SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
// Apply the correction sending the Z probe offset
|
|
apply_rotation_xyz(planner.bed_level_matrix, x_tmp, y_tmp, z_tmp);
|
|
|
|
/*
|
|
* Get the current Z position and send it to the planner.
|
|
*
|
|
* >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z
|
|
* (most recent planner.set_position/sync_plan_position)
|
|
*
|
|
* >> zprobe_zoffset : Z distance from nozzle to Z probe
|
|
* (set by default, M851, EEPROM, or Menu)
|
|
*
|
|
* >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted
|
|
* after the last probe
|
|
*
|
|
* >> Should home_offset[Z_AXIS] be included?
|
|
*
|
|
*
|
|
* Discussion: home_offset[Z_AXIS] was applied in G28 to set the
|
|
* starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is
|
|
* not actually "homing" Z... then perhaps it should not be included
|
|
* here. The purpose of home_offset[] is to adjust for inaccurate
|
|
* endstops, not for reasonably accurate probes. If it were added
|
|
* here, it could be seen as a compensating factor for the Z probe.
|
|
*/
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
|
|
current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
|
|
#if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
|
|
+ Z_RAISE_AFTER_PROBING
|
|
#endif
|
|
;
|
|
// current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
|
|
sync_plan_position();
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position);
|
|
#endif
|
|
}
|
|
|
|
// Sled assembly for Cartesian bots
|
|
#if ENABLED(Z_PROBE_SLED)
|
|
dock_sled(true); // dock the sled
|
|
#elif Z_RAISE_AFTER_PROBING > 0
|
|
// Raise Z axis for non-delta and non servo based probes
|
|
#if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED)
|
|
raise_z_after_probing();
|
|
#endif
|
|
#endif
|
|
|
|
#endif // !DELTA
|
|
|
|
#ifdef Z_PROBE_END_SCRIPT
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHO("Z Probe End Script: ");
|
|
SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
|
|
}
|
|
#endif
|
|
enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT));
|
|
#if ENABLED(HAS_Z_MIN_PROBE)
|
|
endstops.enable_z_probe(false);
|
|
#endif
|
|
stepper.synchronize();
|
|
#endif
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("<<< gcode_G29");
|
|
}
|
|
#endif
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#if DISABLED(Z_PROBE_SLED) // could be avoided
|
|
|
|
/**
|
|
* G30: Do a single Z probe at the current XY
|
|
*/
|
|
inline void gcode_G30() {
|
|
#if HAS_SERVO_ENDSTOPS
|
|
raise_z_for_servo();
|
|
#endif
|
|
deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here.
|
|
|
|
stepper.synchronize();
|
|
// TODO: clear the leveling matrix or the planner will be set incorrectly
|
|
setup_for_endstop_move(); // Too late. Must be done before deploying.
|
|
|
|
feedrate = homing_feedrate[Z_AXIS];
|
|
|
|
run_z_probe();
|
|
SERIAL_PROTOCOLPGM("Bed X: ");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" Y: ");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001);
|
|
SERIAL_PROTOCOLPGM(" Z: ");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
|
|
SERIAL_EOL;
|
|
|
|
clean_up_after_endstop_move(); // Too early. must be done after the stowing.
|
|
|
|
#if HAS_SERVO_ENDSTOPS
|
|
raise_z_for_servo();
|
|
#endif
|
|
stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here.
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#endif //!Z_PROBE_SLED
|
|
|
|
#endif //AUTO_BED_LEVELING_FEATURE
|
|
|
|
/**
|
|
* G92: Set current position to given X Y Z E
|
|
*/
|
|
inline void gcode_G92() {
|
|
bool didE = code_seen(axis_codes[E_AXIS]);
|
|
|
|
if (!didE) stepper.synchronize();
|
|
|
|
bool didXYZ = false;
|
|
for (int i = 0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
float p = current_position[i],
|
|
v = code_value();
|
|
|
|
current_position[i] = v;
|
|
|
|
if (i != E_AXIS) {
|
|
position_shift[i] += v - p; // Offset the coordinate space
|
|
update_software_endstops((AxisEnum)i);
|
|
didXYZ = true;
|
|
}
|
|
}
|
|
}
|
|
if (didXYZ) {
|
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
|
sync_plan_position_delta();
|
|
#else
|
|
sync_plan_position();
|
|
#endif
|
|
}
|
|
else if (didE) {
|
|
sync_plan_position_e();
|
|
}
|
|
}
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
/**
|
|
* M0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
* M1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
*/
|
|
inline void gcode_M0_M1() {
|
|
char* args = current_command_args;
|
|
|
|
uint8_t test_value = 12;
|
|
SERIAL_ECHOPAIR("TEST", test_value);
|
|
|
|
millis_t codenum = 0;
|
|
bool hasP = false, hasS = false;
|
|
if (code_seen('P')) {
|
|
codenum = code_value_short(); // milliseconds to wait
|
|
hasP = codenum > 0;
|
|
}
|
|
if (code_seen('S')) {
|
|
codenum = code_value() * 1000UL; // seconds to wait
|
|
hasS = codenum > 0;
|
|
}
|
|
|
|
if (!hasP && !hasS && *args != '\0')
|
|
lcd_setstatus(args, true);
|
|
else {
|
|
LCD_MESSAGEPGM(MSG_USERWAIT);
|
|
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
|
|
dontExpireStatus();
|
|
#endif
|
|
}
|
|
|
|
lcd_ignore_click();
|
|
stepper.synchronize();
|
|
refresh_cmd_timeout();
|
|
if (codenum > 0) {
|
|
codenum += previous_cmd_ms; // wait until this time for a click
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
while (PENDING(millis(), codenum) && !lcd_clicked()) idle();
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
lcd_ignore_click(false);
|
|
}
|
|
else {
|
|
if (!lcd_detected()) return;
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
while (!lcd_clicked()) idle();
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
}
|
|
if (IS_SD_PRINTING)
|
|
LCD_MESSAGEPGM(MSG_RESUMING);
|
|
else
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
}
|
|
|
|
#endif // ULTIPANEL
|
|
|
|
/**
|
|
* M17: Enable power on all stepper motors
|
|
*/
|
|
inline void gcode_M17() {
|
|
LCD_MESSAGEPGM(MSG_NO_MOVE);
|
|
enable_all_steppers();
|
|
}
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
/**
|
|
* M20: List SD card to serial output
|
|
*/
|
|
inline void gcode_M20() {
|
|
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
|
|
card.ls();
|
|
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
|
|
}
|
|
|
|
/**
|
|
* M21: Init SD Card
|
|
*/
|
|
inline void gcode_M21() {
|
|
card.initsd();
|
|
}
|
|
|
|
/**
|
|
* M22: Release SD Card
|
|
*/
|
|
inline void gcode_M22() {
|
|
card.release();
|
|
}
|
|
|
|
/**
|
|
* M23: Open a file
|
|
*/
|
|
inline void gcode_M23() {
|
|
card.openFile(current_command_args, true);
|
|
}
|
|
|
|
/**
|
|
* M24: Start SD Print
|
|
*/
|
|
inline void gcode_M24() {
|
|
card.startFileprint();
|
|
print_job_timer.start();
|
|
}
|
|
|
|
/**
|
|
* M25: Pause SD Print
|
|
*/
|
|
inline void gcode_M25() {
|
|
card.pauseSDPrint();
|
|
}
|
|
|
|
/**
|
|
* M26: Set SD Card file index
|
|
*/
|
|
inline void gcode_M26() {
|
|
if (card.cardOK && code_seen('S'))
|
|
card.setIndex(code_value_short());
|
|
}
|
|
|
|
/**
|
|
* M27: Get SD Card status
|
|
*/
|
|
inline void gcode_M27() {
|
|
card.getStatus();
|
|
}
|
|
|
|
/**
|
|
* M28: Start SD Write
|
|
*/
|
|
inline void gcode_M28() {
|
|
card.openFile(current_command_args, false);
|
|
}
|
|
|
|
/**
|
|
* M29: Stop SD Write
|
|
* Processed in write to file routine above
|
|
*/
|
|
inline void gcode_M29() {
|
|
// card.saving = false;
|
|
}
|
|
|
|
/**
|
|
* M30 <filename>: Delete SD Card file
|
|
*/
|
|
inline void gcode_M30() {
|
|
if (card.cardOK) {
|
|
card.closefile();
|
|
card.removeFile(current_command_args);
|
|
}
|
|
}
|
|
|
|
#endif //SDSUPPORT
|
|
|
|
/**
|
|
* M31: Get the time since the start of SD Print (or last M109)
|
|
*/
|
|
inline void gcode_M31() {
|
|
millis_t t = print_job_timer.duration();
|
|
int min = t / 60, sec = t % 60;
|
|
char time[30];
|
|
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(time);
|
|
lcd_setstatus(time);
|
|
autotempShutdown();
|
|
}
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
/**
|
|
* M32: Select file and start SD Print
|
|
*/
|
|
inline void gcode_M32() {
|
|
if (card.sdprinting)
|
|
stepper.synchronize();
|
|
|
|
char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
|
|
if (!namestartpos)
|
|
namestartpos = current_command_args; // Default name position, 4 letters after the M
|
|
else
|
|
namestartpos++; //to skip the '!'
|
|
|
|
bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
|
|
|
|
if (card.cardOK) {
|
|
card.openFile(namestartpos, true, call_procedure);
|
|
|
|
if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
|
|
card.setIndex(code_value_short());
|
|
|
|
card.startFileprint();
|
|
|
|
// Procedure calls count as normal print time.
|
|
if (!call_procedure) print_job_timer.start();
|
|
}
|
|
}
|
|
|
|
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
|
|
|
|
/**
|
|
* M33: Get the long full path of a file or folder
|
|
*
|
|
* Parameters:
|
|
* <dospath> Case-insensitive DOS-style path to a file or folder
|
|
*
|
|
* Example:
|
|
* M33 miscel~1/armchair/armcha~1.gco
|
|
*
|
|
* Output:
|
|
* /Miscellaneous/Armchair/Armchair.gcode
|
|
*/
|
|
inline void gcode_M33() {
|
|
card.printLongPath(current_command_args);
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* M928: Start SD Write
|
|
*/
|
|
inline void gcode_M928() {
|
|
card.openLogFile(current_command_args);
|
|
}
|
|
|
|
#endif // SDSUPPORT
|
|
|
|
/**
|
|
* M42: Change pin status via GCode
|
|
*
|
|
* P<pin> Pin number (LED if omitted)
|
|
* S<byte> Pin status from 0 - 255
|
|
*/
|
|
inline void gcode_M42() {
|
|
if (code_seen('S')) {
|
|
int pin_status = code_value_short();
|
|
if (pin_status < 0 || pin_status > 255) return;
|
|
|
|
int pin_number = code_seen('P') ? code_value_short() : LED_PIN;
|
|
if (pin_number < 0) return;
|
|
|
|
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++)
|
|
if (pin_number == sensitive_pins[i]) return;
|
|
|
|
pinMode(pin_number, OUTPUT);
|
|
digitalWrite(pin_number, pin_status);
|
|
analogWrite(pin_number, pin_status);
|
|
|
|
#if FAN_COUNT > 0
|
|
switch (pin_number) {
|
|
#if HAS_FAN0
|
|
case FAN_PIN: fanSpeeds[0] = pin_status; break;
|
|
#endif
|
|
#if HAS_FAN1
|
|
case FAN1_PIN: fanSpeeds[1] = pin_status; break;
|
|
#endif
|
|
#if HAS_FAN2
|
|
case FAN2_PIN: fanSpeeds[2] = pin_status; break;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
} // code_seen('S')
|
|
}
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
|
|
/**
|
|
* This is redundant since the SanityCheck.h already checks for a valid
|
|
* Z_MIN_PROBE_PIN, but here for clarity.
|
|
*/
|
|
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
|
|
#if !HAS_Z_PROBE
|
|
#error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
|
|
#endif
|
|
#elif !HAS_Z_MIN
|
|
#error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
|
|
#endif
|
|
|
|
/**
|
|
* M48: Z probe repeatability measurement function.
|
|
*
|
|
* Usage:
|
|
* M48 <P#> <X#> <Y#> <V#> <E> <L#>
|
|
* P = Number of sampled points (4-50, default 10)
|
|
* X = Sample X position
|
|
* Y = Sample Y position
|
|
* V = Verbose level (0-4, default=1)
|
|
* E = Engage Z probe for each reading
|
|
* L = Number of legs of movement before probe
|
|
* S = Schizoid (Or Star if you prefer)
|
|
*
|
|
* This function assumes the bed has been homed. Specifically, that a G28 command
|
|
* as been issued prior to invoking the M48 Z probe repeatability measurement function.
|
|
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
|
|
* regenerated.
|
|
*/
|
|
inline void gcode_M48() {
|
|
|
|
if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) {
|
|
axis_unhomed_error();
|
|
return;
|
|
}
|
|
|
|
double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
|
|
int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0;
|
|
|
|
if (code_seen('V')) {
|
|
verbose_level = code_value_short();
|
|
if (verbose_level < 0 || verbose_level > 4) {
|
|
SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
if (verbose_level > 0)
|
|
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
|
|
|
|
if (code_seen('P')) {
|
|
n_samples = code_value_short();
|
|
if (n_samples < 4 || n_samples > 50) {
|
|
SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
float X_current = current_position[X_AXIS],
|
|
Y_current = current_position[Y_AXIS],
|
|
Z_current = current_position[Z_AXIS],
|
|
X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER,
|
|
Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER,
|
|
Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
|
|
bool deploy_probe_for_each_reading = code_seen('E');
|
|
|
|
if (code_seen('X')) {
|
|
X_probe_location = code_value();
|
|
#if DISABLED(DELTA)
|
|
if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) {
|
|
out_of_range_error(PSTR("X"));
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
if (code_seen('Y')) {
|
|
Y_probe_location = code_value();
|
|
#if DISABLED(DELTA)
|
|
if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) {
|
|
out_of_range_error(PSTR("Y"));
|
|
return;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(DELTA)
|
|
if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) {
|
|
SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n");
|
|
return;
|
|
}
|
|
#endif
|
|
|
|
bool seen_L = code_seen('L');
|
|
|
|
if (seen_L) {
|
|
n_legs = code_value_short();
|
|
if (n_legs < 0 || n_legs > 15) {
|
|
SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
|
|
return;
|
|
}
|
|
if (n_legs == 1) n_legs = 2;
|
|
}
|
|
|
|
if (code_seen('S')) {
|
|
schizoid_flag++;
|
|
if (!seen_L) n_legs = 7;
|
|
}
|
|
|
|
/**
|
|
* Now get everything to the specified probe point So we can safely do a
|
|
* probe to get us close to the bed. If the Z-Axis is far from the bed,
|
|
* we don't want to use that as a starting point for each probe.
|
|
*/
|
|
if (verbose_level > 2)
|
|
SERIAL_PROTOCOLPGM("Positioning the probe...\n");
|
|
|
|
#if ENABLED(DELTA)
|
|
// we don't do bed level correction in M48 because we want the raw data when we probe
|
|
reset_bed_level();
|
|
#else
|
|
// we don't do bed level correction in M48 because we want the raw data when we probe
|
|
planner.bed_level_matrix.set_to_identity();
|
|
#endif
|
|
|
|
if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0)
|
|
do_blocking_move_to_z(Z_start_location);
|
|
|
|
do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
|
|
|
|
/**
|
|
* OK, do the initial probe to get us close to the bed.
|
|
* Then retrace the right amount and use that in subsequent probes
|
|
*/
|
|
setup_for_endstop_move();
|
|
|
|
probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING,
|
|
deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy,
|
|
verbose_level);
|
|
|
|
raise_z_after_probing();
|
|
|
|
for (uint8_t n = 0; n < n_samples; n++) {
|
|
randomSeed(millis());
|
|
delay(500);
|
|
if (n_legs) {
|
|
float radius, angle = random(0.0, 360.0);
|
|
int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
|
|
|
radius = random(
|
|
#if ENABLED(DELTA)
|
|
DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3
|
|
#else
|
|
5, X_MAX_LENGTH / 8
|
|
#endif
|
|
);
|
|
|
|
if (verbose_level > 3) {
|
|
SERIAL_ECHOPAIR("Starting radius: ", radius);
|
|
SERIAL_ECHOPAIR(" angle: ", angle);
|
|
delay(100);
|
|
if (dir > 0)
|
|
SERIAL_ECHO(" Direction: Counter Clockwise \n");
|
|
else
|
|
SERIAL_ECHO(" Direction: Clockwise \n");
|
|
delay(100);
|
|
}
|
|
|
|
for (uint8_t l = 0; l < n_legs - 1; l++) {
|
|
double delta_angle;
|
|
|
|
if (schizoid_flag)
|
|
// The points of a 5 point star are 72 degrees apart. We need to
|
|
// skip a point and go to the next one on the star.
