You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

7223 lines
226 KiB
C++

/**
* Marlin Firmware
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* About Marlin
*
* This firmware is a mashup between Sprinter and grbl.
* - https://github.com/kliment/Sprinter
* - https://github.com/simen/grbl/tree
*
* It has preliminary support for Matthew Roberts advance algorithm
* - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html
*/
#include "Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
#include "vector_3.h"
#if ENABLED(AUTO_BED_LEVELING_GRID)
#include "qr_solve.h"
#endif
#endif // AUTO_BED_LEVELING_FEATURE
#if ENABLED(MESH_BED_LEVELING)
#include "mesh_bed_leveling.h"
#endif
#include "ultralcd.h"
#include "planner.h"
#include "stepper.h"
#include "temperature.h"
#include "cardreader.h"
#include "watchdog.h"
#include "configuration_store.h"
#include "language.h"
#include "pins_arduino.h"
#include "math.h"
#include "buzzer.h"
#if ENABLED(BLINKM)
#include "blinkm.h"
#include "Wire.h"
#endif
#if HAS_SERVOS
#include "servo.h"
#endif
#if HAS_DIGIPOTSS
#include <SPI.h>
#endif
/**
* Look here for descriptions of G-codes:
* - http://linuxcnc.org/handbook/gcode/g-code.html
* - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes
*
* Help us document these G-codes online:
* - http://marlinfirmware.org/index.php/G-Code
* - http://reprap.org/wiki/G-code
*
* -----------------
* Implemented Codes
* -----------------
*
* "G" Codes
*
* G0 -> G1
* G1 - Coordinated Movement X Y Z E
* G2 - CW ARC
* G3 - CCW ARC
* G4 - Dwell S<seconds> or P<milliseconds>
* G10 - retract filament according to settings of M207
* G11 - retract recover filament according to settings of M208
* G28 - Home one or more axes
* G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet.
* G30 - Single Z probe, probes bed at current XY location.
* G31 - Dock sled (Z_PROBE_SLED only)
* G32 - Undock sled (Z_PROBE_SLED only)
* G90 - Use Absolute Coordinates
* G91 - Use Relative Coordinates
* G92 - Set current position to coordinates given
*
* "M" Codes
*
* M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled)
* M1 - Same as M0
* M17 - Enable/Power all stepper motors
* M18 - Disable all stepper motors; same as M84
* M20 - List SD card
* M21 - Init SD card
* M22 - Release SD card
* M23 - Select SD file (M23 filename.g)
* M24 - Start/resume SD print
* M25 - Pause SD print
* M26 - Set SD position in bytes (M26 S12345)
* M27 - Report SD print status
* M28 - Start SD write (M28 filename.g)
* M29 - Stop SD write
* M30 - Delete file from SD (M30 filename.g)
* M31 - Output time since last M109 or SD card start to serial
* M32 - Select file and start SD print (Can be used _while_ printing from SD card files):
* syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#"
* Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include).
* The '#' is necessary when calling from within sd files, as it stops buffer prereading
* M33 - Get the longname version of a path
* M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used.
* M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel]
* M80 - Turn on Power Supply
* M81 - Turn off Power Supply
* M82 - Set E codes absolute (default)
* M83 - Set E codes relative while in Absolute Coordinates (G90) mode
* M84 - Disable steppers until next move,
* or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout.
* M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
* M92 - Set axis_steps_per_unit - same syntax as G92
* M104 - Set extruder target temp
* M105 - Read current temp
* M106 - Fan on
* M107 - Fan off
* M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating
* Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling
* IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F
* M110 - Set the current line number
* M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h.
* M112 - Emergency stop
* M114 - Output current position to serial port
* M115 - Capabilities string
* M117 - Display a message on the controller screen
* M119 - Output Endstop status to serial port
* M120 - Enable endstop detection
* M121 - Disable endstop detection
* M126 - Solenoid Air Valve Open (BariCUDA support by jmil)
* M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil)
* M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil)
* M140 - Set bed target temp
* M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS)
* M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work.
* M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
* M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>-
* M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
* M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!!
* M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
* M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2
* M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk
* M206 - Set additional homing offset
* M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting
* M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
* M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
* M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y>
* M220 - Set speed factor override percentage: S<factor in percent>
* M221 - Set extrude factor override percentage: S<factor in percent>
* M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state>
* M240 - Trigger a camera to take a photograph
* M250 - Set LCD contrast C<contrast value> (value 0..63)
* M280 - Set servo position absolute. P: servo index, S: angle or microseconds
* M300 - Play beep sound S<frequency Hz> P<duration ms>
* M301 - Set PID parameters P I and D
* M302 - Allow cold extrudes, or set the minimum extrude S<temperature>.
* M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C)
* M304 - Set bed PID parameters P I and D
* M380 - Activate solenoid on active extruder
* M381 - Disable all solenoids
* M400 - Finish all moves
* M401 - Lower Z probe if present
* M402 - Raise Z probe if present
* M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters
* M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder
* M406 - Turn off Filament Sensor extrusion control
* M407 - Display measured filament diameter
* M410 - Quickstop. Abort all the planned moves
* M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable
* M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm>
* M428 - Set the home_offset logically based on the current_position
* M500 - Store parameters in EEPROM
* M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily).
* M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to.
* M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings.
* M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
* M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
* M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s>
* M666 - Set delta endstop adjustment
* M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ]
* M907 - Set digital trimpot motor current using axis codes.
* M908 - Control digital trimpot directly.
* M350 - Set microstepping mode.
* M351 - Toggle MS1 MS2 pins directly.