|
|
delta_angle = dir * 2.0 * 72.0;
|
|
|
|
else
|
|
// If we do this line, we are just trying to move further
|
|
// around the circle.
|
|
delta_angle = dir * (float) random(25, 45);
|
|
|
|
angle += delta_angle;
|
|
|
|
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
|
|
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
|
|
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
|
|
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
|
|
|
|
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
|
|
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
|
|
|
|
#if DISABLED(DELTA)
|
|
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
|
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
|
#else
|
|
// If we have gone out too far, we can do a simple fix and scale the numbers
|
|
// back in closer to the origin.
|
|
while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) {
|
|
X_current /= 1.25;
|
|
Y_current /= 1.25;
|
|
if (verbose_level > 3) {
|
|
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
|
|
SERIAL_ECHOPAIR(", ", Y_current);
|
|
SERIAL_EOL;
|
|
delay(50);
|
|
}
|
|
}
|
|
#endif
|
|
if (verbose_level > 3) {
|
|
SERIAL_PROTOCOL("Going to:");
|
|
SERIAL_ECHOPAIR("x: ", X_current);
|
|
SERIAL_ECHOPAIR("y: ", Y_current);
|
|
SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]);
|
|
SERIAL_EOL;
|
|
delay(55);
|
|
}
|
|
do_blocking_move_to_xy(X_current, Y_current);
|
|
} // n_legs loop
|
|
} // n_legs
|
|
|
|
/**
|
|
* We don't really have to do this move, but if we don't we can see a
|
|
* funny shift in the Z Height because the user might not have the
|
|
* Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING
|
|
* height. This gets us back to the probe location at the same height that
|
|
* we have been running around the circle at.
|
|
*/
|
|
do_blocking_move_to_xy(X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER), Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER));
|
|
if (deploy_probe_for_each_reading)
|
|
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level);
|
|
else {
|
|
if (n == n_samples - 1)
|
|
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else
|
|
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level);
|
|
}
|
|
|
|
/**
|
|
* Get the current mean for the data points we have so far
|
|
*/
|
|
sum = 0.0;
|
|
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
|
|
mean = sum / (n + 1);
|
|
|
|
/**
|
|
* Now, use that mean to calculate the standard deviation for the
|
|
* data points we have so far
|
|
*/
|
|
sum = 0.0;
|
|
for (uint8_t j = 0; j <= n; j++) {
|
|
float ss = sample_set[j] - mean;
|
|
sum += ss * ss;
|
|
}
|
|
sigma = sqrt(sum / (n + 1));
|
|
if (verbose_level > 1) {
|
|
SERIAL_PROTOCOL(n + 1);
|
|
SERIAL_PROTOCOLPGM(" of ");
|
|
SERIAL_PROTOCOL((int)n_samples);
|
|
SERIAL_PROTOCOLPGM(" z: ");
|
|
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
|
|
delay(50);
|
|
if (verbose_level > 2) {
|
|
SERIAL_PROTOCOLPGM(" mean: ");
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
SERIAL_PROTOCOLPGM(" sigma: ");
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
}
|
|
}
|
|
if (verbose_level > 0) SERIAL_EOL;
|
|
delay(50);
|
|
do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS);
|
|
} // End of probe loop code
|
|
|
|
// raise_z_after_probing();
|
|
|
|
if (verbose_level > 0) {
|
|
SERIAL_PROTOCOLPGM("Mean: ");
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
SERIAL_EOL;
|
|
delay(25);
|
|
}
|
|
|
|
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
SERIAL_EOL; SERIAL_EOL;
|
|
delay(25);
|
|
|
|
clean_up_after_endstop_move();
|
|
|
|
report_current_position();
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
|
|
|
|
/**
|
|
* M75: Start print timer
|
|
*/
|
|
inline void gcode_M75() {
|
|
print_job_timer.start();
|
|
}
|
|
|
|
/**
|
|
* M76: Pause print timer
|
|
*/
|
|
inline void gcode_M76() {
|
|
print_job_timer.pause();
|
|
}
|
|
|
|
/**
|
|
* M77: Stop print timer
|
|
*/
|
|
inline void gcode_M77() {
|
|
print_job_timer.stop();
|
|
}
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
/*+
|
|
* M78: Show print statistics
|
|
*/
|
|
inline void gcode_M78() {
|
|
print_job_timer.showStats();
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* M104: Set hot end temperature
|
|
*/
|
|
inline void gcode_M104() {
|
|
if (get_target_extruder_from_command(104)) return;
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
|
|
if (code_seen('S')) {
|
|
float temp = code_value();
|
|
setTargetHotend(temp, target_extruder);
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
|
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
|
|
#endif
|
|
|
|
/**
|
|
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
|
|
* stand by mode, for instance in a dual extruder setup, without affecting
|
|
* the running print timer.
|
|
*/
|
|
if (temp <= (EXTRUDE_MINTEMP)/2) {
|
|
print_job_timer.stop();
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
}
|
|
/**
|
|
* We do not check if the timer is already running because this check will
|
|
* be done for us inside the Stopwatch::start() method thus a running timer
|
|
* will not restart.
|
|
*/
|
|
else print_job_timer.start();
|
|
|
|
if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
|
|
}
|
|
}
|
|
|
|
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
|
|
|
|
void print_heaterstates() {
|
|
#if HAS_TEMP_HOTEND
|
|
SERIAL_PROTOCOLPGM(" T:");
|
|
SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
|
|
#endif
|
|
#if HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM(" B:");
|
|
SERIAL_PROTOCOL_F(degBed(), 1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetBed(), 1);
|
|
#endif
|
|
#if EXTRUDERS > 1
|
|
for (int8_t e = 0; e < EXTRUDERS; ++e) {
|
|
SERIAL_PROTOCOLPGM(" T");
|
|
SERIAL_PROTOCOL(e);
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
SERIAL_PROTOCOL_F(degHotend(e), 1);
|
|
SERIAL_PROTOCOLPGM(" /");
|
|
SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
|
|
}
|
|
#endif
|
|
#if HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM(" B@:");
|
|
#ifdef BED_WATTS
|
|
SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127);
|
|
SERIAL_PROTOCOLCHAR('W');
|
|
#else
|
|
SERIAL_PROTOCOL(getHeaterPower(-1));
|
|
#endif
|
|
#endif
|
|
SERIAL_PROTOCOLPGM(" @:");
|
|
#ifdef EXTRUDER_WATTS
|
|
SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127);
|
|
SERIAL_PROTOCOLCHAR('W');
|
|
#else
|
|
SERIAL_PROTOCOL(getHeaterPower(target_extruder));
|
|
#endif
|
|
#if EXTRUDERS > 1
|
|
for (int8_t e = 0; e < EXTRUDERS; ++e) {
|
|
SERIAL_PROTOCOLPGM(" @");
|
|
SERIAL_PROTOCOL(e);
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
#ifdef EXTRUDER_WATTS
|
|
SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127);
|
|
SERIAL_PROTOCOLCHAR('W');
|
|
#else
|
|
SERIAL_PROTOCOL(getHeaterPower(e));
|
|
#endif
|
|
}
|
|
#endif
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
#if HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM(" ADC B:");
|
|
SERIAL_PROTOCOL_F(degBed(), 1);
|
|
SERIAL_PROTOCOLPGM("C->");
|
|
SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0);
|
|
#endif
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
|
|
SERIAL_PROTOCOLPGM(" T");
|
|
SERIAL_PROTOCOL(cur_extruder);
|
|
SERIAL_PROTOCOLCHAR(':');
|
|
SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1);
|
|
SERIAL_PROTOCOLPGM("C->");
|
|
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0);
|
|
}
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
/**
|
|
* M105: Read hot end and bed temperature
|
|
*/
|
|
inline void gcode_M105() {
|
|
if (get_target_extruder_from_command(105)) return;
|
|
|
|
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
|
|
SERIAL_PROTOCOLPGM(MSG_OK);
|
|
print_heaterstates();
|
|
#else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
|
|
#endif
|
|
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#if FAN_COUNT > 0
|
|
|
|
/**
|
|
* M106: Set Fan Speed
|
|
*
|
|
* S<int> Speed between 0-255
|
|
* P<index> Fan index, if more than one fan
|
|
*/
|
|
inline void gcode_M106() {
|
|
uint16_t s = code_seen('S') ? code_value_short() : 255,
|
|
p = code_seen('P') ? code_value_short() : 0;
|
|
NOMORE(s, 255);
|
|
if (p < FAN_COUNT) fanSpeeds[p] = s;
|
|
}
|
|
|
|
/**
|
|
* M107: Fan Off
|
|
*/
|
|
inline void gcode_M107() {
|
|
uint16_t p = code_seen('P') ? code_value_short() : 0;
|
|
if (p < FAN_COUNT) fanSpeeds[p] = 0;
|
|
}
|
|
|
|
#endif // FAN_COUNT > 0
|
|
|
|
/**
|
|
* M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating.
|
|
* Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling.
|
|
*/
|
|
inline void gcode_M109() {
|
|
|
|
if (get_target_extruder_from_command(109)) return;
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
|
|
bool no_wait_for_cooling = code_seen('S');
|
|
if (no_wait_for_cooling || code_seen('R')) {
|
|
float temp = code_value();
|
|
setTargetHotend(temp, target_extruder);
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
|
|
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
|
|
#endif
|
|
|
|
/**
|
|
* We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot
|
|
* stand by mode, for instance in a dual extruder setup, without affecting
|
|
* the running print timer.
|
|
*/
|
|
if (temp <= (EXTRUDE_MINTEMP)/2) {
|
|
print_job_timer.stop();
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
}
|
|
/**
|
|
* We do not check if the timer is already running because this check will
|
|
* be done for us inside the Stopwatch::start() method thus a running timer
|
|
* will not restart.
|
|
*/
|
|
else print_job_timer.start();
|
|
|
|
if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING);
|
|
}
|
|
|
|
#if ENABLED(AUTOTEMP)
|
|
planner.autotemp_M109();
|
|
#endif
|
|
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
millis_t residency_start_ms = 0;
|
|
// Loop until the temperature has stabilized
|
|
#define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL))
|
|
#else
|
|
// Loop until the temperature is very close target
|
|
#define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder))
|
|
#endif //TEMP_RESIDENCY_TIME > 0
|
|
|
|
float theTarget = -1;
|
|
bool wants_to_cool;
|
|
cancel_heatup = false;
|
|
millis_t now, next_temp_ms = 0;
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
|
do {
|
|
|
|
now = millis();
|
|
if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting
|
|
next_temp_ms = now + 1000UL;
|
|
#if HAS_TEMP_HOTEND || HAS_TEMP_BED
|
|
print_heaterstates();
|
|
#endif
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
SERIAL_PROTOCOLPGM(" W:");
|
|
if (residency_start_ms) {
|
|
long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
|
|
SERIAL_PROTOCOLLN(rem);
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLNPGM("?");
|
|
}
|
|
#else
|
|
SERIAL_EOL;
|
|
#endif
|
|
}
|
|
|
|
// Target temperature might be changed during the loop
|
|
if (theTarget != degTargetHotend(target_extruder)) {
|
|
theTarget = degTargetHotend(target_extruder);
|
|
wants_to_cool = isCoolingHotend(target_extruder);
|
|
|
|
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
if (no_wait_for_cooling && wants_to_cool) break;
|
|
|
|
// Prevent a wait-forever situation if R is misused i.e. M109 R0
|
|
// Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP
|
|
if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
|
|
}
|
|
|
|
idle();
|
|
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
|
|
|
|
#if TEMP_RESIDENCY_TIME > 0
|
|
|
|
float temp_diff = fabs(theTarget - degHotend(target_extruder));
|
|
|
|
if (!residency_start_ms) {
|
|
// Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
if (temp_diff < TEMP_WINDOW) residency_start_ms = millis();
|
|
}
|
|
else if (temp_diff > TEMP_HYSTERESIS) {
|
|
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
residency_start_ms = millis();
|
|
}
|
|
|
|
#endif //TEMP_RESIDENCY_TIME > 0
|
|
|
|
} while (!cancel_heatup && TEMP_CONDITIONS);
|
|
|
|
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
}
|
|
|
|
#if HAS_TEMP_BED
|
|
|
|
/**
|
|
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
|
|
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
|
|
*/
|
|
inline void gcode_M190() {
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
|
|
LCD_MESSAGEPGM(MSG_BED_HEATING);
|
|
bool no_wait_for_cooling = code_seen('S');
|
|
if (no_wait_for_cooling || code_seen('R')) setTargetBed(code_value());
|
|
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
millis_t residency_start_ms = 0;
|
|
// Loop until the temperature has stabilized
|
|
#define TEMP_BED_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_BED_RESIDENCY_TIME) * 1000UL))
|
|
#else
|
|
// Loop until the temperature is very close target
|
|
#define TEMP_BED_CONDITIONS (wants_to_cool ? isCoolingBed() : isHeatingBed())
|
|
#endif //TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
float theTarget = -1;
|
|
bool wants_to_cool;
|
|
cancel_heatup = false;
|
|
millis_t now, next_temp_ms = 0;
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
|
do {
|
|
now = millis();
|
|
if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up.
|
|
next_temp_ms = now + 1000UL;
|
|
print_heaterstates();
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
SERIAL_PROTOCOLPGM(" W:");
|
|
if (residency_start_ms) {
|
|
long rem = (((TEMP_BED_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL;
|
|
SERIAL_PROTOCOLLN(rem);
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLLNPGM("?");
|
|
}
|
|
#else
|
|
SERIAL_EOL;
|
|
#endif
|
|
}
|
|
|
|
// Target temperature might be changed during the loop
|
|
if (theTarget != degTargetBed()) {
|
|
theTarget = degTargetBed();
|
|
wants_to_cool = isCoolingBed();
|
|
|
|
// Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher>
|
|
if (no_wait_for_cooling && wants_to_cool) break;
|
|
|
|
// Prevent a wait-forever situation if R is misused i.e. M190 R0
|
|
// Simply don't wait for cooling below 30C
|
|
if (wants_to_cool && theTarget < (EXTRUDE_MINTEMP)/2) break;
|
|
}
|
|
|
|
idle();
|
|
refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out
|
|
|
|
#if TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
float temp_diff = fabs(degBed() - degTargetBed());
|
|
|
|
if (!residency_start_ms) {
|
|
// Start the TEMP_BED_RESIDENCY_TIME timer when we reach target temp for the first time.
|
|
if (temp_diff < TEMP_BED_WINDOW) residency_start_ms = millis();
|
|
}
|
|
else if (temp_diff > TEMP_BED_HYSTERESIS) {
|
|
// Restart the timer whenever the temperature falls outside the hysteresis.
|
|
residency_start_ms = millis();
|
|
}
|
|
|
|
#endif //TEMP_BED_RESIDENCY_TIME > 0
|
|
|
|
} while (!cancel_heatup && TEMP_BED_CONDITIONS);
|
|
LCD_MESSAGEPGM(MSG_BED_DONE);
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
}
|
|
|
|
#endif // HAS_TEMP_BED
|
|
|
|
/**
|
|
* M110: Set Current Line Number
|
|
*/
|
|
inline void gcode_M110() {
|
|
if (code_seen('N')) gcode_N = code_value_long();
|
|
}
|
|
|
|
/**
|
|
* M111: Set the debug level
|
|
*/
|
|
inline void gcode_M111() {
|
|
marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE;
|
|
|
|
const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO;
|
|
const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO;
|
|
const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS;
|
|
const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN;
|
|
const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION;
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING;
|
|
#endif
|
|
|
|
const static char* const debug_strings[] PROGMEM = {
|
|
str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16,
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
str_debug_32
|
|
#endif
|
|
};
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_DEBUG_PREFIX);
|
|
if (marlin_debug_flags) {
|
|
uint8_t comma = 0;
|
|
for (uint8_t i = 0; i < COUNT(debug_strings); i++) {
|
|
if (TEST(marlin_debug_flags, i)) {
|
|
if (comma++) SERIAL_CHAR(',');
|
|
serialprintPGM((char*)pgm_read_word(&(debug_strings[i])));
|
|
}
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ECHOPGM(MSG_DEBUG_OFF);
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
/**
|
|
* M112: Emergency Stop
|
|
*/
|
|
inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
|
/**
|
|
* M113: Get or set Host Keepalive interval (0 to disable)
|
|
*
|
|
* S<seconds> Optional. Set the keepalive interval.
|
|
*/
|
|
inline void gcode_M113() {
|
|
if (code_seen('S')) {
|
|
host_keepalive_interval = (uint8_t)code_value_short();
|
|
NOMORE(host_keepalive_interval, 60);
|
|
}
|
|
else {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval);
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if ENABLED(BARICUDA)
|
|
|
|
#if HAS_HEATER_1
|
|
/**
|
|
* M126: Heater 1 valve open
|
|
*/
|
|
inline void gcode_M126() { baricuda_valve_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
|
/**
|
|
* M127: Heater 1 valve close
|
|
*/
|
|
inline void gcode_M127() { baricuda_valve_pressure = 0; }
|
|
#endif
|
|
|
|
#if HAS_HEATER_2
|
|
/**
|
|
* M128: Heater 2 valve open
|
|
*/
|
|
inline void gcode_M128() { baricuda_e_to_p_pressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
|
|
/**
|
|
* M129: Heater 2 valve close
|
|
*/
|
|
inline void gcode_M129() { baricuda_e_to_p_pressure = 0; }
|
|
#endif
|
|
|
|
#endif //BARICUDA
|
|
|
|
/**
|
|
* M140: Set bed temperature
|
|
*/
|
|
inline void gcode_M140() {
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
if (code_seen('S')) setTargetBed(code_value());
|
|
}
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
/**
|
|
* M145: Set the heatup state for a material in the LCD menu
|
|
* S<material> (0=PLA, 1=ABS)
|
|
* H<hotend temp>
|
|
* B<bed temp>
|
|
* F<fan speed>
|
|
*/
|
|
inline void gcode_M145() {
|
|
int8_t material = code_seen('S') ? code_value_short() : 0;
|
|
if (material < 0 || material > 1) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
|
|
}
|
|
else {
|
|
int v;
|
|
switch (material) {
|
|
case 0:
|
|
if (code_seen('H')) {
|
|
v = code_value_short();
|
|
plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
|
|
}
|
|
if (code_seen('F')) {
|
|
v = code_value_short();
|
|
plaPreheatFanSpeed = constrain(v, 0, 255);
|
|
}
|
|
#if TEMP_SENSOR_BED != 0
|
|
if (code_seen('B')) {
|
|
v = code_value_short();
|
|
plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
|
|
}
|
|
#endif
|
|
break;
|
|
case 1:
|
|
if (code_seen('H')) {
|
|
v = code_value_short();
|
|
absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
|
|
}
|
|
if (code_seen('F')) {
|
|
v = code_value_short();
|
|
absPreheatFanSpeed = constrain(v, 0, 255);
|
|
}
|
|
#if TEMP_SENSOR_BED != 0
|
|
if (code_seen('B')) {
|
|
v = code_value_short();
|
|
absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
|
|
}
|
|
#endif
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
/**
|
|
* M80: Turn on Power Supply
|
|
*/
|
|
inline void gcode_M80() {
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
|
|
|
|
/**
|
|
* If you have a switch on suicide pin, this is useful
|
|
* if you want to start another print with suicide feature after
|
|
* a print without suicide...
|
|
*/
|
|
#if HAS_SUICIDE
|
|
OUT_WRITE(SUICIDE_PIN, HIGH);
|
|
#endif
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
powersupply = true;
|
|
LCD_MESSAGEPGM(WELCOME_MSG);
|
|
lcd_update();
|
|
#endif
|
|
}
|
|
|
|
#endif // HAS_POWER_SWITCH
|
|
|
|
/**
|
|
* M81: Turn off Power, including Power Supply, if there is one.
|
|
*
|
|
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
|
|
*/
|
|
inline void gcode_M81() {
|
|
disable_all_heaters();
|
|
stepper.finish_and_disable();
|
|
#if FAN_COUNT > 0
|
|
#if FAN_COUNT > 1
|
|
for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0;
|
|
#else
|
|
fanSpeeds[0] = 0;
|
|
#endif
|
|
#endif
|
|
delay(1000); // Wait 1 second before switching off
|
|
#if HAS_SUICIDE
|
|
stepper.synchronize();
|
|
suicide();
|
|
#elif HAS_POWER_SWITCH
|
|
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
|
|
#endif
|
|
#if ENABLED(ULTIPANEL)
|
|
#if HAS_POWER_SWITCH
|
|
powersupply = false;
|
|
#endif
|
|
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
|
|
lcd_update();
|
|
#endif
|
|
}
|
|
|
|
|
|
/**
|
|
* M82: Set E codes absolute (default)
|
|
*/
|
|
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
|
|
|
|
/**
|
|
* M83: Set E codes relative while in Absolute Coordinates (G90) mode
|
|
*/
|
|
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
|
|
|
|
/**
|
|
* M18, M84: Disable all stepper motors
|
|
*/
|
|
inline void gcode_M18_M84() {
|
|
if (code_seen('S')) {
|
|
stepper_inactive_time = code_value() * 1000UL;
|
|
}
|
|
else {
|
|
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS])));
|
|
if (all_axis) {
|
|
stepper.finish_and_disable();
|
|
}
|
|
else {
|
|
stepper.synchronize();
|
|
if (code_seen('X')) disable_x();
|
|
if (code_seen('Y')) disable_y();
|
|
if (code_seen('Z')) disable_z();
|
|
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
|
|
if (code_seen('E')) {
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
|
|
*/
|
|
inline void gcode_M85() {
|
|
if (code_seen('S')) max_inactive_time = code_value() * 1000UL;
|
|
}
|
|
|
|
/**
|
|
* M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
|
|
* (Follows the same syntax as G92)
|
|
*/
|
|
inline void gcode_M92() {
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
if (i == E_AXIS) {
|
|
float value = code_value();
|
|
if (value < 20.0) {
|
|
float factor = planner.axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
|
|
planner.max_e_jerk *= factor;
|
|
planner.max_feedrate[i] *= factor;
|
|
planner.axis_steps_per_sqr_second[i] *= factor;
|
|
}
|
|
planner.axis_steps_per_unit[i] = value;
|
|
}
|
|
else {
|
|
planner.axis_steps_per_unit[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* Output the current position to serial
|
|
*/
|
|
static void report_current_position() {
|
|
SERIAL_PROTOCOLPGM("X:");
|
|
SERIAL_PROTOCOL(current_position[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Y:");
|
|
SERIAL_PROTOCOL(current_position[Y_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Z:");
|
|
SERIAL_PROTOCOL(current_position[Z_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" E:");
|
|
SERIAL_PROTOCOL(current_position[E_AXIS]);
|
|
|
|
stepper.report_positions();
|
|
|
|
#if ENABLED(SCARA)
|
|
SERIAL_PROTOCOLPGM("SCARA Theta:");
|
|
SERIAL_PROTOCOL(delta[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
|
SERIAL_PROTOCOL(delta[Y_AXIS]);
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
|
|
SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
|
|
SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]);
|
|
SERIAL_EOL;
|
|
|
|
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
|
|
SERIAL_PROTOCOL(delta[X_AXIS] / 90 * planner.axis_steps_per_unit[X_AXIS]);
|
|
SERIAL_PROTOCOLPGM(" Psi+Theta:");
|
|
SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * planner.axis_steps_per_unit[Y_AXIS]);
|
|
SERIAL_EOL; SERIAL_EOL;
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M114: Output current position to serial port
|
|
*/
|
|
inline void gcode_M114() { report_current_position(); }
|
|
|
|
/**
|
|
* M115: Capabilities string
|
|
*/
|
|
inline void gcode_M115() {
|
|
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
|
|
}
|
|
|
|
/**
|
|
* M117: Set LCD Status Message
|
|
*/
|
|
inline void gcode_M117() {
|
|
lcd_setstatus(current_command_args);
|
|
}
|
|
|
|
/**
|
|
* M119: Output endstop states to serial output
|
|
*/
|
|
inline void gcode_M119() { endstops.M119(); }
|
|
|
|
/**
|
|
* M120: Enable endstops and set non-homing endstop state to "enabled"
|
|
*/
|
|
inline void gcode_M120() { endstops.enable_globally(true); }
|
|
|
|
/**
|
|
* M121: Disable endstops and set non-homing endstop state to "disabled"
|
|
*/
|
|
inline void gcode_M121() { endstops.enable_globally(false); }
|
|
|
|
#if ENABLED(BLINKM)
|
|
|
|
/**
|
|
* M150: Set Status LED Color - Use R-U-B for R-G-B
|
|
*/
|
|
inline void gcode_M150() {
|
|
SendColors(
|
|
code_seen('R') ? (byte)code_value_short() : 0,
|
|
code_seen('U') ? (byte)code_value_short() : 0,
|
|
code_seen('B') ? (byte)code_value_short() : 0
|
|
);
|
|
}
|
|
|
|
#endif // BLINKM
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
|
/**
|
|
* M155: Send data to a I2C slave device
|
|
*
|
|
* This is a PoC, the formating and arguments for the GCODE will
|
|
* change to be more compatible, the current proposal is:
|
|
*
|
|
* M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to
|
|
*
|
|
* M155 B<byte-1 value in base 10>
|
|
* M155 B<byte-2 value in base 10>
|
|
* M155 B<byte-3 value in base 10>
|
|
*
|
|
* M155 S1 ; Send the buffered data and reset the buffer
|
|
* M155 R1 ; Reset the buffer without sending data
|
|
*
|
|
*/
|
|
inline void gcode_M155() {
|
|
// Set the target address
|
|
if (code_seen('A'))
|
|
i2c.address((uint8_t) code_value_short());
|
|
|
|
// Add a new byte to the buffer
|
|
else if (code_seen('B'))
|
|
i2c.addbyte((int) code_value_short());
|
|
|
|
// Flush the buffer to the bus
|
|
else if (code_seen('S')) i2c.send();
|
|
|
|
// Reset and rewind the buffer
|
|
else if (code_seen('R')) i2c.reset();
|
|
}
|
|
|
|
/**
|
|
* M156: Request X bytes from I2C slave device
|
|
*
|
|
* Usage: M156 A<slave device address base 10> B<number of bytes>
|
|
*/
|
|
inline void gcode_M156() {
|
|
uint8_t addr = code_seen('A') ? code_value_short() : 0;
|
|
int bytes = code_seen('B') ? code_value_short() : 0;
|
|
|
|
if (addr && bytes) {
|
|
i2c.address(addr);
|
|
i2c.reqbytes(bytes);
|
|
}
|
|
}
|
|
|
|
#endif //EXPERIMENTAL_I2CBUS
|
|
|
|
/**
|
|
* M200: Set filament diameter and set E axis units to cubic millimeters
|
|
*
|
|
* T<extruder> - Optional extruder number. Current extruder if omitted.
|
|
* D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
|
|
*/
|
|
inline void gcode_M200() {
|
|
|
|
if (get_target_extruder_from_command(200)) return;
|
|
|
|
if (code_seen('D')) {
|
|
float diameter = code_value();
|
|
// setting any extruder filament size disables volumetric on the assumption that
|
|
// slicers either generate in extruder values as cubic mm or as as filament feeds
|
|
// for all extruders
|
|
volumetric_enabled = (diameter != 0.0);
|
|
if (volumetric_enabled) {
|
|
filament_size[target_extruder] = diameter;
|
|
// make sure all extruders have some sane value for the filament size
|
|
for (int i = 0; i < EXTRUDERS; i++)
|
|
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
|
|
}
|
|
}
|
|
else {
|
|
//reserved for setting filament diameter via UFID or filament measuring device
|
|
return;
|
|
}
|
|
calculate_volumetric_multipliers();
|
|
}
|
|
|
|
/**
|
|
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
|
|
*/
|
|
inline void gcode_M201() {
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
planner.max_acceleration_units_per_sq_second[i] = code_value();
|
|
}
|
|
}
|
|
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
|
|
planner.reset_acceleration_rates();
|
|
}
|
|
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
inline void gcode_M202() {
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * planner.axis_steps_per_unit[i];
|
|
}
|
|
}
|
|
#endif
|
|
|
|
|
|
/**
|
|
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
|
|
*/
|
|
inline void gcode_M203() {
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
planner.max_feedrate[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
|
|
*
|
|
* P = Printing moves
|
|
* R = Retract only (no X, Y, Z) moves
|
|
* T = Travel (non printing) moves
|
|
*
|
|
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
|
|
*/
|
|
inline void gcode_M204() {
|
|
if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
|
|
planner.travel_acceleration = planner.acceleration = code_value();
|
|
SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", planner.acceleration);
|
|
SERIAL_EOL;
|
|
}
|
|
if (code_seen('P')) {
|
|
planner.acceleration = code_value();
|
|
SERIAL_ECHOPAIR("Setting Print Acceleration: ", planner.acceleration);
|
|
SERIAL_EOL;
|
|
}
|
|
if (code_seen('R')) {
|
|
planner.retract_acceleration = code_value();
|
|
SERIAL_ECHOPAIR("Setting Retract Acceleration: ", planner.retract_acceleration);
|
|
SERIAL_EOL;
|
|
}
|
|
if (code_seen('T')) {
|
|
planner.travel_acceleration = code_value();
|
|
SERIAL_ECHOPAIR("Setting Travel Acceleration: ", planner.travel_acceleration);
|
|
SERIAL_EOL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M205: Set Advanced Settings
|
|
*
|
|
* S = Min Feed Rate (mm/s)
|
|
* T = Min Travel Feed Rate (mm/s)
|
|
* B = Min Segment Time (µs)
|
|
* X = Max XY Jerk (mm/s/s)
|
|
* Z = Max Z Jerk (mm/s/s)
|
|
* E = Max E Jerk (mm/s/s)
|
|
*/
|
|
inline void gcode_M205() {
|
|
if (code_seen('S')) planner.min_feedrate = code_value();
|
|
if (code_seen('T')) planner.min_travel_feedrate = code_value();
|
|
if (code_seen('B')) planner.min_segment_time = code_value();
|
|
if (code_seen('X')) planner.max_xy_jerk = code_value();
|
|
if (code_seen('Z')) planner.max_z_jerk = code_value();
|
|
if (code_seen('E')) planner.max_e_jerk = code_value();
|
|
}
|
|
|
|
/**
|
|
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
|
|
*/
|
|
inline void gcode_M206() {
|
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++)
|
|
if (code_seen(axis_codes[i]))
|
|
set_home_offset((AxisEnum)i, code_value());
|
|
|
|
#if ENABLED(SCARA)
|
|
if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta
|
|
if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi
|
|
#endif
|
|
|
|
sync_plan_position();
|
|
report_current_position();
|
|
}
|
|
|
|
#if ENABLED(DELTA)
|
|
/**
|
|
* M665: Set delta configurations
|
|
*
|
|
* L = diagonal rod
|
|
* R = delta radius
|
|
* S = segments per second
|
|
* A = Alpha (Tower 1) diagonal rod trim
|
|
* B = Beta (Tower 2) diagonal rod trim
|
|
* C = Gamma (Tower 3) diagonal rod trim
|
|
*/
|
|
inline void gcode_M665() {
|
|
if (code_seen('L')) delta_diagonal_rod = code_value();
|
|
if (code_seen('R')) delta_radius = code_value();
|
|
if (code_seen('S')) delta_segments_per_second = code_value();
|
|
if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
|
|
if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
|
|
if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
|
|
recalc_delta_settings(delta_radius, delta_diagonal_rod);
|
|
}
|
|
/**
|
|
* M666: Set delta endstop adjustment
|
|
*/
|
|
inline void gcode_M666() {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM(">>> gcode_M666");
|
|
}
|
|
#endif
|
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
endstop_adj[i] = code_value();
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPGM("endstop_adj[");
|
|
SERIAL_ECHO(axis_codes[i]);
|
|
SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM("<<< gcode_M666");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
|
|
|
|
/**
|
|
* M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