*
* ************ SCARA Specific - This can change to suit future G-code regulations
* M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
* M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
* M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration)
* M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
* M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
* M365 - SCARA calibration: Scaling factor, X, Y, Z axis
* ************* SCARA End ***************
*
* ************ Custom codes - This can change to suit future G-code regulations
* M100 - Watch Free Memory (For Debugging Only)
* M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative)
* M928 - Start SD logging (M928 filename.g) - ended by M29
* M999 - Restart after being stopped by error
*
* "T" Codes
*
* T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ]
*
*/
#if ENABLED(M100_FREE_MEMORY_WATCHER)
void gcode_M100();
#endif
#if ENABLED(SDSUPPORT)
CardReader card;
#endif
bool Running = true;
uint8_t marlin_debug_flags = DEBUG_INFO|DEBUG_ERRORS;
static float feedrate = 1500.0, saved_feedrate;
float current_position[NUM_AXIS] = { 0.0 };
static float destination[NUM_AXIS] = { 0.0 };
bool axis_known_position[3] = { false };
static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0;
static char *current_command, *current_command_args;
static int cmd_queue_index_r = 0;
static int cmd_queue_index_w = 0;
static int commands_in_queue = 0;
static char command_queue[BUFSIZE][MAX_CMD_SIZE];
const float homing_feedrate[] = HOMING_FEEDRATE;
bool axis_relative_modes[] = AXIS_RELATIVE_MODES;
int feedrate_multiplier = 100; //100->1 200->2
int saved_feedrate_multiplier;
int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100);
bool volumetric_enabled = false;
float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA);
float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0);
float home_offset[3] = { 0 };
float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS };
float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS };
uint8_t active_extruder = 0;
int fanSpeed = 0;
bool cancel_heatup = false;
const char errormagic[] PROGMEM = "Error:";
const char echomagic[] PROGMEM = "echo:";
const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'};
static bool relative_mode = false; //Determines Absolute or Relative Coordinates
static char serial_char;
static int serial_count = 0;
static boolean comment_mode = false;
static char *seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.)
const char* queued_commands_P= NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */
const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42
// Inactivity shutdown
millis_t previous_cmd_ms = 0;
static millis_t max_inactive_time = 0;
static millis_t stepper_inactive_time = DEFAULT_STEPPER_DEACTIVE_TIME * 1000L;
millis_t print_job_start_ms = 0; ///< Print job start time
millis_t print_job_stop_ms = 0; ///< Print job stop time
static uint8_t target_extruder;
bool no_wait_for_cooling = true;
bool target_direction;
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
int xy_travel_speed = XY_TRAVEL_SPEED;
float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER;
#endif
#if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA)
float z_endstop_adj = 0;
#endif
// Extruder offsets
#if EXTRUDERS > 1
#ifndef EXTRUDER_OFFSET_X
#define EXTRUDER_OFFSET_X { 0 }
#endif
#ifndef EXTRUDER_OFFSET_Y
#define EXTRUDER_OFFSET_Y { 0 }
#endif
float extruder_offset[][EXTRUDERS] = {
EXTRUDER_OFFSET_X,
EXTRUDER_OFFSET_Y
#if ENABLED(DUAL_X_CARRIAGE)
, { 0 } // supports offsets in XYZ plane
#endif
};
#endif
#if HAS_SERVO_ENDSTOPS
const int servo_endstop_id[] = SERVO_ENDSTOP_IDS;
const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES;
#endif
#if ENABLED(BARICUDA)
int ValvePressure = 0;
int EtoPPressure = 0;
#endif
#if ENABLED(FWRETRACT)
bool autoretract_enabled = false;
bool retracted[EXTRUDERS] = { false };
bool retracted_swap[EXTRUDERS] = { false };
float retract_length = RETRACT_LENGTH;
float retract_length_swap = RETRACT_LENGTH_SWAP;
float retract_feedrate = RETRACT_FEEDRATE;
float retract_zlift = RETRACT_ZLIFT;
float retract_recover_length = RETRACT_RECOVER_LENGTH;
float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP;
float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE;
#endif // FWRETRACT
#if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH
bool powersupply =
#if ENABLED(PS_DEFAULT_OFF)
false
#else
true
#endif
;
#endif
#if ENABLED(DELTA)
#define TOWER_1 X_AXIS
#define TOWER_2 Y_AXIS
#define TOWER_3 Z_AXIS
float delta[3] = { 0 };
#define SIN_60 0.8660254037844386
#define COS_60 0.5
float endstop_adj[3] = { 0 };
// these are the default values, can be overriden with M665
float delta_radius = DELTA_RADIUS;
float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1);
float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2);
float delta_tower3_x = 0; // back middle tower
float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3);
float delta_diagonal_rod = DELTA_DIAGONAL_ROD;
float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1;
float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2;
float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3;
float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
//float delta_diagonal_rod_2 = sq(delta_diagonal_rod);
float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND;
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
int delta_grid_spacing[2] = { 0, 0 };
float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS];
#endif
#else
static bool home_all_axis = true;
#endif
#if ENABLED(SCARA)
float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND;
static float delta[3] = { 0 };
float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1
#endif
#if ENABLED(FILAMENT_SENSOR)
//Variables for Filament Sensor input
float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404
bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off
float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter
signed char measurement_delay[MAX_MEASUREMENT_DELAY+1]; //ring buffer to delay measurement store extruder factor after subtracting 100
int delay_index1 = 0; //index into ring buffer
int delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized
float delay_dist = 0; //delay distance counter
int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting
#endif
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
static bool filrunoutEnqueued = false;
#endif
#if ENABLED(SDSUPPORT)
static bool fromsd[BUFSIZE];
#endif
#if HAS_SERVOS
Servo servo[NUM_SERVOS];
#endif
#ifdef CHDK
unsigned long chdkHigh = 0;
boolean chdkActive = false;
#endif
#if ENABLED(PID_ADD_EXTRUSION_RATE)
int lpq_len = 20;
#endif
//===========================================================================
//================================ Functions ================================
//===========================================================================
void process_next_command();
void plan_arc(float target[NUM_AXIS], float *offset, uint8_t clockwise);
bool setTargetedHotend(int code);
void serial_echopair_P(const char *s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
void serial_echopair_P(const char *s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); }
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
float extrude_min_temp = EXTRUDE_MINTEMP;
#endif
#if ENABLED(SDSUPPORT)
#include "SdFatUtil.h"
int freeMemory() { return SdFatUtil::FreeRam(); }
#else
extern "C" {
extern unsigned int __bss_end;
extern unsigned int __heap_start;
extern void *__brkval;
int freeMemory() {
int free_memory;
if ((int)__brkval == 0)
free_memory = ((int)&free_memory) - ((int)&__bss_end);
else
free_memory = ((int)&free_memory) - ((int)__brkval);
return free_memory;
}
}
#endif //!SDSUPPORT
/**
* Inject the next command from the command queue, when possible
* Return false only if no command was pending
*/
static bool drain_queued_commands_P() {
if (!queued_commands_P) return false;
// Get the next 30 chars from the sequence of gcodes to run
char cmd[30];
strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1);
cmd[sizeof(cmd) - 1] = '\0';
// Look for the end of line, or the end of sequence
size_t i = 0;
char c;
while((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command
cmd[i] = '\0';
if (enqueuecommand(cmd)) { // buffer was not full (else we will retry later)
if (c)
queued_commands_P += i + 1; // move to next command
else
queued_commands_P = NULL; // will have no more commands in the sequence
}
return true;
}
/**
* Record one or many commands to run from program memory.