|
|
*/
|
|
inline void gcode_M666() {
|
|
if (code_seen('Z')) z_endstop_adj = code_value();
|
|
SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // !DELTA && Z_DUAL_ENDSTOPS
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
/**
|
|
* M207: Set firmware retraction values
|
|
*
|
|
* S[+mm] retract_length
|
|
* W[+mm] retract_length_swap (multi-extruder)
|
|
* F[mm/min] retract_feedrate
|
|
* Z[mm] retract_zlift
|
|
*/
|
|
inline void gcode_M207() {
|
|
if (code_seen('S')) retract_length = code_value();
|
|
if (code_seen('F')) retract_feedrate = code_value() / 60;
|
|
if (code_seen('Z')) retract_zlift = code_value();
|
|
#if EXTRUDERS > 1
|
|
if (code_seen('W')) retract_length_swap = code_value();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M208: Set firmware un-retraction values
|
|
*
|
|
* S[+mm] retract_recover_length (in addition to M207 S*)
|
|
* W[+mm] retract_recover_length_swap (multi-extruder)
|
|
* F[mm/min] retract_recover_feedrate
|
|
*/
|
|
inline void gcode_M208() {
|
|
if (code_seen('S')) retract_recover_length = code_value();
|
|
if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
|
|
#if EXTRUDERS > 1
|
|
if (code_seen('W')) retract_recover_length_swap = code_value();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* M209: Enable automatic retract (M209 S1)
|
|
* detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
*/
|
|
inline void gcode_M209() {
|
|
if (code_seen('S')) {
|
|
int t = code_value_short();
|
|
switch (t) {
|
|
case 0:
|
|
autoretract_enabled = false;
|
|
break;
|
|
case 1:
|
|
autoretract_enabled = true;
|
|
break;
|
|
default:
|
|
unknown_command_error();
|
|
return;
|
|
}
|
|
for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false;
|
|
}
|
|
}
|
|
|
|
#endif // FWRETRACT
|
|
|
|
#if EXTRUDERS > 1
|
|
|
|
/**
|
|
* M218 - set hotend offset (in mm)
|
|
*
|
|
* T<tool>
|
|
* X<xoffset>
|
|
* Y<yoffset>
|
|
* Z<zoffset> - Available with DUAL_X_CARRIAGE
|
|
*/
|
|
inline void gcode_M218() {
|
|
if (get_target_extruder_from_command(218)) return;
|
|
|
|
if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
|
|
if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
|
|
#endif
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
for (int e = 0; e < EXTRUDERS; e++) {
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(extruder_offset[X_AXIS][e]);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
|
|
#endif
|
|
}
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // EXTRUDERS > 1
|
|
|
|
/**
|
|
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
|
|
*/
|
|
inline void gcode_M220() {
|
|
if (code_seen('S')) feedrate_multiplier = code_value();
|
|
}
|
|
|
|
/**
|
|
* M221: Set extrusion percentage (M221 T0 S95)
|
|
*/
|
|
inline void gcode_M221() {
|
|
if (code_seen('S')) {
|
|
int sval = code_value();
|
|
if (get_target_extruder_from_command(221)) return;
|
|
extruder_multiplier[target_extruder] = sval;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
|
|
*/
|
|
inline void gcode_M226() {
|
|
if (code_seen('P')) {
|
|
int pin_number = code_value();
|
|
|
|
int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
|
|
|
|
if (pin_state >= -1 && pin_state <= 1) {
|
|
|
|
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
|
|
if (sensitive_pins[i] == pin_number) {
|
|
pin_number = -1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (pin_number > -1) {
|
|
int target = LOW;
|
|
|
|
stepper.synchronize();
|
|
|
|
pinMode(pin_number, INPUT);
|
|
|
|
switch (pin_state) {
|
|
case 1:
|
|
target = HIGH;
|
|
break;
|
|
|
|
case 0:
|
|
target = LOW;
|
|
break;
|
|
|
|
case -1:
|
|
target = !digitalRead(pin_number);
|
|
break;
|
|
}
|
|
|
|
while (digitalRead(pin_number) != target) idle();
|
|
|
|
} // pin_number > -1
|
|
} // pin_state -1 0 1
|
|
} // code_seen('P')
|
|
}
|
|
|
|
#if HAS_SERVOS
|
|
|
|
/**
|
|
* M280: Get or set servo position. P<index> S<angle>
|
|
*/
|
|
inline void gcode_M280() {
|
|
int servo_index = code_seen('P') ? code_value_short() : -1;
|
|
int servo_position = 0;
|
|
if (code_seen('S')) {
|
|
servo_position = code_value_short();
|
|
if (servo_index >= 0 && servo_index < NUM_SERVOS)
|
|
servo[servo_index].move(servo_position);
|
|
else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERROR("Servo ");
|
|
SERIAL_ERROR(servo_index);
|
|
SERIAL_ERRORLN(" out of range");
|
|
}
|
|
}
|
|
else if (servo_index >= 0) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(" Servo ");
|
|
SERIAL_ECHO(servo_index);
|
|
SERIAL_ECHO(": ");
|
|
SERIAL_ECHOLN(servo[servo_index].read());
|
|
}
|
|
}
|
|
|
|
#endif // HAS_SERVOS
|
|
|
|
#if HAS_BUZZER
|
|
|
|
/**
|
|
* M300: Play beep sound S<frequency Hz> P<duration ms>
|
|
*/
|
|
inline void gcode_M300() {
|
|
uint16_t beepS = code_seen('S') ? code_value_short() : 110;
|
|
uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
|
|
if (beepP > 5000) beepP = 5000; // limit to 5 seconds
|
|
buzz(beepP, beepS);
|
|
}
|
|
|
|
#endif // HAS_BUZZER
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
/**
|
|
* M301: Set PID parameters P I D (and optionally C, L)
|
|
*
|
|
* P[float] Kp term
|
|
* I[float] Ki term (unscaled)
|
|
* D[float] Kd term (unscaled)
|
|
*
|
|
* With PID_ADD_EXTRUSION_RATE:
|
|
*
|
|
* C[float] Kc term
|
|
* L[float] LPQ length
|
|
*/
|
|
inline void gcode_M301() {
|
|
|
|
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
|
|
// default behaviour (omitting E parameter) is to update for extruder 0 only
|
|
int e = code_seen('E') ? code_value() : 0; // extruder being updated
|
|
|
|
if (e < EXTRUDERS) { // catch bad input value
|
|
if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
|
|
if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
|
|
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
|
|
if (code_seen('L')) lpq_len = code_value();
|
|
NOMORE(lpq_len, LPQ_MAX_LEN);
|
|
#endif
|
|
|
|
updatePID();
|
|
SERIAL_ECHO_START;
|
|
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
|
|
SERIAL_ECHO(" e:"); // specify extruder in serial output
|
|
SERIAL_ECHO(e);
|
|
#endif // PID_PARAMS_PER_EXTRUDER
|
|
SERIAL_ECHO(" p:");
|
|
SERIAL_ECHO(PID_PARAM(Kp, e));
|
|
SERIAL_ECHO(" i:");
|
|
SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e)));
|
|
SERIAL_ECHO(" d:");
|
|
SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e)));
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
SERIAL_ECHO(" c:");
|
|
//Kc does not have scaling applied above, or in resetting defaults
|
|
SERIAL_ECHO(PID_PARAM(Kc, e));
|
|
#endif
|
|
SERIAL_EOL;
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLN(MSG_INVALID_EXTRUDER);
|
|
}
|
|
}
|
|
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
|
|
inline void gcode_M304() {
|
|
if (code_seen('P')) bedKp = code_value();
|
|
if (code_seen('I')) bedKi = scalePID_i(code_value());
|
|
if (code_seen('D')) bedKd = scalePID_d(code_value());
|
|
|
|
updatePID();
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(" p:");
|
|
SERIAL_ECHO(bedKp);
|
|
SERIAL_ECHO(" i:");
|
|
SERIAL_ECHO(unscalePID_i(bedKi));
|
|
SERIAL_ECHO(" d:");
|
|
SERIAL_ECHOLN(unscalePID_d(bedKd));
|
|
}
|
|
|
|
#endif // PIDTEMPBED
|
|
|
|
#if defined(CHDK) || HAS_PHOTOGRAPH
|
|
|
|
/**
|
|
* M240: Trigger a camera by emulating a Canon RC-1
|
|
* See http://www.doc-diy.net/photo/rc-1_hacked/
|
|
*/
|
|
inline void gcode_M240() {
|
|
#ifdef CHDK
|
|
|
|
OUT_WRITE(CHDK, HIGH);
|
|
chdkHigh = millis();
|
|
chdkActive = true;
|
|
|
|
#elif HAS_PHOTOGRAPH
|
|
|
|
const uint8_t NUM_PULSES = 16;
|
|
const float PULSE_LENGTH = 0.01524;
|
|
for (int i = 0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
delay(7.33);
|
|
for (int i = 0; i < NUM_PULSES; i++) {
|
|
WRITE(PHOTOGRAPH_PIN, HIGH);
|
|
_delay_ms(PULSE_LENGTH);
|
|
WRITE(PHOTOGRAPH_PIN, LOW);
|
|
_delay_ms(PULSE_LENGTH);
|
|
}
|
|
|
|
#endif // !CHDK && HAS_PHOTOGRAPH
|
|
}
|
|
|
|
#endif // CHDK || PHOTOGRAPH_PIN
|
|
|
|
#if ENABLED(HAS_LCD_CONTRAST)
|
|
|
|
/**
|
|
* M250: Read and optionally set the LCD contrast
|
|
*/
|
|
inline void gcode_M250() {
|
|
if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
|
|
SERIAL_PROTOCOLPGM("lcd contrast value: ");
|
|
SERIAL_PROTOCOL(lcd_contrast);
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // HAS_LCD_CONTRAST
|
|
|
|
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
|
|
|
|
void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
|
|
|
|
/**
|
|
* M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
|
|
*/
|
|
inline void gcode_M302() {
|
|
set_extrude_min_temp(code_seen('S') ? code_value() : 0);
|
|
}
|
|
|
|
#endif // PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
/**
|
|
* M303: PID relay autotune
|
|
*
|
|
* S<temperature> sets the target temperature. (default 150C)
|
|
* E<extruder> (-1 for the bed) (default 0)
|
|
* C<cycles>
|
|
* U<bool> with a non-zero value will apply the result to current settings
|
|
*/
|
|
inline void gcode_M303() {
|
|
#if HAS_PID_HEATING
|
|
int e = code_seen('E') ? code_value_short() : 0;
|
|
int c = code_seen('C') ? code_value_short() : 5;
|
|
bool u = code_seen('U') && code_value_short() != 0;
|
|
|
|
float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
|
|
|
|
if (e >= 0 && e < EXTRUDERS)
|
|
target_extruder = e;
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output
|
|
|
|
PID_autotune(temp, e, c, u);
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
#else
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M303_DISABLED);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(SCARA)
|
|
bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
|
|
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
|
|
//SERIAL_ECHOLN(" Soft endstops disabled ");
|
|
if (IsRunning()) {
|
|
//gcode_get_destination(); // For X Y Z E F
|
|
delta[X_AXIS] = delta_x;
|
|
delta[Y_AXIS] = delta_y;
|
|
calculate_SCARA_forward_Transform(delta);
|
|
destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS];
|
|
destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS];
|
|
prepare_move();
|
|
//ok_to_send();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
|
|
*/
|
|
inline bool gcode_M360() {
|
|
SERIAL_ECHOLN(" Cal: Theta 0 ");
|
|
return SCARA_move_to_cal(0, 120);
|
|
}
|
|
|
|
/**
|
|
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
|
|
*/
|
|
inline bool gcode_M361() {
|
|
SERIAL_ECHOLN(" Cal: Theta 90 ");
|
|
return SCARA_move_to_cal(90, 130);
|
|
}
|
|
|
|
/**
|
|
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
|
|
*/
|
|
inline bool gcode_M362() {
|
|
SERIAL_ECHOLN(" Cal: Psi 0 ");
|
|
return SCARA_move_to_cal(60, 180);
|
|
}
|
|
|
|
/**
|
|
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
|
|
*/
|
|
inline bool gcode_M363() {
|
|
SERIAL_ECHOLN(" Cal: Psi 90 ");
|
|
return SCARA_move_to_cal(50, 90);
|
|
}
|
|
|
|
/**
|
|
* M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
|
|
*/
|
|
inline bool gcode_M364() {
|
|
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
|
|
return SCARA_move_to_cal(45, 135);
|
|
}
|
|
|
|
/**
|
|
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
|
|
*/
|
|
inline void gcode_M365() {
|
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
|
if (code_seen(axis_codes[i])) {
|
|
axis_scaling[i] = code_value();
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif // SCARA
|
|
|
|
#if ENABLED(EXT_SOLENOID)
|
|
|
|
void enable_solenoid(uint8_t num) {
|
|
switch (num) {
|
|
case 0:
|
|
OUT_WRITE(SOL0_PIN, HIGH);
|
|
break;
|
|
#if HAS_SOLENOID_1
|
|
case 1:
|
|
OUT_WRITE(SOL1_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
#if HAS_SOLENOID_2
|
|
case 2:
|
|
OUT_WRITE(SOL2_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
#if HAS_SOLENOID_3
|
|
case 3:
|
|
OUT_WRITE(SOL3_PIN, HIGH);
|
|
break;
|
|
#endif
|
|
default:
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
|
|
|
|
void disable_all_solenoids() {
|
|
OUT_WRITE(SOL0_PIN, LOW);
|
|
OUT_WRITE(SOL1_PIN, LOW);
|
|
OUT_WRITE(SOL2_PIN, LOW);
|
|
OUT_WRITE(SOL3_PIN, LOW);
|
|
}
|
|
|
|
/**
|
|
* M380: Enable solenoid on the active extruder
|
|
*/
|
|
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
|
|
|
|
/**
|
|
* M381: Disable all solenoids
|
|
*/
|
|
inline void gcode_M381() { disable_all_solenoids(); }
|
|
|
|
#endif // EXT_SOLENOID
|
|
|
|
/**
|
|
* M400: Finish all moves
|
|
*/
|
|
inline void gcode_M400() { stepper.synchronize(); }
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
|
|
|
|
/**
|
|
* M401: Engage Z Servo endstop if available
|
|
*/
|
|
inline void gcode_M401() {
|
|
#if HAS_SERVO_ENDSTOPS
|
|
raise_z_for_servo();
|
|
#endif
|
|
deploy_z_probe();
|
|
}
|
|
|
|
/**
|
|
* M402: Retract Z Servo endstop if enabled
|
|
*/
|
|
inline void gcode_M402() {
|
|
#if HAS_SERVO_ENDSTOPS
|
|
raise_z_for_servo();
|
|
#endif
|
|
stow_z_probe(false);
|
|
}
|
|
|
|
#endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
/**
|
|
* M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
|
|
*/
|
|
inline void gcode_M404() {
|
|
if (code_seen('W')) {
|
|
filament_width_nominal = code_value();
|
|
}
|
|
else {
|
|
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_nominal);
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M405: Turn on filament sensor for control
|
|
*/
|
|
inline void gcode_M405() {
|
|
if (code_seen('D')) meas_delay_cm = code_value();
|
|
NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY);
|
|
|
|
if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup
|
|
int temp_ratio = widthFil_to_size_ratio();
|
|
|
|
for (uint8_t i = 0; i < COUNT(measurement_delay); ++i)
|
|
measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte
|
|
|
|
filwidth_delay_index1 = filwidth_delay_index2 = 0;
|
|
}
|
|
|
|
filament_sensor = true;
|
|
|
|
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
//SERIAL_PROTOCOL(filament_width_meas);
|
|
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
|
|
//SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
|
|
}
|
|
|
|
/**
|
|
* M406: Turn off filament sensor for control
|
|
*/
|
|
inline void gcode_M406() { filament_sensor = false; }
|
|
|
|
/**
|
|
* M407: Get measured filament diameter on serial output
|
|
*/
|
|
inline void gcode_M407() {
|
|
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
|
|
SERIAL_PROTOCOLLN(filament_width_meas);
|
|
}
|
|
|
|
#endif // FILAMENT_WIDTH_SENSOR
|
|
|
|
/**
|
|
* M410: Quickstop - Abort all planned moves
|
|
*
|
|
* This will stop the carriages mid-move, so most likely they
|
|
* will be out of sync with the stepper position after this.