* Aborts the current queue, if any.
* Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards
*/
void enqueuecommands_P(const char* pgcode) {
queued_commands_P = pgcode;
drain_queued_commands_P(); // first command executed asap (when possible)
}
/**
* Copy a command directly into the main command buffer, from RAM.
*
* This is done in a non-safe way and needs a rework someday.
* Returns false if it doesn't add any command
*/
bool enqueuecommand(const char *cmd) {
if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false;
// This is dangerous if a mixing of serial and this happens
char *command = command_queue[cmd_queue_index_w];
strcpy(command, cmd);
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_Enqueueing);
SERIAL_ECHO(command);
SERIAL_ECHOLNPGM("\"");
cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
commands_in_queue++;
return true;
}
void setup_killpin() {
#if HAS_KILL
SET_INPUT(KILL_PIN);
WRITE(KILL_PIN, HIGH);
#endif
}
void setup_filrunoutpin() {
#if HAS_FILRUNOUT
pinMode(FILRUNOUT_PIN, INPUT);
#if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT)
WRITE(FILRUNOUT_PIN, HIGH);
#endif
#endif
}
// Set home pin
void setup_homepin(void) {
#if HAS_HOME
SET_INPUT(HOME_PIN);
WRITE(HOME_PIN, HIGH);
#endif
}
void setup_photpin() {
#if HAS_PHOTOGRAPH
OUT_WRITE(PHOTOGRAPH_PIN, LOW);
#endif
}
void setup_powerhold() {
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
#if HAS_POWER_SWITCH
#if ENABLED(PS_DEFAULT_OFF)
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#else
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE);
#endif
#endif
}
void suicide() {
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, LOW);
#endif
}
void servo_init() {
#if NUM_SERVOS >= 1 && HAS_SERVO_0
servo[0].attach(SERVO0_PIN);
servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position.
#endif
#if NUM_SERVOS >= 2 && HAS_SERVO_1
servo[1].attach(SERVO1_PIN);
servo[1].detach();
#endif
#if NUM_SERVOS >= 3 && HAS_SERVO_2
servo[2].attach(SERVO2_PIN);
servo[2].detach();
#endif
#if NUM_SERVOS >= 4 && HAS_SERVO_3
servo[3].attach(SERVO3_PIN);
servo[3].detach();
#endif
// Set position of Servo Endstops that are defined
#if HAS_SERVO_ENDSTOPS
for (int i = 0; i < 3; i++)
if (servo_endstop_id[i] >= 0)
servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]);
#endif
}
/**
* Stepper Reset (RigidBoard, et.al.)
*/
#if HAS_STEPPER_RESET
void disableStepperDrivers() {
pinMode(STEPPER_RESET_PIN, OUTPUT);
digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips
}
void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups
#endif
/**
* Marlin entry-point: Set up before the program loop
* - Set up the kill pin, filament runout, power hold
* - Start the serial port
* - Print startup messages and diagnostics
* - Get EEPROM or default settings
* - Initialize managers for:
* • temperature
* • planner
* • watchdog
* • stepper
* • photo pin
* • servos
* • LCD controller
* • Digipot I2C
* • Z probe sled
* • status LEDs
*/
void setup() {
setup_killpin();
setup_filrunoutpin();
setup_powerhold();
#if HAS_STEPPER_RESET
disableStepperDrivers();
#endif
MYSERIAL.begin(BAUDRATE);
SERIAL_PROTOCOLLNPGM("start");
SERIAL_ECHO_START;
// Check startup - does nothing if bootloader sets MCUSR to 0
byte mcu = MCUSR;
if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP);
if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET);
if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET);
if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET);
if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET);
MCUSR = 0;
SERIAL_ECHOPGM(MSG_MARLIN);
SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION);
#ifdef STRING_DISTRIBUTION_DATE
#ifdef STRING_CONFIG_H_AUTHOR
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_CONFIGURATION_VER);
SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE);
SERIAL_ECHOPGM(MSG_AUTHOR);
SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR);
SERIAL_ECHOPGM("Compiled: ");
SERIAL_ECHOLNPGM(__DATE__);
#endif // STRING_CONFIG_H_AUTHOR
#endif // STRING_DISTRIBUTION_DATE
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_FREE_MEMORY);
SERIAL_ECHO(freeMemory());
SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES);
SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE);
#if ENABLED(SDSUPPORT)
for (int8_t i = 0; i < BUFSIZE; i++) fromsd[i] = false;
#endif
// loads data from EEPROM if available else uses defaults (and resets step acceleration rate)
Config_RetrieveSettings();
lcd_init();
tp_init(); // Initialize temperature loop
plan_init(); // Initialize planner;
watchdog_init();
st_init(); // Initialize stepper, this enables interrupts!
setup_photpin();
servo_init();
#if HAS_CONTROLLERFAN
SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan
#endif
#if HAS_STEPPER_RESET
enableStepperDrivers();
#endif
#if ENABLED(DIGIPOT_I2C)
digipot_i2c_init();
#endif
#if ENABLED(Z_PROBE_SLED)
pinMode(SLED_PIN, OUTPUT);
digitalWrite(SLED_PIN, LOW); // turn it off
#endif // Z_PROBE_SLED
setup_homepin();
#ifdef STAT_LED_RED
pinMode(STAT_LED_RED, OUTPUT);
digitalWrite(STAT_LED_RED, LOW); // turn it off
#endif
#ifdef STAT_LED_BLUE
pinMode(STAT_LED_BLUE, OUTPUT);
digitalWrite(STAT_LED_BLUE, LOW); // turn it off
#endif
}
/**
* The main Marlin program loop
*
* - Save or log commands to SD
* - Process available commands (if not saving)
* - Call heater manager
* - Call inactivity manager
* - Call endstop manager
* - Call LCD update
*/
void loop() {
if (commands_in_queue < BUFSIZE - 1) get_command();
#if ENABLED(SDSUPPORT)
card.checkautostart(false);
#endif
if (commands_in_queue) {
#if ENABLED(SDSUPPORT)
if (card.saving) {
char *command = command_queue[cmd_queue_index_r];
if (strstr_P(command, PSTR("M29"))) {
// M29 closes the file
card.closefile();
SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED);
}
else {
// Write the string from the read buffer to SD
card.write_command(command);
if (card.logging)
process_next_command(); // The card is saving because it's logging
else
SERIAL_PROTOCOLLNPGM(MSG_OK);
}
}
else
process_next_command();
#else
process_next_command();
#endif // SDSUPPORT
commands_in_queue--;
cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE;
}
checkHitEndstops();
idle();
}
void gcode_line_error(const char *err, bool doFlush=true) {
SERIAL_ERROR_START;
serialprintPGM(err);
SERIAL_ERRORLN(gcode_LastN);
//Serial.println(gcode_N);
if (doFlush) FlushSerialRequestResend();
serial_count = 0;
}
/**
* Add to the circular command queue the next command from:
* - The command-injection queue (queued_commands_P)
* - The active serial input (usually USB)
* - The SD card file being actively printed
*/
void get_command() {
if (drain_queued_commands_P()) return; // priority is given to non-serial commands
#if ENABLED(NO_TIMEOUTS)
static millis_t last_command_time = 0;
millis_t ms = millis();
if (!MYSERIAL.available() && commands_in_queue == 0 && ms - last_command_time > NO_TIMEOUTS) {
SERIAL_ECHOLNPGM(MSG_WAIT);
last_command_time = ms;
}
#endif
//
// Loop while serial characters are incoming and the queue is not full
//
while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) {
#if ENABLED(NO_TIMEOUTS)
last_command_time = ms;
#endif
serial_char = MYSERIAL.read();
//
// If the character ends the line, or the line is full...
//
if (serial_char == '\n' || serial_char == '\r' || serial_count >= MAX_CMD_SIZE-1) {
// end of line == end of comment
comment_mode = false;
if (!serial_count) return; // empty lines just exit
char *command = command_queue[cmd_queue_index_w];
command[serial_count] = 0; // terminate string
// this item in the queue is not from sd
#if ENABLED(SDSUPPORT)
fromsd[cmd_queue_index_w] = false;
#endif
char *npos = strchr(command, 'N');
char *apos = strchr(command, '*');
if (npos) {
boolean M110 = strstr_P(command, PSTR("M110")) != NULL;
if (M110) {
char *n2pos = strchr(command + 4, 'N');
if (n2pos) npos = n2pos;
}
gcode_N = strtol(npos + 1, NULL, 10);
if (gcode_N != gcode_LastN + 1 && !M110) {
gcode_line_error(PSTR(MSG_ERR_LINE_NO));
return;
}
if (apos) {
byte checksum = 0, count = 0;
while (command[count] != '*') checksum ^= command[count++];
if (strtol(apos + 1, NULL, 10) != checksum) {
gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH));
return;
}
// if no errors, continue parsing
}
else if (npos == command) {
gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM));
return;
}
gcode_LastN = gcode_N;
// if no errors, continue parsing
}
else if (apos) { // No '*' without 'N'
gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false);
return;
}
// Movement commands alert when stopped
if (IsStopped()) {
char *gpos = strchr(command, 'G');
if (gpos) {
int codenum = strtol(gpos + 1, NULL, 10);
switch (codenum) {
case 0:
case 1:
case 2:
case 3:
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
break;
}
}
}
// If command was e-stop process now
if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED));
cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
commands_in_queue += 1;
serial_count = 0; //clear buffer
}
else if (serial_char == '\\') { // Handle escapes
if (MYSERIAL.available() > 0 && commands_in_queue < BUFSIZE) {
// if we have one more character, copy it over
serial_char = MYSERIAL.read();
command_queue[cmd_queue_index_w][serial_count++] = serial_char;
}
// otherwise do nothing
}
else { // its not a newline, carriage return or escape char
if (serial_char == ';') comment_mode = true;
if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
}
}
#if ENABLED(SDSUPPORT)
if (!card.sdprinting || serial_count) return;
// '#' stops reading from SD to the buffer prematurely, so procedural macro calls are possible
// if it occurs, stop_buffering is triggered and the buffer is ran dry.