|
|
*/
|
|
inline void gcode_M410() { stepper.quick_stop(); }
|
|
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
/**
|
|
* M420: Enable/Disable Mesh Bed Leveling
|
|
*/
|
|
inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
|
|
|
|
/**
|
|
* M421: Set a single Mesh Bed Leveling Z coordinate
|
|
*/
|
|
inline void gcode_M421() {
|
|
float x = 0, y = 0, z = 0;
|
|
bool err = false, hasX, hasY, hasZ;
|
|
if ((hasX = code_seen('X'))) x = code_value();
|
|
if ((hasY = code_seen('Y'))) y = code_value();
|
|
if ((hasZ = code_seen('Z'))) z = code_value();
|
|
|
|
if (!hasX || !hasY || !hasZ) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
|
|
err = true;
|
|
}
|
|
|
|
if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
|
|
err = true;
|
|
}
|
|
|
|
if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
|
|
}
|
|
|
|
#endif
|
|
|
|
/**
|
|
* M428: Set home_offset based on the distance between the
|
|
* current_position and the nearest "reference point."
|
|
* If an axis is past center its endstop position
|
|
* is the reference-point. Otherwise it uses 0. This allows
|
|
* the Z offset to be set near the bed when using a max endstop.
|
|
*
|
|
* M428 can't be used more than 2cm away from 0 or an endstop.
|
|
*
|
|
* Use M206 to set these values directly.
|
|
*/
|
|
inline void gcode_M428() {
|
|
bool err = false;
|
|
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
|
|
if (axis_homed[i]) {
|
|
float base = (current_position[i] > (sw_endstop_min[i] + sw_endstop_max[i]) / 2) ? base_home_pos(i) : 0,
|
|
diff = current_position[i] - base;
|
|
if (diff > -20 && diff < 20) {
|
|
set_home_offset((AxisEnum)i, home_offset[i] - diff);
|
|
}
|
|
else {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
|
|
LCD_ALERTMESSAGEPGM("Err: Too far!");
|
|
#if HAS_BUZZER
|
|
buzz(200, 40);
|
|
#endif
|
|
err = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!err) {
|
|
sync_plan_position();
|
|
report_current_position();
|
|
LCD_MESSAGEPGM(MSG_HOME_OFFSETS_APPLIED);
|
|
#if HAS_BUZZER
|
|
buzz(200, 659);
|
|
buzz(200, 698);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/**
|
|
* M500: Store settings in EEPROM
|
|
*/
|
|
inline void gcode_M500() {
|
|
Config_StoreSettings();
|
|
}
|
|
|
|
/**
|
|
* M501: Read settings from EEPROM
|
|
*/
|
|
inline void gcode_M501() {
|
|
Config_RetrieveSettings();
|
|
}
|
|
|
|
/**
|
|
* M502: Revert to default settings
|
|
*/
|
|
inline void gcode_M502() {
|
|
Config_ResetDefault();
|
|
}
|
|
|
|
/**
|
|
* M503: print settings currently in memory
|
|
*/
|
|
inline void gcode_M503() {
|
|
Config_PrintSettings(code_seen('S') && code_value() == 0);
|
|
}
|
|
|
|
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
|
|
/**
|
|
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
|
|
*/
|
|
inline void gcode_M540() {
|
|
if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
|
|
}
|
|
|
|
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
|
|
|
|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
inline void gcode_SET_Z_PROBE_OFFSET() {
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
|
|
SERIAL_CHAR(' ');
|
|
|
|
if (code_seen('Z')) {
|
|
float value = code_value();
|
|
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
|
|
zprobe_zoffset = value;
|
|
SERIAL_ECHO(zprobe_zoffset);
|
|
}
|
|
else {
|
|
SERIAL_ECHOPGM(MSG_Z_MIN);
|
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
|
|
SERIAL_ECHOPGM(MSG_Z_MAX);
|
|
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
|
|
}
|
|
}
|
|
else {
|
|
SERIAL_ECHOPAIR(": ", zprobe_zoffset);
|
|
}
|
|
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
#if ENABLED(FILAMENTCHANGEENABLE)
|
|
|
|
/**
|
|
* M600: Pause for filament change
|
|
*
|
|
* E[distance] - Retract the filament this far (negative value)
|
|
* Z[distance] - Move the Z axis by this distance
|
|
* X[position] - Move to this X position, with Y
|
|
* Y[position] - Move to this Y position, with X
|
|
* L[distance] - Retract distance for removal (manual reload)
|
|
*
|
|
* Default values are used for omitted arguments.
|
|
*
|
|
*/
|
|
inline void gcode_M600() {
|
|
|
|
if (degHotend(active_extruder) < extrude_min_temp) {
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
|
|
return;
|
|
}
|
|
|
|
float lastpos[NUM_AXIS];
|
|
#if ENABLED(DELTA)
|
|
float fr60 = feedrate / 60;
|
|
#endif
|
|
|
|
for (int i = 0; i < NUM_AXIS; i++)
|
|
lastpos[i] = destination[i] = current_position[i];
|
|
|
|
#if ENABLED(DELTA)
|
|
#define RUNPLAN calculate_delta(destination); \
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
|
|
#else
|
|
#define RUNPLAN line_to_destination();
|
|
#endif
|
|
|
|
//retract by E
|
|
if (code_seen('E')) destination[E_AXIS] += code_value();
|
|
#ifdef FILAMENTCHANGE_FIRSTRETRACT
|
|
else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
//lift Z
|
|
if (code_seen('Z')) destination[Z_AXIS] += code_value();
|
|
#ifdef FILAMENTCHANGE_ZADD
|
|
else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
//move xy
|
|
if (code_seen('X')) destination[X_AXIS] = code_value();
|
|
#ifdef FILAMENTCHANGE_XPOS
|
|
else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
|
|
#endif
|
|
|
|
if (code_seen('Y')) destination[Y_AXIS] = code_value();
|
|
#ifdef FILAMENTCHANGE_YPOS
|
|
else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
if (code_seen('L')) destination[E_AXIS] += code_value();
|
|
#ifdef FILAMENTCHANGE_FINALRETRACT
|
|
else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
|
|
#endif
|
|
|
|
RUNPLAN;
|
|
|
|
//finish moves
|
|
stepper.synchronize();
|
|
//disable extruder steppers so filament can be removed
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
delay(100);
|
|
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
|
|
#if DISABLED(AUTO_FILAMENT_CHANGE)
|
|
millis_t next_tick = 0;
|
|
#endif
|
|
KEEPALIVE_STATE(PAUSED_FOR_USER);
|
|
while (!lcd_clicked()) {
|
|
#if DISABLED(AUTO_FILAMENT_CHANGE)
|
|
millis_t ms = millis();
|
|
if (ELAPSED(ms, next_tick)) {
|
|
lcd_quick_feedback();
|
|
next_tick = ms + 2500UL; // feedback every 2.5s while waiting
|
|
}
|
|
idle(true);
|
|
#else
|
|
current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
|
|
destination[E_AXIS] = current_position[E_AXIS];
|
|
line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
|
|
stepper.synchronize();
|
|
#endif
|
|
} // while(!lcd_clicked)
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
lcd_quick_feedback(); // click sound feedback
|
|
|
|
#if ENABLED(AUTO_FILAMENT_CHANGE)
|
|
current_position[E_AXIS] = 0;
|
|
stepper.synchronize();
|
|
#endif
|
|
|
|
//return to normal
|
|
if (code_seen('L')) destination[E_AXIS] -= code_value();
|
|
#ifdef FILAMENTCHANGE_FINALRETRACT
|
|
else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
|
|
#endif
|
|
|
|
current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
|
|
sync_plan_position_e();
|
|
|
|
RUNPLAN; //should do nothing
|
|
|
|
lcd_reset_alert_level();
|
|
|
|
#if ENABLED(DELTA)
|
|
// Move XYZ to starting position, then E
|
|
calculate_delta(lastpos);
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
|
|
#else
|
|
// Move XY to starting position, then Z, then E
|
|
destination[X_AXIS] = lastpos[X_AXIS];
|
|
destination[Y_AXIS] = lastpos[Y_AXIS];
|
|
line_to_destination();
|
|
destination[Z_AXIS] = lastpos[Z_AXIS];
|
|
line_to_destination();
|
|
destination[E_AXIS] = lastpos[E_AXIS];
|
|
line_to_destination();
|
|
#endif
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
filament_ran_out = false;
|
|
#endif
|
|
|
|
}
|
|
|
|
#endif // FILAMENTCHANGEENABLE
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
/**
|
|
* M605: Set dual x-carriage movement mode
|
|
*
|
|
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
|
|
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
|
|
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
|
|
* millimeters x-offset and an optional differential hotend temperature of
|
|
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
|
|
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
|
|
*
|
|
* Note: the X axis should be homed after changing dual x-carriage mode.
|
|
*/
|
|
inline void gcode_M605() {
|
|
stepper.synchronize();
|
|
if (code_seen('S')) dual_x_carriage_mode = code_value();
|
|
switch (dual_x_carriage_mode) {
|
|
case DXC_DUPLICATION_MODE:
|
|
if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
|
|
if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
|
|
SERIAL_CHAR(' ');
|
|
SERIAL_ECHO(duplicate_extruder_x_offset);
|
|
SERIAL_CHAR(',');
|
|
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
|
|
break;
|
|
case DXC_FULL_CONTROL_MODE:
|
|
case DXC_AUTO_PARK_MODE:
|
|
break;
|
|
default:
|
|
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
|
|
break;
|
|
}
|
|
active_extruder_parked = false;
|
|
extruder_duplication_enabled = false;
|
|
delayed_move_time = 0;
|
|
}
|
|
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
/**
|
|
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
|
|
*/
|
|
inline void gcode_M907() {
|
|
#if HAS_DIGIPOTSS
|
|
for (int i = 0; i < NUM_AXIS; i++)
|
|
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
|
|
if (code_seen('B')) digipot_current(4, code_value());
|
|
if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value());
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_XY)
|
|
if (code_seen('X')) digipot_current(0, code_value());
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_Z)
|
|
if (code_seen('Z')) digipot_current(1, code_value());
|
|
#endif
|
|
#if PIN_EXISTS(MOTOR_CURRENT_PWM_E)
|
|
if (code_seen('E')) digipot_current(2, code_value());
|
|
#endif
|
|
#if ENABLED(DIGIPOT_I2C)
|
|
// this one uses actual amps in floating point
|
|
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
|
|
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
|
|
for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value());
|
|
#endif
|
|
#if ENABLED(DAC_STEPPER_CURRENT)
|
|
if (code_seen('S')) {
|
|
float dac_percent = code_value();
|
|
for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent);
|
|
}
|
|
for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value());
|
|
#endif
|
|
}
|
|
|
|
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
|
|
|
|
/**
|
|
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
|
|
*/
|
|
inline void gcode_M908() {
|
|
#if HAS_DIGIPOTSS
|
|
digitalPotWrite(
|
|
code_seen('P') ? code_value() : 0,
|
|
code_seen('S') ? code_value() : 0
|
|
);
|
|
#endif
|
|
#ifdef DAC_STEPPER_CURRENT
|
|
dac_current_raw(
|
|
code_seen('P') ? code_value_long() : -1,
|
|
code_seen('S') ? code_value_short() : 0
|
|
);
|
|
#endif
|
|
}
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
|
|
|
|
inline void gcode_M909() { dac_print_values(); }
|
|
|
|
inline void gcode_M910() { dac_commit_eeprom(); }
|
|
|
|
#endif
|
|
|
|
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
inline void gcode_M350() {
|
|
if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value());
|
|
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value());
|
|
if (code_seen('B')) microstep_mode(4, code_value());
|
|
microstep_readings();
|
|
}
|
|
|
|
/**
|
|
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
|
|
* S# determines MS1 or MS2, X# sets the pin high/low.
|
|
*/
|
|
inline void gcode_M351() {
|
|
if (code_seen('S')) switch (code_value_short()) {
|
|
case 1:
|
|
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
|
|
if (code_seen('B')) microstep_ms(4, code_value(), -1);
|
|
break;
|
|
case 2:
|
|
for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
|
|
if (code_seen('B')) microstep_ms(4, -1, code_value());
|
|
break;
|
|
}
|
|
microstep_readings();
|
|
}
|
|
|
|
#endif // HAS_MICROSTEPS
|
|
|
|
/**
|
|
* M999: Restart after being stopped
|
|
*/
|
|
inline void gcode_M999() {
|
|
Running = true;
|
|
lcd_reset_alert_level();
|
|
// gcode_LastN = Stopped_gcode_LastN;
|
|
FlushSerialRequestResend();
|
|
}
|
|
|
|
/**
|
|
* T0-T3: Switch tool, usually switching extruders
|
|
*
|
|
* F[mm/min] Set the movement feedrate
|
|
*/
|
|
inline void gcode_T(uint8_t tmp_extruder) {
|
|
if (tmp_extruder >= EXTRUDERS) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_CHAR('T');
|
|
SERIAL_PROTOCOL_F(tmp_extruder, DEC);
|
|
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
|
|
return;
|
|
}
|
|
|
|
float stored_feedrate = feedrate;
|
|
|
|
if (code_seen('F')) {
|
|
float next_feedrate = code_value();
|
|
if (next_feedrate > 0.0) stored_feedrate = feedrate = next_feedrate;
|
|
}
|
|
else {
|
|
#ifdef XY_TRAVEL_SPEED
|
|
feedrate = XY_TRAVEL_SPEED;
|
|
#else
|
|
feedrate = min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]);
|
|
#endif
|
|
}
|
|
|
|
#if EXTRUDERS > 1
|
|
if (tmp_extruder != active_extruder) {
|
|
// Save current position to return to after applying extruder offset
|
|
set_destination_to_current();
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
|
|
(delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) {
|
|
// Park old head: 1) raise 2) move to park position 3) lower
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
|
current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
|
|
planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
|
|
current_position[E_AXIS], planner.max_feedrate[X_AXIS], active_extruder);
|
|
planner.buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
|
|
current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
|
|
stepper.synchronize();
|
|
}
|
|
|
|
// apply Y & Z extruder offset (x offset is already used in determining home pos)
|
|
current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder];
|
|
current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder];
|
|
active_extruder = tmp_extruder;
|
|
|
|
// This function resets the max/min values - the current position may be overwritten below.
|
|
set_axis_is_at_home(X_AXIS);
|
|
|
|
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
|
|
current_position[X_AXIS] = inactive_extruder_x_pos;
|
|
inactive_extruder_x_pos = destination[X_AXIS];
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
|
|
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
|
|
if (active_extruder_parked)
|
|
current_position[X_AXIS] = inactive_extruder_x_pos;
|
|
else
|
|
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
|
|
inactive_extruder_x_pos = destination[X_AXIS];
|
|
extruder_duplication_enabled = false;
|
|
}
|
|
else {
|
|
// record raised toolhead position for use by unpark
|
|
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
|
|
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
|
|
active_extruder_parked = true;
|
|
delayed_move_time = 0;
|
|
}
|
|
// No extra case for AUTO_BED_LEVELING_FEATURE in DUAL_X_CARRIAGE. Does that mean they don't work together?