// this character _can_ occur in serial com, due to checksums. however, no checksums are used in SD printing
static bool stop_buffering = false;
if (commands_in_queue == 0) stop_buffering = false;
while (!card.eof() && commands_in_queue < BUFSIZE && !stop_buffering) {
int16_t n = card.get();
serial_char = (char)n;
if (serial_char == '\n' || serial_char == '\r' ||
((serial_char == '#' || serial_char == ':') && !comment_mode) ||
serial_count >= (MAX_CMD_SIZE - 1) || n == -1
) {
if (card.eof()) {
SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED);
print_job_stop_ms = millis();
char time[30];
millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
int hours = t / 60 / 60, minutes = (t / 60) % 60;
sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
lcd_setstatus(time, true);
card.printingHasFinished();
card.checkautostart(true);
}
if (serial_char == '#') stop_buffering = true;
if (!serial_count) {
comment_mode = false; //for new command
return; //if empty line
}
command_queue[cmd_queue_index_w][serial_count] = 0; //terminate string
// if (!comment_mode) {
fromsd[cmd_queue_index_w] = true;
commands_in_queue += 1;
cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE;
// }
comment_mode = false; //for new command
serial_count = 0; //clear buffer
}
else {
if (serial_char == ';') comment_mode = true;
if (!comment_mode) command_queue[cmd_queue_index_w][serial_count++] = serial_char;
}
}
#endif // SDSUPPORT
}
bool code_has_value() {
int i = 1;
char c = seen_pointer[i];
if (c == '-' || c == '+') c = seen_pointer[++i];
if (c == '.') c = seen_pointer[++i];
return (c >= '0' && c <= '9');
}
float code_value() {
float ret;
char *e = strchr(seen_pointer, 'E');
if (e) {
*e = 0;
ret = strtod(seen_pointer+1, NULL);
*e = 'E';
}
else
ret = strtod(seen_pointer+1, NULL);
return ret;
}
long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); }
int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); }
bool code_seen(char code) {
seen_pointer = strchr(current_command_args, code);
return (seen_pointer != NULL); // Return TRUE if the code-letter was found
}
#define DEFINE_PGM_READ_ANY(type, reader) \
static inline type pgm_read_any(const type *p) \
{ return pgm_read_##reader##_near(p); }
DEFINE_PGM_READ_ANY(float, float);
DEFINE_PGM_READ_ANY(signed char, byte);
#define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \
static const PROGMEM type array##_P[3] = \
{ X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \
static inline type array(int axis) \
{ return pgm_read_any(&array##_P[axis]); }
XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS);
XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS);
XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH);
XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM);
XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR);
#if ENABLED(DUAL_X_CARRIAGE)
#define DXC_FULL_CONTROL_MODE 0
#define DXC_AUTO_PARK_MODE 1
#define DXC_DUPLICATION_MODE 2
static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
static float x_home_pos(int extruder) {
if (extruder == 0)
return base_home_pos(X_AXIS) + home_offset[X_AXIS];
else
// In dual carriage mode the extruder offset provides an override of the
// second X-carriage offset when homed - otherwise X2_HOME_POS is used.
// This allow soft recalibration of the second extruder offset position without firmware reflash
// (through the M218 command).
return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS;
}
static int x_home_dir(int extruder) {
return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR;
}
static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1
static bool active_extruder_parked = false; // used in mode 1 & 2
static float raised_parked_position[NUM_AXIS]; // used in mode 1
static millis_t delayed_move_time = 0; // used in mode 1
static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2
static float duplicate_extruder_temp_offset = 0; // used in mode 2
bool extruder_duplication_enabled = false; // used in mode 2
#endif //DUAL_X_CARRIAGE
#if ENABLED(DEBUG_LEVELING_FEATURE)
void print_xyz(const char *prefix, const float x, const float y, const float z) {
SERIAL_ECHO(prefix);
SERIAL_ECHOPAIR(": (", x);
SERIAL_ECHOPAIR(", ", y);
SERIAL_ECHOPAIR(", ", z);
SERIAL_ECHOLNPGM(")");
}
void print_xyz(const char *prefix, const float xyz[]) {
print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]);
}
#endif
static void set_axis_is_at_home(AxisEnum axis) {
#if ENABLED(DUAL_X_CARRIAGE)
if (axis == X_AXIS) {
if (active_extruder != 0) {
current_position[X_AXIS] = x_home_pos(active_extruder);
min_pos[X_AXIS] = X2_MIN_POS;
max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS);
return;
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
float xoff = home_offset[X_AXIS];
current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff;
min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff;
max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset);
return;
}
}
#endif
#if ENABLED(SCARA)
if (axis == X_AXIS || axis == Y_AXIS) {
float homeposition[3];
for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i);
// SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]);
// SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]);
// Works out real Homeposition angles using inverse kinematics,
// and calculates homing offset using forward kinematics
calculate_delta(homeposition);
// SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
for (int i = 0; i < 2; i++) delta[i] -= home_offset[i];
// SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]);
// SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]);
calculate_SCARA_forward_Transform(delta);
// SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]);
// SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]);
current_position[axis] = delta[axis];
// SCARA home positions are based on configuration since the actual limits are determined by the
// inverse kinematic transform.
min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis));
max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis));
}
else
#endif
{
current_position[axis] = base_home_pos(axis) + home_offset[axis];
min_pos[axis] = base_min_pos(axis) + home_offset[axis];
max_pos[axis] = base_max_pos(axis) + home_offset[axis];
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0
if (axis == Z_AXIS) current_position[Z_AXIS] -= zprobe_zoffset;
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("set_axis_is_at_home ", (unsigned long)axis);
SERIAL_ECHOPAIR(" > (home_offset[axis]==", home_offset[axis]);
print_xyz(") > current_position", current_position);
}
#endif
}
}
/**
* Some planner shorthand inline functions
*/
inline void set_homing_bump_feedrate(AxisEnum axis) {
const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR;
int hbd = homing_bump_divisor[axis];
if (hbd < 1) {
hbd = 10;
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1");
}
feedrate = homing_feedrate[axis] / hbd;
}
inline void line_to_current_position() {
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate/60, active_extruder);
}
inline void line_to_z(float zPosition) {
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate/60, active_extruder);
}
inline void line_to_destination(float mm_m) {
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m/60, active_extruder);
}
inline void line_to_destination() {
line_to_destination(feedrate);
}
inline void sync_plan_position() {
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
}
#if ENABLED(DELTA) || ENABLED(SCARA)
inline void sync_plan_position_delta() {
calculate_delta(current_position);
plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]);
}
#endif
inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); }
inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); }
static void setup_for_endstop_move() {
saved_feedrate = feedrate;
saved_feedrate_multiplier = feedrate_multiplier;
feedrate_multiplier = 100;
refresh_cmd_timeout();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)");
}
#endif
enable_endstops(true);
}
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
#if ENABLED(DELTA)
/**
* Calculate delta, start a line, and set current_position to destination
*/
void prepare_move_raw() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("prepare_move_raw > destination", destination);
}
#endif
refresh_cmd_timeout();
calculate_delta(destination);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
set_current_to_destination();
}
#endif
#if ENABLED(AUTO_BED_LEVELING_GRID)
#if DISABLED(DELTA)
static void set_bed_level_equation_lsq(double *plane_equation_coefficients) {
vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1);
planeNormal.debug("planeNormal");
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
//bedLevel.debug("bedLevel");
//plan_bed_level_matrix.debug("bed level before");
//vector_3 uncorrected_position = plan_get_position_mm();
//uncorrected_position.debug("position before");
vector_3 corrected_position = plan_get_position();
//corrected_position.debug("position after");
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("set_bed_level_equation_lsq > current_position", current_position);
}
#endif
sync_plan_position();
}
#endif // !DELTA
#else // !AUTO_BED_LEVELING_GRID
static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) {
plan_bed_level_matrix.set_to_identity();
vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1);
vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2);
vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3);
vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal();
if (planeNormal.z < 0) {
planeNormal.x = -planeNormal.x;
planeNormal.y = -planeNormal.y;
planeNormal.z = -planeNormal.z;
}
plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal);
vector_3 corrected_position = plan_get_position();
current_position[X_AXIS] = corrected_position.x;
current_position[Y_AXIS] = corrected_position.y;
current_position[Z_AXIS] = corrected_position.z;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("set_bed_level_equation_3pts > current_position", current_position);
}
#endif
sync_plan_position();
}
#endif // !AUTO_BED_LEVELING_GRID
static void run_z_probe() {
#if ENABLED(DELTA)
float start_z = current_position[Z_AXIS];
long start_steps = st_get_position(Z_AXIS);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1");
}
#endif
// move down slowly until you find the bed
feedrate = homing_feedrate[Z_AXIS] / 4;
destination[Z_AXIS] = -10;
prepare_move_raw(); // this will also set_current_to_destination
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
// we have to let the planner know where we are right now as it is not where we said to go.
long stop_steps = st_get_position(Z_AXIS);
float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS];
current_position[Z_AXIS] = mm;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("run_z_probe (DELTA) 2 > current_position", current_position);
}
#endif
sync_plan_position_delta();
#else // !DELTA
plan_bed_level_matrix.set_to_identity();
feedrate = homing_feedrate[Z_AXIS];
// Move down until the Z probe (or endstop?) is triggered
float zPosition = -(Z_MAX_LENGTH + 10);
line_to_z(zPosition);
st_synchronize();
// Tell the planner where we ended up - Get this from the stepper handler
zPosition = st_get_position_mm(Z_AXIS);
plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS]);
// move up the retract distance
zPosition += home_bump_mm(Z_AXIS);
line_to_z(zPosition);
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
// move back down slowly to find bed
set_homing_bump_feedrate(Z_AXIS);
zPosition -= home_bump_mm(Z_AXIS) * 2;
line_to_z(zPosition);
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
// Get the current stepper position after bumping an endstop
current_position[Z_AXIS] = st_get_position_mm(Z_AXIS);
sync_plan_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("run_z_probe > current_position", current_position);
}
#endif
#endif // !DELTA
}
/**
* Plan a move to (X, Y, Z) and set the current_position
* The final current_position may not be the one that was requested
*/
static void do_blocking_move_to(float x, float y, float z) {
float oldFeedRate = feedrate;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("do_blocking_move_to", x, y, z);
}
#endif
#if ENABLED(DELTA)
feedrate = XY_TRAVEL_SPEED;
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[Z_AXIS] = z;
prepare_move_raw(); // this will also set_current_to_destination
st_synchronize();
#else
feedrate = homing_feedrate[Z_AXIS];
current_position[Z_AXIS] = z;
line_to_current_position();
st_synchronize();
feedrate = xy_travel_speed;
current_position[X_AXIS] = x;
current_position[Y_AXIS] = y;
line_to_current_position();
st_synchronize();
#endif
feedrate = oldFeedRate;
}
inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); }
inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); }
inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); }
inline void raise_z_after_probing() { do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); }
static void clean_up_after_endstop_move() {
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > enable_endstops(false)");
}
#endif
enable_endstops(false);
#endif
feedrate = saved_feedrate;
feedrate_multiplier = saved_feedrate_multiplier;
refresh_cmd_timeout();
}
static void deploy_z_probe() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("deploy_z_probe > current_position", current_position);
}
#endif
#if HAS_SERVO_ENDSTOPS
// Engage Z Servo endstop if enabled
if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]);
#elif ENABLED(Z_PROBE_ALLEN_KEY)
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE;
// If endstop is already false, the Z probe is deployed
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
if (z_probe_endstop)
#else
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (z_min_endstop)
#endif
{
// Move to the start position to initiate deployment
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z;
prepare_move_raw(); // this will also set_current_to_destination
// Move to engage deployment
if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) {
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE;
}
if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) {
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X;