|
|
#else // !DUAL_X_CARRIAGE
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
// Offset extruder, make sure to apply the bed level rotation matrix
|
|
vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder],
|
|
extruder_offset[Y_AXIS][tmp_extruder],
|
|
0),
|
|
act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder],
|
|
extruder_offset[Y_AXIS][active_extruder],
|
|
0),
|
|
offset_vec = tmp_offset_vec - act_offset_vec;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOLNPGM(">>> gcode_T");
|
|
tmp_offset_vec.debug("tmp_offset_vec");
|
|
act_offset_vec.debug("act_offset_vec");
|
|
offset_vec.debug("offset_vec (BEFORE)");
|
|
DEBUG_POS("BEFORE rotation", current_position);
|
|
}
|
|
#endif
|
|
|
|
offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix));
|
|
|
|
current_position[X_AXIS] += offset_vec.x;
|
|
current_position[Y_AXIS] += offset_vec.y;
|
|
current_position[Z_AXIS] += offset_vec.z;
|
|
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
offset_vec.debug("offset_vec (AFTER)");
|
|
DEBUG_POS("AFTER rotation", current_position);
|
|
SERIAL_ECHOLNPGM("<<< gcode_T");
|
|
}
|
|
#endif
|
|
|
|
#else // !AUTO_BED_LEVELING_FEATURE
|
|
|
|
// Offset extruder (only by XY)
|
|
for (int i=X_AXIS; i<=Y_AXIS; i++)
|
|
current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
|
|
|
|
#endif // !AUTO_BED_LEVELING_FEATURE
|
|
|
|
// Set the new active extruder and position
|
|
active_extruder = tmp_extruder;
|
|
|
|
#endif // !DUAL_X_CARRIAGE
|
|
|
|
#if ENABLED(DELTA)
|
|
sync_plan_position_delta();
|
|
#else
|
|
sync_plan_position();
|
|
#endif
|
|
|
|
// Move to the old position
|
|
if (IsRunning()) prepare_move();
|
|
|
|
} // (tmp_extruder != active_extruder)
|
|
|
|
#if ENABLED(EXT_SOLENOID)
|
|
stepper.synchronize();
|
|
disable_all_solenoids();
|
|
enable_solenoid_on_active_extruder();
|
|
#endif // EXT_SOLENOID
|
|
|
|
#endif // EXTRUDERS > 1
|
|
|
|
feedrate = stored_feedrate;
|
|
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
|
|
SERIAL_PROTOCOLLN((int)active_extruder);
|
|
}
|
|
|
|
/**
|
|
* Process a single command and dispatch it to its handler
|
|
* This is called from the main loop()
|
|
*/
|
|
void process_next_command() {
|
|
current_command = command_queue[cmd_queue_index_r];
|
|
|
|
if (DEBUGGING(ECHO)) {
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLN(current_command);
|
|
}
|
|
|
|
// Sanitize the current command:
|
|
// - Skip leading spaces
|
|
// - Bypass N[-0-9][0-9]*[ ]*
|
|
// - Overwrite * with nul to mark the end
|
|
while (*current_command == ' ') ++current_command;
|
|
if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) {
|
|
current_command += 2; // skip N[-0-9]
|
|
while (NUMERIC(*current_command)) ++current_command; // skip [0-9]*
|
|
while (*current_command == ' ') ++current_command; // skip [ ]*
|
|
}
|
|
char* starpos = strchr(current_command, '*'); // * should always be the last parameter
|
|
if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
|
|
|
|
char *cmd_ptr = current_command;
|
|
|
|
// Get the command code, which must be G, M, or T
|
|
char command_code = *cmd_ptr++;
|
|
|
|
// Skip spaces to get the numeric part
|
|
while (*cmd_ptr == ' ') cmd_ptr++;
|
|
|
|
uint16_t codenum = 0; // define ahead of goto
|
|
|
|
// Bail early if there's no code
|
|
bool code_is_good = NUMERIC(*cmd_ptr);
|
|
if (!code_is_good) goto ExitUnknownCommand;
|
|
|
|
// Get and skip the code number
|
|
do {
|
|
codenum = (codenum * 10) + (*cmd_ptr - '0');
|
|
cmd_ptr++;
|
|
} while (NUMERIC(*cmd_ptr));
|
|
|
|
// Skip all spaces to get to the first argument, or nul
|
|
while (*cmd_ptr == ' ') cmd_ptr++;
|
|
|
|
// The command's arguments (if any) start here, for sure!
|
|
current_command_args = cmd_ptr;
|
|
|
|
KEEPALIVE_STATE(IN_HANDLER);
|
|
|
|
// Handle a known G, M, or T
|
|
switch (command_code) {
|
|
case 'G': switch (codenum) {
|
|
|
|
// G0, G1
|
|
case 0:
|
|
case 1:
|
|
gcode_G0_G1();
|
|
break;
|
|
|
|
// G2, G3
|
|
#if DISABLED(SCARA)
|
|
case 2: // G2 - CW ARC
|
|
case 3: // G3 - CCW ARC
|
|
gcode_G2_G3(codenum == 2);
|
|
break;
|
|
#endif
|
|
|
|
// G4 Dwell
|
|
case 4:
|
|
gcode_G4();
|
|
break;
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
|
|
case 10: // G10: retract
|
|
case 11: // G11: retract_recover
|
|
gcode_G10_G11(codenum == 10);
|
|
break;
|
|
|
|
#endif //FWRETRACT
|
|
|
|
case 28: // G28: Home all axes, one at a time
|
|
gcode_G28();
|
|
break;
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
|
|
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
|
|
gcode_G29();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
|
|
#if DISABLED(Z_PROBE_SLED)
|
|
|
|
case 30: // G30 Single Z probe
|
|
gcode_G30();
|
|
break;
|
|
|
|
#else // Z_PROBE_SLED
|
|
|
|
case 31: // G31: dock the sled
|
|
case 32: // G32: undock the sled
|
|
dock_sled(codenum == 31);
|
|
break;
|
|
|
|
#endif // Z_PROBE_SLED
|
|
|
|
#endif // AUTO_BED_LEVELING_FEATURE
|
|
|
|
case 90: // G90
|
|
relative_mode = false;
|
|
break;
|
|
case 91: // G91
|
|
relative_mode = true;
|
|
break;
|
|
|
|
case 92: // G92
|
|
gcode_G92();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 'M': switch (codenum) {
|
|
#if ENABLED(ULTIPANEL)
|
|
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
|
|
case 1: // M1 - Conditional stop - Wait for user button press on LCD
|
|
gcode_M0_M1();
|
|
break;
|
|
#endif // ULTIPANEL
|
|
|
|
case 17:
|
|
gcode_M17();
|
|
break;
|
|
|
|
#if ENABLED(SDSUPPORT)
|
|
|
|
case 20: // M20 - list SD card
|
|
gcode_M20(); break;
|
|
case 21: // M21 - init SD card
|
|
gcode_M21(); break;
|
|
case 22: //M22 - release SD card
|
|
gcode_M22(); break;
|
|
case 23: //M23 - Select file
|
|
gcode_M23(); break;
|
|
case 24: //M24 - Start SD print
|
|
gcode_M24(); break;
|
|
case 25: //M25 - Pause SD print
|
|
gcode_M25(); break;
|
|
case 26: //M26 - Set SD index
|
|
gcode_M26(); break;
|
|
case 27: //M27 - Get SD status
|
|
gcode_M27(); break;
|
|
case 28: //M28 - Start SD write
|
|
gcode_M28(); break;
|
|
case 29: //M29 - Stop SD write
|
|
gcode_M29(); break;
|
|
case 30: //M30 <filename> Delete File
|
|
gcode_M30(); break;
|
|
case 32: //M32 - Select file and start SD print
|
|
gcode_M32(); break;
|
|
|
|
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
|
|
case 33: //M33 - Get the long full path to a file or folder
|
|
gcode_M33(); break;
|
|
#endif // LONG_FILENAME_HOST_SUPPORT
|
|
|
|
case 928: //M928 - Start SD write
|
|
gcode_M928(); break;
|
|
|
|
#endif //SDSUPPORT
|
|
|
|
case 31: //M31 take time since the start of the SD print or an M109 command
|
|
gcode_M31();
|
|
break;
|
|
|
|
case 42: //M42 -Change pin status via gcode
|
|
gcode_M42();
|
|
break;
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
case 48: // M48 Z probe repeatability
|
|
gcode_M48();
|
|
break;
|
|
#endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
|
|
|
|
case 75: // Start print timer
|
|
gcode_M75();
|
|
break;
|
|
|
|
case 76: // Pause print timer
|
|
gcode_M76();
|
|
break;
|
|
|
|
case 77: // Stop print timer
|
|
gcode_M77();
|
|
break;
|
|
|
|
#if ENABLED(PRINTCOUNTER)
|
|
case 78: // Show print statistics
|
|
gcode_M78();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(M100_FREE_MEMORY_WATCHER)
|
|
case 100:
|
|
gcode_M100();
|
|
break;
|
|
#endif
|
|
|
|
case 104: // M104
|
|
gcode_M104();
|
|
break;
|
|
|
|
case 110: // M110: Set Current Line Number
|
|
gcode_M110();
|
|
break;
|
|
|
|
case 111: // M111: Set debug level
|
|
gcode_M111();
|
|
break;
|
|
|
|
case 112: // M112: Emergency Stop
|
|
gcode_M112();
|
|
break;
|
|
|
|
#if ENABLED(HOST_KEEPALIVE_FEATURE)
|
|
|
|
case 113: // M113: Set Host Keepalive interval
|
|
gcode_M113();
|
|
break;
|
|
|
|
#endif
|
|
|
|
case 140: // M140: Set bed temp
|
|
gcode_M140();
|
|
break;
|
|
|
|
case 105: // M105: Read current temperature
|
|
gcode_M105();
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
return; // "ok" already printed
|
|
|
|
case 109: // M109: Wait for temperature
|
|
gcode_M109();
|
|
break;
|
|
|
|
#if HAS_TEMP_BED
|
|
case 190: // M190: Wait for bed heater to reach target
|
|
gcode_M190();
|
|
break;
|
|
#endif // HAS_TEMP_BED
|
|
|
|
#if FAN_COUNT > 0
|
|
case 106: // M106: Fan On
|
|
gcode_M106();
|
|
break;
|
|
case 107: // M107: Fan Off
|
|
gcode_M107();
|
|
break;
|
|
#endif // FAN_COUNT > 0
|
|
|
|
#if ENABLED(BARICUDA)
|
|
// PWM for HEATER_1_PIN
|
|
#if HAS_HEATER_1
|
|
case 126: // M126: valve open
|
|
gcode_M126();
|
|
break;
|
|
case 127: // M127: valve closed
|
|
gcode_M127();
|
|
break;
|
|
#endif // HAS_HEATER_1
|
|
|
|
// PWM for HEATER_2_PIN
|
|
#if HAS_HEATER_2
|
|
case 128: // M128: valve open
|
|
gcode_M128();
|
|
break;
|
|
case 129: // M129: valve closed
|
|
gcode_M129();
|
|
break;
|
|
#endif // HAS_HEATER_2
|
|
#endif // BARICUDA
|
|
|
|
#if HAS_POWER_SWITCH
|
|
|
|
case 80: // M80: Turn on Power Supply
|
|
gcode_M80();
|
|
break;
|
|
|
|
#endif // HAS_POWER_SWITCH
|
|
|
|
case 81: // M81: Turn off Power, including Power Supply, if possible
|
|
gcode_M81();
|
|
break;
|
|
|
|
case 82:
|
|
gcode_M82();
|
|
break;
|
|
case 83:
|
|
gcode_M83();
|
|
break;
|
|
case 18: // (for compatibility)
|
|
case 84: // M84
|
|
gcode_M18_M84();
|
|
break;
|
|
case 85: // M85
|
|
gcode_M85();
|
|
break;
|
|
case 92: // M92: Set the steps-per-unit for one or more axes
|
|
gcode_M92();
|
|
break;
|
|
case 115: // M115: Report capabilities
|
|
gcode_M115();
|
|
break;
|
|
case 117: // M117: Set LCD message text, if possible
|
|
gcode_M117();
|
|
break;
|
|
case 114: // M114: Report current position
|
|
gcode_M114();
|
|
break;
|
|
case 120: // M120: Enable endstops
|
|
gcode_M120();
|
|
break;
|
|
case 121: // M121: Disable endstops
|
|
gcode_M121();
|
|
break;
|
|
case 119: // M119: Report endstop states
|
|
gcode_M119();
|
|
break;
|
|
|
|
#if ENABLED(ULTIPANEL)
|
|
|
|
case 145: // M145: Set material heatup parameters
|
|
gcode_M145();
|
|
break;
|
|
|
|
#endif
|
|
|
|
#if ENABLED(BLINKM)
|
|
|
|
case 150: // M150
|
|
gcode_M150();
|
|
break;
|
|
|
|
#endif //BLINKM
|
|
|
|
#if ENABLED(EXPERIMENTAL_I2CBUS)
|
|
|
|
case 155:
|
|
gcode_M155();
|
|
break;
|
|
|
|
case 156:
|
|
gcode_M156();
|
|
break;
|
|
|
|
#endif //EXPERIMENTAL_I2CBUS
|
|
|
|
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
|
|
gcode_M200();
|
|
break;
|
|
case 201: // M201
|
|
gcode_M201();
|
|
break;
|
|
#if 0 // Not used for Sprinter/grbl gen6
|
|
case 202: // M202
|
|
gcode_M202();
|
|
break;
|
|
#endif
|
|
case 203: // M203 max feedrate mm/sec
|
|
gcode_M203();
|
|
break;
|
|
case 204: // M204 acclereration S normal moves T filmanent only moves
|
|
gcode_M204();
|
|
break;
|
|
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
|
|
gcode_M205();
|
|
break;
|
|
case 206: // M206 additional homing offset
|
|
gcode_M206();
|
|
break;
|
|
|
|
#if ENABLED(DELTA)
|
|
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
|
|
gcode_M665();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
|
|
case 666: // M666 set delta / dual endstop adjustment
|
|
gcode_M666();
|
|
break;
|
|
#endif
|
|
|
|
#if ENABLED(FWRETRACT)
|
|
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
|
|
gcode_M207();
|
|
break;
|
|
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
|
|
gcode_M208();
|
|
break;
|
|
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
|
|
gcode_M209();
|
|
break;
|
|
#endif // FWRETRACT
|
|
|
|
#if EXTRUDERS > 1
|
|
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
|
|
gcode_M218();
|
|
break;
|
|
#endif
|
|
|
|
case 220: // M220 S<factor in percent>- set speed factor override percentage
|
|
gcode_M220();
|
|
break;
|
|
|
|
case 221: // M221 S<factor in percent>- set extrude factor override percentage
|
|
gcode_M221();
|
|
break;
|
|
|
|
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
|
|
gcode_M226();
|
|
break;
|
|
|
|
#if HAS_SERVOS
|
|
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
|
|
gcode_M280();
|
|
break;
|
|
#endif // HAS_SERVOS
|
|
|
|
#if HAS_BUZZER
|
|
case 300: // M300 - Play beep tone
|
|
gcode_M300();
|
|
break;
|
|
#endif // HAS_BUZZER
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
case 301: // M301
|
|
gcode_M301();
|
|
break;
|
|
#endif // PIDTEMP
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
case 304: // M304
|
|
gcode_M304();
|
|
break;
|
|
#endif // PIDTEMPBED
|
|
|
|
#if defined(CHDK) || HAS_PHOTOGRAPH
|
|
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
|
|
gcode_M240();
|
|
break;
|
|
#endif // CHDK || PHOTOGRAPH_PIN
|
|
|
|
#if ENABLED(HAS_LCD_CONTRAST)
|
|
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
|
|
gcode_M250();
|
|
break;
|
|
#endif // HAS_LCD_CONTRAST
|
|
|
|
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
|
|
case 302: // allow cold extrudes, or set the minimum extrude temperature
|
|
gcode_M302();
|
|
break;
|
|
#endif // PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
case 303: // M303 PID autotune
|
|
gcode_M303();
|
|
break;
|
|
|
|
#if ENABLED(SCARA)
|
|
case 360: // M360 SCARA Theta pos1
|
|
if (gcode_M360()) return;
|
|
break;
|
|
case 361: // M361 SCARA Theta pos2
|
|
if (gcode_M361()) return;
|
|
break;
|
|
case 362: // M362 SCARA Psi pos1
|
|
if (gcode_M362()) return;
|
|
break;
|
|
case 363: // M363 SCARA Psi pos2
|
|
if (gcode_M363()) return;
|
|
break;
|
|
case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
|
|
if (gcode_M364()) return;
|
|
break;
|
|
case 365: // M365 Set SCARA scaling for X Y Z
|
|
gcode_M365();
|
|
break;
|
|
#endif // SCARA
|
|
|
|
case 400: // M400 finish all moves
|
|
gcode_M400();
|
|
break;
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
|
|
case 401:
|
|
gcode_M401();
|
|
break;
|
|
case 402:
|
|
gcode_M402();
|
|
break;
|
|
#endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
|
|
|
|
#if ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
|
|
gcode_M404();
|
|
break;
|
|
case 405: //M405 Turn on filament sensor for control
|
|
gcode_M405();
|
|
break;
|
|
case 406: //M406 Turn off filament sensor for control
|
|
gcode_M406();
|
|
break;
|
|
case 407: //M407 Display measured filament diameter
|
|
gcode_M407();
|
|
break;
|
|
#endif // ENABLED(FILAMENT_WIDTH_SENSOR)
|
|
|
|
case 410: // M410 quickstop - Abort all the planned moves.