}
if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) {
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y;
}
if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) {
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z;
}
prepare_move_raw();
#ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X
if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
}
// Move to trigger deployment
if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) {
feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE;
}
if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) {
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X;
}
if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) {
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y;
}
if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) {
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z;
}
prepare_move_raw();
#endif
}
// Partially Home X,Y for safety
destination[X_AXIS] = destination[X_AXIS]*0.75;
destination[Y_AXIS] = destination[Y_AXIS]*0.75;
prepare_move_raw(); // this will also set_current_to_destination
st_synchronize();
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
if (z_probe_endstop)
#else
z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (z_min_endstop)
#endif
{
if (IsRunning()) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to engage!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
Stop();
}
#endif // Z_PROBE_ALLEN_KEY
}
static void stow_z_probe(bool doRaise=true) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("stow_z_probe > current_position", current_position);
}
#endif
#if HAS_SERVO_ENDSTOPS
// Retract Z Servo endstop if enabled
if (servo_endstop_id[Z_AXIS] >= 0) {
#if Z_RAISE_AFTER_PROBING > 0
if (doRaise) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("Raise Z (after) by ", (float)Z_RAISE_AFTER_PROBING);
SERIAL_EOL;
SERIAL_ECHOPAIR("> SERVO_ENDSTOPS > raise_z_after_probing()");
SERIAL_EOL;
}
#endif
raise_z_after_probing(); // this also updates current_position
st_synchronize();
}
#endif
// Change the Z servo angle
servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]);
}
#elif ENABLED(Z_PROBE_ALLEN_KEY)
// Move up for safety
feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE;
#if Z_RAISE_AFTER_PROBING > 0
destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING;
prepare_move_raw(); // this will also set_current_to_destination
#endif
// Move to the start position to initiate retraction
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X;
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y;
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z;
prepare_move_raw();
// Move the nozzle down to push the Z probe into retracted position
if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) {
feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
}
if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) {
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X;
}
if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) {
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y;
}
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z;
prepare_move_raw();
// Move up for safety
if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) {
feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE;
}
if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) {
destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X;
}
if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) {
destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y;
}
destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z;
prepare_move_raw();
// Home XY for safety
feedrate = homing_feedrate[X_AXIS]/2;
destination[X_AXIS] = 0;
destination[Y_AXIS] = 0;
prepare_move_raw(); // this will also set_current_to_destination
st_synchronize();
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING);
if (!z_probe_endstop)
#else
bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING);
if (!z_min_endstop)
#endif
{
if (IsRunning()) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM("Z-Probe failed to retract!");
LCD_ALERTMESSAGEPGM("Err: ZPROBE");
}
Stop();
}
#endif // Z_PROBE_ALLEN_KEY
}
enum ProbeAction {
ProbeStay = 0,
ProbeDeploy = BIT(0),
ProbeStow = BIT(1),
ProbeDeployAndStow = (ProbeDeploy | ProbeStow)
};
// Probe bed height at position (x,y), returns the measured z value
static float probe_pt(float x, float y, float z_before, ProbeAction probe_action=ProbeDeployAndStow, int verbose_level=1) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("probe_pt >>>");
SERIAL_ECHOPAIR("> ProbeAction:", (unsigned long)probe_action);
SERIAL_EOL;
print_xyz("> current_position", current_position);
}
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("Z Raise to z_before ", z_before);
SERIAL_EOL;
SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before);
SERIAL_EOL;
}
#endif
// Move Z up to the z_before height, then move the Z probe to the given XY
do_blocking_move_to_z(z_before); // this also updates current_position
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - X_PROBE_OFFSET_FROM_EXTRUDER);
SERIAL_ECHOPAIR(", ", y - Y_PROBE_OFFSET_FROM_EXTRUDER);
SERIAL_EOL;
}
#endif
do_blocking_move_to_xy(x - X_PROBE_OFFSET_FROM_EXTRUDER, y - Y_PROBE_OFFSET_FROM_EXTRUDER); // this also updates current_position
#if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
if (probe_action & ProbeDeploy) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("> ProbeDeploy");
}
#endif
deploy_z_probe();
}
#endif
run_z_probe();
float measured_z = current_position[Z_AXIS];
#if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY)
if (probe_action & ProbeStow) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)");
}
#endif
stow_z_probe();
}
#endif
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOL_F(x, 3);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL_F(y, 3);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL_F(measured_z, 3);
SERIAL_EOL;
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("<<< probe_pt");
}
#endif
return measured_z;
}
#if ENABLED(DELTA)
/**
* All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING
*/
static void extrapolate_one_point(int x, int y, int xdir, int ydir) {
if (bed_level[x][y] != 0.0) {
return; // Don't overwrite good values.
}
float a = 2*bed_level[x+xdir][y] - bed_level[x+xdir*2][y]; // Left to right.
float b = 2*bed_level[x][y+ydir] - bed_level[x][y+ydir*2]; // Front to back.
float c = 2*bed_level[x+xdir][y+ydir] - bed_level[x+xdir*2][y+ydir*2]; // Diagonal.
float median = c; // Median is robust (ignores outliers).
if (a < b) {
if (b < c) median = b;
if (c < a) median = a;
} else { // b <= a
if (c < b) median = b;
if (a < c) median = a;
}
bed_level[x][y] = median;
}
// Fill in the unprobed points (corners of circular print surface)
// using linear extrapolation, away from the center.
static void extrapolate_unprobed_bed_level() {
int half = (AUTO_BED_LEVELING_GRID_POINTS-1)/2;
for (int y = 0; y <= half; y++) {
for (int x = 0; x <= half; x++) {
if (x + y < 3) continue;
extrapolate_one_point(half-x, half-y, x>1?+1:0, y>1?+1:0);
extrapolate_one_point(half+x, half-y, x>1?-1:0, y>1?+1:0);
extrapolate_one_point(half-x, half+y, x>1?+1:0, y>1?-1:0);
extrapolate_one_point(half+x, half+y, x>1?-1:0, y>1?-1:0);
}
}
}
// Print calibration results for plotting or manual frame adjustment.
static void print_bed_level() {
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
SERIAL_PROTOCOL_F(bed_level[x][y], 2);
SERIAL_PROTOCOLCHAR(' ');
}
SERIAL_EOL;
}
}
// Reset calibration results to zero.
void reset_bed_level() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("reset_bed_level");
}
#endif
for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) {
for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) {
bed_level[x][y] = 0.0;
}
}
}
#endif // DELTA
#if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED)
void raise_z_for_servo() {
float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING;
z_dest += axis_known_position[Z_AXIS] ? zprobe_zoffset : zpos;
if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position
}
#endif
#endif // AUTO_BED_LEVELING_FEATURE
#if ENABLED(Z_PROBE_SLED)
#ifndef SLED_DOCKING_OFFSET
#define SLED_DOCKING_OFFSET 0
#endif
/**
* Method to dock/undock a sled designed by Charles Bell.