|
|
gcode_M410();
|
|
break;
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
case 420: // M420 Enable/Disable Mesh Bed Leveling
|
|
gcode_M420();
|
|
break;
|
|
case 421: // M421 Set a Mesh Bed Leveling Z coordinate
|
|
gcode_M421();
|
|
break;
|
|
#endif
|
|
|
|
case 428: // M428 Apply current_position to home_offset
|
|
gcode_M428();
|
|
break;
|
|
|
|
case 500: // M500 Store settings in EEPROM
|
|
gcode_M500();
|
|
break;
|
|
case 501: // M501 Read settings from EEPROM
|
|
gcode_M501();
|
|
break;
|
|
case 502: // M502 Revert to default settings
|
|
gcode_M502();
|
|
break;
|
|
case 503: // M503 print settings currently in memory
|
|
gcode_M503();
|
|
break;
|
|
|
|
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
|
|
case 540:
|
|
gcode_M540();
|
|
break;
|
|
#endif
|
|
|
|
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
|
|
gcode_SET_Z_PROBE_OFFSET();
|
|
break;
|
|
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
|
|
|
|
#if ENABLED(FILAMENTCHANGEENABLE)
|
|
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
|
|
gcode_M600();
|
|
break;
|
|
#endif // FILAMENTCHANGEENABLE
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
case 605:
|
|
gcode_M605();
|
|
break;
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
case 907: // M907 Set digital trimpot motor current using axis codes.
|
|
gcode_M907();
|
|
break;
|
|
|
|
#if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT)
|
|
|
|
case 908: // M908 Control digital trimpot directly.
|
|
gcode_M908();
|
|
break;
|
|
|
|
#if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF
|
|
|
|
case 909: // M909 Print digipot/DAC current value
|
|
gcode_M909();
|
|
break;
|
|
|
|
case 910: // M910 Commit digipot/DAC value to external EEPROM
|
|
gcode_M910();
|
|
break;
|
|
|
|
#endif
|
|
|
|
#endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT
|
|
|
|
#if HAS_MICROSTEPS
|
|
|
|
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
|
|
gcode_M350();
|
|
break;
|
|
|
|
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
|
|
gcode_M351();
|
|
break;
|
|
|
|
#endif // HAS_MICROSTEPS
|
|
|
|
case 999: // M999: Restart after being Stopped
|
|
gcode_M999();
|
|
break;
|
|
}
|
|
break;
|
|
|
|
case 'T':
|
|
gcode_T(codenum);
|
|
break;
|
|
|
|
default: code_is_good = false;
|
|
}
|
|
|
|
KEEPALIVE_STATE(NOT_BUSY);
|
|
|
|
ExitUnknownCommand:
|
|
|
|
// Still unknown command? Throw an error
|
|
if (!code_is_good) unknown_command_error();
|
|
|
|
ok_to_send();
|
|
}
|
|
|
|
void FlushSerialRequestResend() {
|
|
//char command_queue[cmd_queue_index_r][100]="Resend:";
|
|
MYSERIAL.flush();
|
|
SERIAL_PROTOCOLPGM(MSG_RESEND);
|
|
SERIAL_PROTOCOLLN(gcode_LastN + 1);
|
|
ok_to_send();
|
|
}
|
|
|
|
void ok_to_send() {
|
|
refresh_cmd_timeout();
|
|
if (!send_ok[cmd_queue_index_r]) return;
|
|
SERIAL_PROTOCOLPGM(MSG_OK);
|
|
#if ENABLED(ADVANCED_OK)
|
|
char* p = command_queue[cmd_queue_index_r];
|
|
if (*p == 'N') {
|
|
SERIAL_PROTOCOL(' ');
|
|
SERIAL_ECHO(*p++);
|
|
while (NUMERIC_SIGNED(*p))
|
|
SERIAL_ECHO(*p++);
|
|
}
|
|
SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
|
|
SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
|
|
#endif
|
|
SERIAL_EOL;
|
|
}
|
|
|
|
void clamp_to_software_endstops(float target[3]) {
|
|
if (min_software_endstops) {
|
|
NOLESS(target[X_AXIS], sw_endstop_min[X_AXIS]);
|
|
NOLESS(target[Y_AXIS], sw_endstop_min[Y_AXIS]);
|
|
|
|
float negative_z_offset = 0;
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
|
|
if (home_offset[Z_AXIS] < 0) {
|
|
#if ENABLED(DEBUG_LEVELING_FEATURE)
|
|
if (DEBUGGING(LEVELING)) {
|
|
SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
|
|
SERIAL_EOL;
|
|
}
|
|
#endif
|
|
negative_z_offset += home_offset[Z_AXIS];
|
|
}
|
|
#endif
|
|
NOLESS(target[Z_AXIS], sw_endstop_min[Z_AXIS] + negative_z_offset);
|
|
}
|
|
|
|
if (max_software_endstops) {
|
|
NOMORE(target[X_AXIS], sw_endstop_max[X_AXIS]);
|
|
NOMORE(target[Y_AXIS], sw_endstop_max[Y_AXIS]);
|
|
NOMORE(target[Z_AXIS], sw_endstop_max[Z_AXIS]);
|
|
}
|
|
}
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
void recalc_delta_settings(float radius, float diagonal_rod) {
|
|
delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
|
|
delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
|
|
delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
|
|
delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
|
|
delta_tower3_x = 0.0; // back middle tower
|
|
delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
|
|
delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1);
|
|
delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2);
|
|
delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3);
|
|
}
|
|
|
|
void calculate_delta(float cartesian[3]) {
|
|
|
|
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
|
|
- sq(delta_tower1_x - cartesian[X_AXIS])
|
|
- sq(delta_tower1_y - cartesian[Y_AXIS])
|
|
) + cartesian[Z_AXIS];
|
|
delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
|
|
- sq(delta_tower2_x - cartesian[X_AXIS])
|
|
- sq(delta_tower2_y - cartesian[Y_AXIS])
|
|
) + cartesian[Z_AXIS];
|
|
delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
|
|
- sq(delta_tower3_x - cartesian[X_AXIS])
|
|
- sq(delta_tower3_y - cartesian[Y_AXIS])
|
|
) + cartesian[Z_AXIS];
|
|
/**
|
|
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
|
|
SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
|
|
SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
|
|
*/
|
|
}
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
|
|
// Adjust print surface height by linear interpolation over the bed_level array.
|
|
void adjust_delta(float cartesian[3]) {
|
|
if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
|
|
|
|
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
|
|
float h1 = 0.001 - half, h2 = half - 0.001,
|
|
grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
|
|
grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
|
|
int floor_x = floor(grid_x), floor_y = floor(grid_y);
|
|
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
|
|
z1 = bed_level[floor_x + half][floor_y + half],
|
|
z2 = bed_level[floor_x + half][floor_y + half + 1],
|
|
z3 = bed_level[floor_x + half + 1][floor_y + half],
|
|
z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
|
|
left = (1 - ratio_y) * z1 + ratio_y * z2,
|
|
right = (1 - ratio_y) * z3 + ratio_y * z4,
|
|
offset = (1 - ratio_x) * left + ratio_x * right;
|
|
|
|
delta[X_AXIS] += offset;
|
|
delta[Y_AXIS] += offset;
|
|
delta[Z_AXIS] += offset;
|
|
|
|
/**
|
|
SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
|
|
SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
|
|
SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
|
|
SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
|
|
SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
|
|
SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
|
|
SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
|
|
SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
|
|
SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
|
|
SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
|
|
SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
|
|
SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
|
|
SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
|
|
*/
|
|
}
|
|
#endif // AUTO_BED_LEVELING_FEATURE
|
|
|
|
#endif // DELTA
|
|
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
|
|
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
|
|
void mesh_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) {
|
|
if (!mbl.active) {
|
|
planner.buffer_line(x, y, z, e, feed_rate, extruder);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]);
|
|
int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]);
|
|
int ix = mbl.select_x_index(x - home_offset[X_AXIS]);
|
|
int iy = mbl.select_y_index(y - home_offset[Y_AXIS]);
|
|
pix = min(pix, MESH_NUM_X_POINTS - 2);
|
|
piy = min(piy, MESH_NUM_Y_POINTS - 2);
|
|
ix = min(ix, MESH_NUM_X_POINTS - 2);
|
|
iy = min(iy, MESH_NUM_Y_POINTS - 2);
|
|
if (pix == ix && piy == iy) {
|
|
// Start and end on same mesh square
|
|
planner.buffer_line(x, y, z, e, feed_rate, extruder);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
float nx, ny, nz, ne, normalized_dist;
|
|
if (ix > pix && TEST(x_splits, ix)) {
|
|
nx = mbl.get_x(ix) + home_offset[X_AXIS];
|
|
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
CBI(x_splits, ix);
|
|
}
|
|
else if (ix < pix && TEST(x_splits, pix)) {
|
|
nx = mbl.get_x(pix) + home_offset[X_AXIS];
|
|
normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]);
|
|
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
CBI(x_splits, pix);
|
|
}
|
|
else if (iy > piy && TEST(y_splits, iy)) {
|
|
ny = mbl.get_y(iy) + home_offset[Y_AXIS];
|
|
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
CBI(y_splits, iy);
|
|
}
|
|
else if (iy < piy && TEST(y_splits, piy)) {
|
|
ny = mbl.get_y(piy) + home_offset[Y_AXIS];
|
|
normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]);
|
|
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
|
|
nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist;
|
|
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
|
|
CBI(y_splits, piy);
|
|
}
|
|
else {
|
|
// Already split on a border
|
|
planner.buffer_line(x, y, z, e, feed_rate, extruder);
|
|
set_current_to_destination();
|
|
return;
|
|
}
|
|
// Do the split and look for more borders
|
|
destination[X_AXIS] = nx;
|
|
destination[Y_AXIS] = ny;
|
|
destination[Z_AXIS] = nz;
|
|
destination[E_AXIS] = ne;
|
|
mesh_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits);
|
|
destination[X_AXIS] = x;
|
|
destination[Y_AXIS] = y;
|
|
destination[Z_AXIS] = z;
|
|
destination[E_AXIS] = e;
|
|
mesh_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
|
|
}
|
|
#endif // MESH_BED_LEVELING
|
|
|
|
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
|
|
|
|
inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) {
|
|
if (DEBUGGING(DRYRUN)) return;
|
|
float de = dest_e - curr_e;
|
|
if (de) {
|
|
if (degHotend(active_extruder) < extrude_min_temp) {
|
|
curr_e = dest_e; // Behave as if the move really took place, but ignore E part
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
|
|
}
|
|
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
|
|
if (labs(de) > EXTRUDE_MAXLENGTH) {
|
|
curr_e = dest_e; // Behave as if the move really took place, but ignore E part
|
|
SERIAL_ECHO_START;
|
|
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
|
|
}
|
|
#endif
|
|
}
|
|
}
|
|
|
|
#endif // PREVENT_DANGEROUS_EXTRUDE
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
|
|
|
inline bool prepare_move_delta(float target[NUM_AXIS]) {
|
|
float difference[NUM_AXIS];
|
|
for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
|
|
|
|
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
|
|
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
|
|
if (cartesian_mm < 0.000001) return false;
|
|
float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
|
|
int steps = max(1, int(delta_segments_per_second * seconds));
|
|
|
|
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
|
|
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
|
|
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
|
|
|
|
for (int s = 1; s <= steps; s++) {
|
|
|
|
float fraction = float(s) / float(steps);
|
|
|
|
for (int8_t i = 0; i < NUM_AXIS; i++)
|
|
target[i] = current_position[i] + difference[i] * fraction;
|
|
|
|
calculate_delta(target);
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
adjust_delta(target);
|
|
#endif
|
|
|
|
//DEBUG_POS("prepare_move_delta", target);
|
|
//DEBUG_POS("prepare_move_delta", delta);
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#endif // DELTA || SCARA
|
|
|
|
#if ENABLED(SCARA)
|
|
inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
|
|
#endif
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
|
|
inline bool prepare_move_dual_x_carriage() {
|
|
if (active_extruder_parked) {
|
|
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
|
|
// move duplicate extruder into correct duplication position.
|
|
planner.set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
|
|
planner.buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
|
|
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[X_AXIS], 1);
|
|
sync_plan_position();
|
|
stepper.synchronize();
|
|
extruder_duplication_enabled = true;
|
|
active_extruder_parked = false;
|
|
}
|
|
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
|
|
if (current_position[E_AXIS] == destination[E_AXIS]) {
|
|
// This is a travel move (with no extrusion)
|
|
// Skip it, but keep track of the current position
|
|
// (so it can be used as the start of the next non-travel move)
|
|
if (delayed_move_time != 0xFFFFFFFFUL) {
|
|
set_current_to_destination();
|
|
NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
|
|
delayed_move_time = millis();
|
|
return false;
|
|
}
|
|
}
|
|
delayed_move_time = 0;
|
|
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
|
|
planner.buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(planner.max_feedrate[X_AXIS], planner.max_feedrate[Y_AXIS]), active_extruder);
|
|
planner.buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], planner.max_feedrate[Z_AXIS], active_extruder);
|
|
active_extruder_parked = false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#endif // DUAL_X_CARRIAGE
|
|
|
|
#if DISABLED(DELTA) && DISABLED(SCARA)
|
|
|
|
inline bool prepare_move_cartesian() {
|
|
// Do not use feedrate_multiplier for E or Z only moves
|
|
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
|
|
line_to_destination();
|
|
}
|
|
else {
|
|
#if ENABLED(MESH_BED_LEVELING)
|
|
mesh_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder);
|
|
return false;
|
|
#else
|
|
line_to_destination(feedrate * feedrate_multiplier / 100.0);
|
|
#endif
|
|
}
|
|
return true;
|
|
}
|
|
|
|
#endif // !DELTA && !SCARA
|
|
|
|
/**
|
|
* Prepare a single move and get ready for the next one
|
|
*
|
|
* (This may call planner.buffer_line several times to put
|
|
* smaller moves into the planner for DELTA or SCARA.)
|
|
*/
|
|
void prepare_move() {
|
|
clamp_to_software_endstops(destination);
|
|
refresh_cmd_timeout();
|
|
|
|
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
|
|
prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
|
|
#endif
|
|
|
|
#if ENABLED(SCARA)
|
|
if (!prepare_move_scara(destination)) return;
|
|
#elif ENABLED(DELTA)
|
|
if (!prepare_move_delta(destination)) return;
|
|
#else
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
if (!prepare_move_dual_x_carriage()) return;
|
|
#endif
|
|
if (!prepare_move_cartesian()) return;
|
|
#endif
|
|
|
|
set_current_to_destination();
|
|
}
|
|
|
|
/**
|
|
* Plan an arc in 2 dimensions
|
|
*
|
|
* The arc is approximated by generating many small linear segments.
|
|
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
|
|
* Arcs should only be made relatively large (over 5mm), as larger arcs with
|
|
* larger segments will tend to be more efficient. Your slicer should have
|
|
* options for G2/G3 arc generation. In future these options may be GCode tunable.
|
|
*/
|
|
void plan_arc(
|
|
float target[NUM_AXIS], // Destination position
|
|
float* offset, // Center of rotation relative to current_position
|
|
uint8_t clockwise // Clockwise?
|
|
) {
|
|
|
|
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
|
|
center_X = current_position[X_AXIS] + offset[X_AXIS],
|
|
center_Y = current_position[Y_AXIS] + offset[Y_AXIS],
|
|
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
|
|
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
|
|
r_X = -offset[X_AXIS], // Radius vector from center to current location
|
|
r_Y = -offset[Y_AXIS],
|
|
rt_X = target[X_AXIS] - center_X,
|
|
rt_Y = target[Y_AXIS] - center_Y;
|
|
|
|
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
|
|
float angular_travel = atan2(r_X * rt_Y - r_Y * rt_X, r_X * rt_X + r_Y * rt_Y);
|
|
if (angular_travel < 0) angular_travel += RADIANS(360);
|
|
if (clockwise) angular_travel -= RADIANS(360);
|
|
|
|
// Make a circle if the angular rotation is 0
|
|
if (angular_travel == 0 && current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS])
|
|
angular_travel += RADIANS(360);
|
|
|
|
float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel));
|
|
if (mm_of_travel < 0.001) return;
|
|
uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT));
|
|
if (segments == 0) segments = 1;
|
|
|
|
float theta_per_segment = angular_travel / segments;
|
|
float linear_per_segment = linear_travel / segments;
|
|
float extruder_per_segment = extruder_travel / segments;
|
|
|
|
/**
|
|
* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
|
|
* and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
|
|
* r_T = [cos(phi) -sin(phi);
|
|
* sin(phi) cos(phi] * r ;
|
|
*
|
|
* For arc generation, the center of the circle is the axis of rotation and the radius vector is
|
|
* defined from the circle center to the initial position. Each line segment is formed by successive
|
|
* vector rotations. This requires only two cos() and sin() computations to form the rotation
|
|
* matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
|
|
* all double numbers are single precision on the Arduino. (True double precision will not have
|
|
* round off issues for CNC applications.) Single precision error can accumulate to be greater than
|
|
* tool precision in some cases. Therefore, arc path correction is implemented.
|
|
*
|
|
* Small angle approximation may be used to reduce computation overhead further. This approximation
|
|
* holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
|
|
* theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
|
|
* to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
|
|
* numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
|
|
* issue for CNC machines with the single precision Arduino calculations.
|
|
*
|
|
* This approximation also allows plan_arc to immediately insert a line segment into the planner
|
|
* without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
|
|
* a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
|
|
* This is important when there are successive arc motions.
|
|
*/
|
|
// Vector rotation matrix values
|
|
float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation
|
|
float sin_T = theta_per_segment;
|
|
|
|
float arc_target[NUM_AXIS];
|
|
float sin_Ti, cos_Ti, r_new_Y;
|
|
uint16_t i;
|
|
int8_t count = 0;
|
|
|
|
// Initialize the linear axis
|
|
arc_target[Z_AXIS] = current_position[Z_AXIS];
|
|
|
|
// Initialize the extruder axis
|
|
arc_target[E_AXIS] = current_position[E_AXIS];
|
|
|
|
float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0;
|
|
|
|
for (i = 1; i < segments; i++) { // Iterate (segments-1) times
|
|
|
|
if (++count < N_ARC_CORRECTION) {
|
|
// Apply vector rotation matrix to previous r_X / 1
|
|
r_new_Y = r_X * sin_T + r_Y * cos_T;
|
|
r_X = r_X * cos_T - r_Y * sin_T;
|
|
r_Y = r_new_Y;
|
|
}
|
|
else {
|
|
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
|
|
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
|
|
// To reduce stuttering, the sin and cos could be computed at different times.
|
|
// For now, compute both at the same time.
|
|
cos_Ti = cos(i * theta_per_segment);
|
|
sin_Ti = sin(i * theta_per_segment);
|
|
r_X = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti;
|
|
r_Y = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti;
|
|
count = 0;
|
|
}
|
|
|
|
// Update arc_target location
|
|
arc_target[X_AXIS] = center_X + r_X;
|
|
arc_target[Y_AXIS] = center_Y + r_Y;
|
|
arc_target[Z_AXIS] += linear_per_segment;
|
|
arc_target[E_AXIS] += extruder_per_segment;
|
|
|
|
clamp_to_software_endstops(arc_target);
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
|
calculate_delta(arc_target);
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
adjust_delta(arc_target);
|
|
#endif
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
|
#else
|
|
planner.buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
|
|
#endif
|
|
}
|
|
|
|
// Ensure last segment arrives at target location.
|
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
|
calculate_delta(target);
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
adjust_delta(target);
|
|
#endif
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
|
#else
|
|
planner.buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
|
|
#endif
|
|
|
|
// As far as the parser is concerned, the position is now == target. In reality the
|
|
// motion control system might still be processing the action and the real tool position
|
|
// in any intermediate location.
|
|
set_current_to_destination();
|
|
}
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
|
|
void controllerFan() {
|
|
static millis_t lastMotorOn = 0; // Last time a motor was turned on
|
|
static millis_t nextMotorCheck = 0; // Last time the state was checked
|
|
millis_t ms = millis();
|
|
if (ELAPSED(ms, nextMotorCheck)) {
|
|
nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s
|
|
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
|
|
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
|
|
#if EXTRUDERS > 1
|
|
|| E1_ENABLE_READ == E_ENABLE_ON
|
|
#if HAS_X2_ENABLE
|
|
|| X2_ENABLE_READ == X_ENABLE_ON
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
|| E2_ENABLE_READ == E_ENABLE_ON
|
|
#if EXTRUDERS > 3
|
|
|| E3_ENABLE_READ == E_ENABLE_ON
|
|
#endif
|
|
#endif
|
|
#endif
|
|
) {
|
|
lastMotorOn = ms; //... set time to NOW so the fan will turn on
|
|
}
|
|
|
|
// Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds
|
|
uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
|
|
|
|
// allows digital or PWM fan output to be used (see M42 handling)
|
|
digitalWrite(CONTROLLERFAN_PIN, speed);
|
|
analogWrite(CONTROLLERFAN_PIN, speed);
|
|
}
|
|
}
|
|
|
|
#endif // HAS_CONTROLLERFAN
|
|
|
|
#if ENABLED(SCARA)
|
|
|
|
void calculate_SCARA_forward_Transform(float f_scara[3]) {
|
|
// Perform forward kinematics, and place results in delta[3]
|
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
|
|
float x_sin, x_cos, y_sin, y_cos;
|
|
|
|
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
|
|
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
|
|
|
|
x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
|
|
x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1;
|
|
y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
|
|
y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2;
|
|
|
|
//SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
|
|
//SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
|
|
//SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
|
|
//SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
|
|
|
|
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
|
|
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
|
|
|
|
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
|
|
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
|
|
}
|
|
|
|
void calculate_delta(float cartesian[3]) {
|
|
//reverse kinematics.
|
|
// Perform reversed kinematics, and place results in delta[3]
|
|
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
|
|
|
|
float SCARA_pos[2];
|
|
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
|
|
|
|
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
|
|
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
|
|
|
|
#if (Linkage_1 == Linkage_2)
|
|
SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1;
|
|
#else
|
|
SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000;
|
|
#endif
|
|
|
|
SCARA_S2 = sqrt(1 - sq(SCARA_C2));
|
|
|
|
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
|
|
SCARA_K2 = Linkage_2 * SCARA_S2;
|
|
|
|
SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1;
|
|
SCARA_psi = atan2(SCARA_S2, SCARA_C2);
|
|
|
|
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
|
|
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
|
|
delta[Z_AXIS] = cartesian[Z_AXIS];
|
|
|
|
/**
|
|
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
|
|
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
|
|
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
|
|
|
|
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
|
|
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
|
|
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
|
|
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
|
|
SERIAL_EOL;
|
|
*/
|
|
}
|
|
|
|
#endif // SCARA
|
|
|
|
#if ENABLED(TEMP_STAT_LEDS)
|
|
|
|
static bool red_led = false;
|
|
static millis_t next_status_led_update_ms = 0;
|
|
|
|
void handle_status_leds(void) {
|
|
float max_temp = 0.0;
|
|
if (ELAPSED(millis(), next_status_led_update_ms)) {
|
|
next_status_led_update_ms += 500; // Update every 0.5s
|
|
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
|
|
max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
|
|
#if HAS_TEMP_BED
|
|
max_temp = max(max(max_temp, degTargetBed()), degBed());
|
|
#endif
|
|
bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
|
|
if (new_led != red_led) {
|
|
red_led = new_led;
|
|
digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
|
|
digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
|
|
}
|
|
}
|
|
}
|
|
|
|
#endif
|
|
|
|
void enable_all_steppers() {
|
|
enable_x();
|
|
enable_y();
|
|
enable_z();
|
|
enable_e0();
|
|
enable_e1();
|
|
enable_e2();
|
|
enable_e3();
|
|
}
|
|
|
|
void disable_all_steppers() {
|
|
disable_x();
|
|
disable_y();
|
|
disable_z();
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
}
|
|
|
|
/**
|
|
* Standard idle routine keeps the machine alive
|
|
*/
|
|
void idle(
|
|
#if ENABLED(FILAMENTCHANGEENABLE)
|
|
bool no_stepper_sleep/*=false*/
|
|
#endif
|
|
) {
|
|
manage_heater();
|
|
manage_inactivity(
|
|
#if ENABLED(FILAMENTCHANGEENABLE)
|
|
no_stepper_sleep
|
|
#endif
|
|
);
|
|
host_keepalive();
|
|
lcd_update();
|
|
#if ENABLED(PRINTCOUNTER)
|
|
print_job_timer.tick();
|
|
#endif
|
|
}
|
|
|
|
/**
|
|
* Manage several activities:
|
|
* - Check for Filament Runout
|
|
* - Keep the command buffer full
|
|
* - Check for maximum inactive time between commands
|
|
* - Check for maximum inactive time between stepper commands
|
|
* - Check if pin CHDK needs to go LOW
|
|
* - Check for KILL button held down
|
|
* - Check for HOME button held down
|
|
* - Check if cooling fan needs to be switched on
|
|
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
|
|
*/
|
|
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
|
|
|
|
#if HAS_FILRUNOUT
|
|
if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
|
|
handle_filament_runout();
|
|
#endif
|
|
|
|
if (commands_in_queue < BUFSIZE) get_available_commands();
|
|
|
|
millis_t ms = millis();
|
|
|
|
if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED));
|
|
|
|
if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time)
|
|
&& !ignore_stepper_queue && !planner.blocks_queued()) {
|
|
#if ENABLED(DISABLE_INACTIVE_X)
|
|
disable_x();
|
|
#endif
|
|
#if ENABLED(DISABLE_INACTIVE_Y)
|
|
disable_y();
|
|
#endif
|
|
#if ENABLED(DISABLE_INACTIVE_Z)
|
|
disable_z();
|
|
#endif
|
|
#if ENABLED(DISABLE_INACTIVE_E)
|
|
disable_e0();
|
|
disable_e1();
|
|
disable_e2();
|
|
disable_e3();
|
|
#endif
|
|
}
|
|
|
|
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
|
|
if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) {
|
|
chdkActive = false;
|
|
WRITE(CHDK, LOW);
|
|
}
|
|
#endif
|
|
|
|
#if HAS_KILL
|
|
|
|
// Check if the kill button was pressed and wait just in case it was an accidental
|
|
// key kill key press
|
|
// -------------------------------------------------------------------------------
|
|
static int killCount = 0; // make the inactivity button a bit less responsive
|
|
const int KILL_DELAY = 750;
|
|
if (!READ(KILL_PIN))
|
|
killCount++;
|
|
else if (killCount > 0)
|
|
killCount--;
|
|
|
|
// Exceeded threshold and we can confirm that it was not accidental
|
|
// KILL the machine
|
|
// ----------------------------------------------------------------
|
|
if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
|
|
#endif
|
|
|
|
#if HAS_HOME
|
|
// Check to see if we have to home, use poor man's debouncer
|
|
// ---------------------------------------------------------
|
|
static int homeDebounceCount = 0; // poor man's debouncing count
|
|
const int HOME_DEBOUNCE_DELAY = 2500;
|
|
if (!READ(HOME_PIN)) {
|
|
if (!homeDebounceCount) {
|
|
enqueue_and_echo_commands_P(PSTR("G28"));
|
|
LCD_MESSAGEPGM(MSG_AUTO_HOME);
|
|
}
|
|
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
|
|
homeDebounceCount++;
|
|
else
|
|
homeDebounceCount = 0;
|
|
}
|
|
#endif
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
|
|
#endif
|
|
|
|
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
|
|
if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL))
|
|
if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
|
|
bool oldstatus;
|
|
switch (active_extruder) {
|
|
case 0:
|
|
oldstatus = E0_ENABLE_READ;
|
|
enable_e0();
|
|
break;
|
|
#if EXTRUDERS > 1
|
|
case 1:
|
|
oldstatus = E1_ENABLE_READ;
|
|
enable_e1();
|
|
break;
|
|
#if EXTRUDERS > 2
|
|
case 2:
|
|
oldstatus = E2_ENABLE_READ;
|
|
enable_e2();
|
|
break;
|
|
#if EXTRUDERS > 3
|
|
case 3:
|
|
oldstatus = E3_ENABLE_READ;
|
|
enable_e3();
|
|
break;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
}
|
|
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
|
|
planner.buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
|
|
destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS],
|
|
(EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / planner.axis_steps_per_unit[E_AXIS], active_extruder);
|
|
current_position[E_AXIS] = oldepos;
|
|
destination[E_AXIS] = oldedes;
|
|
planner.set_e_position(oldepos);
|
|
previous_cmd_ms = ms; // refresh_cmd_timeout()
|
|
stepper.synchronize();
|
|
switch (active_extruder) {
|
|
case 0:
|
|
E0_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#if EXTRUDERS > 1
|
|
case 1:
|
|
E1_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#if EXTRUDERS > 2
|
|
case 2:
|
|
E2_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#if EXTRUDERS > 3
|
|
case 3:
|
|
E3_ENABLE_WRITE(oldstatus);
|
|
break;
|
|
#endif
|
|
#endif
|
|
#endif
|
|
}
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(DUAL_X_CARRIAGE)
|
|
// handle delayed move timeout
|
|
if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) {
|
|
// travel moves have been received so enact them
|
|
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
|
|
set_destination_to_current();
|
|
prepare_move();
|
|
}
|
|
#endif
|
|
|
|
#if ENABLED(TEMP_STAT_LEDS)
|
|
handle_status_leds();
|
|
#endif
|
|
|
|
planner.check_axes_activity();
|
|
}
|
|
|
|
void kill(const char* lcd_msg) {
|
|
#if ENABLED(ULTRA_LCD)
|
|
lcd_setalertstatuspgm(lcd_msg);
|
|
#else
|
|
UNUSED(lcd_msg);
|
|
#endif
|
|
|
|
cli(); // Stop interrupts
|
|
disable_all_heaters();
|
|
disable_all_steppers();
|
|
|
|
#if HAS_POWER_SWITCH
|
|
pinMode(PS_ON_PIN, INPUT);
|
|
#endif
|
|
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
|
|
|
|
// FMC small patch to update the LCD before ending
|
|
sei(); // enable interrupts
|
|
for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
|
|
cli(); // disable interrupts
|
|
suicide();
|
|
while (1) {
|
|
#if ENABLED(USE_WATCHDOG)
|
|
watchdog_reset();
|
|
#endif
|
|
} // Wait for reset
|
|
}
|
|
|
|
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
|
|
|
|
void handle_filament_runout() {
|
|
if (!filament_ran_out) {
|
|
filament_ran_out = true;
|
|
enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
|
|
stepper.synchronize();
|
|
}
|
|
}
|
|
|
|
#endif // FILAMENT_RUNOUT_SENSOR
|
|
|
|
#if ENABLED(FAST_PWM_FAN)
|
|
|
|
void setPwmFrequency(uint8_t pin, int val) {
|
|
val &= 0x07;
|
|
switch (digitalPinToTimer(pin)) {
|
|
#if defined(TCCR0A)
|
|
case TIMER0A:
|
|
case TIMER0B:
|
|
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
|
|
// TCCR0B |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR1A)
|
|
case TIMER1A:
|
|
case TIMER1B:
|
|
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
// TCCR1B |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR2)
|
|
case TIMER2:
|
|
case TIMER2:
|
|
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
|
|
TCCR2 |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR2A)
|
|
case TIMER2A:
|
|
case TIMER2B:
|
|
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
|
|
TCCR2B |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR3A)
|
|
case TIMER3A:
|
|
case TIMER3B:
|
|
case TIMER3C:
|
|
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
|
|
TCCR3B |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR4A)
|
|
case TIMER4A:
|
|
case TIMER4B:
|
|
case TIMER4C:
|
|
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
|
|
TCCR4B |= val;
|
|
break;
|
|
#endif
|
|
#if defined(TCCR5A)
|
|
case TIMER5A:
|
|
case TIMER5B:
|
|
case TIMER5C:
|
|
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
|
|
TCCR5B |= val;
|
|
break;
|
|
#endif
|
|
}
|
|
}
|
|
#endif // FAST_PWM_FAN
|
|
|
|
void stop() {
|
|
disable_all_heaters();
|
|
if (IsRunning()) {
|
|
Running = false;
|
|
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
|
|
SERIAL_ERROR_START;
|
|
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
|
|
LCD_MESSAGEPGM(MSG_STOPPED);
|
|
}
|
|
}
|
|
|
|
float calculate_volumetric_multiplier(float diameter) {
|
|
if (!volumetric_enabled || diameter == 0) return 1.0;
|
|
float d2 = diameter * 0.5;
|
|
return 1.0 / (M_PI * d2 * d2);
|
|
}
|
|
|
|
void calculate_volumetric_multipliers() {
|
|
for (int i = 0; i < EXTRUDERS; i++)
|
|
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
|
|
}
|