*
* dock[in] If true, move to MAX_X and engage the electromagnet
* offset[in] The additional distance to move to adjust docking location
*/
static void dock_sled(bool dock, int offset=0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("dock_sled", dock);
SERIAL_EOL;
}
#endif
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
return;
}
float oldXpos = current_position[X_AXIS]; // save x position
if (dock) {
#if Z_RAISE_AFTER_PROBING > 0
raise_z_after_probing(); // raise Z
#endif
do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); // Dock sled a bit closer to ensure proper capturing
digitalWrite(SLED_PIN, LOW); // turn off magnet
} else {
float z_loc = current_position[Z_AXIS];
if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING;
do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position
digitalWrite(SLED_PIN, HIGH); // turn on magnet
}
do_blocking_move_to_x(oldXpos); // return to position before docking
}
#endif // Z_PROBE_SLED
/**
* Home an individual axis
*/
#define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS)
static void homeaxis(AxisEnum axis) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR(">>> homeaxis(", (unsigned long)axis);
SERIAL_CHAR(')');
SERIAL_EOL;
}
#endif
#define HOMEAXIS_DO(LETTER) \
((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1))
if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) {
int axis_home_dir =
#if ENABLED(DUAL_X_CARRIAGE)
(axis == X_AXIS) ? x_home_dir(active_extruder) :
#endif
home_dir(axis);
// Set the axis position as setup for the move
current_position[axis] = 0;
sync_plan_position();
#if ENABLED(Z_PROBE_SLED)
// Get Probe
if (axis == Z_AXIS) {
if (axis_home_dir < 0) dock_sled(false);
}
#endif
#if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
// Deploy a Z probe if there is one, and homing towards the bed
if (axis == Z_AXIS) {
if (axis_home_dir < 0) deploy_z_probe();
}
#endif
#if HAS_SERVO_ENDSTOPS
// Engage Servo endstop if enabled
if (axis != Z_AXIS && servo_endstop_id[axis] >= 0)
servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]);
#endif
// Set a flag for Z motor locking
#if ENABLED(Z_DUAL_ENDSTOPS)
if (axis == Z_AXIS) In_Homing_Process(true);
#endif
// Move towards the endstop until an endstop is triggered
destination[axis] = 1.5 * max_length(axis) * axis_home_dir;
feedrate = homing_feedrate[axis];
line_to_destination();
st_synchronize();
// Set the axis position as setup for the move
current_position[axis] = 0;
sync_plan_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("> enable_endstops(false)");
}
#endif
enable_endstops(false); // Disable endstops while moving away
// Move away from the endstop by the axis HOME_BUMP_MM
destination[axis] = -home_bump_mm(axis) * axis_home_dir;
line_to_destination();
st_synchronize();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("> enable_endstops(true)");
}
#endif
enable_endstops(true); // Enable endstops for next homing move
// Slow down the feedrate for the next move
set_homing_bump_feedrate(axis);
// Move slowly towards the endstop until triggered
destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir;
line_to_destination();
st_synchronize();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("> TRIGGER ENDSTOP > current_position", current_position);
}
#endif
#if ENABLED(Z_DUAL_ENDSTOPS)
if (axis == Z_AXIS) {
float adj = fabs(z_endstop_adj);
bool lockZ1;
if (axis_home_dir > 0) {
adj = -adj;
lockZ1 = (z_endstop_adj > 0);
}
else
lockZ1 = (z_endstop_adj < 0);
if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true);
sync_plan_position();
// Move to the adjusted endstop height
feedrate = homing_feedrate[axis];
destination[Z_AXIS] = adj;
line_to_destination();
st_synchronize();
if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false);
In_Homing_Process(false);
} // Z_AXIS
#endif
#if ENABLED(DELTA)
// retrace by the amount specified in endstop_adj
if (endstop_adj[axis] * axis_home_dir < 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("> enable_endstops(false)");
}
#endif
enable_endstops(false); // Disable endstops while moving away
sync_plan_position();
destination[axis] = endstop_adj[axis];
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]);
print_xyz(" > destination", destination);
}
#endif
line_to_destination();
st_synchronize();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("> enable_endstops(true)");
}
#endif
enable_endstops(true); // Enable endstops for next homing move
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
else {
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir);
SERIAL_EOL;
}
}
#endif
#endif
// Set the axis position to its home position (plus home offsets)
set_axis_is_at_home(axis);
sync_plan_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("> AFTER set_axis_is_at_home > current_position", current_position);
}
#endif
destination[axis] = current_position[axis];
feedrate = 0.0;
endstops_hit_on_purpose(); // clear endstop hit flags
axis_known_position[axis] = true;
#if ENABLED(Z_PROBE_SLED)
// bring Z probe back
if (axis == Z_AXIS) {
if (axis_home_dir < 0) dock_sled(true);
}
#endif
#if SERVO_LEVELING && DISABLED(Z_PROBE_SLED)
// Deploy a Z probe if there is one, and homing towards the bed
if (axis == Z_AXIS) {
if (axis_home_dir < 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("> SERVO_LEVELING > stow_z_probe");
}
#endif
stow_z_probe();
}
}
else
#endif
{
#if HAS_SERVO_ENDSTOPS
// Retract Servo endstop if enabled
if (servo_endstop_id[axis] >= 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()");
}
#endif
servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]);
}
#endif
}
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("<<< homeaxis(", (unsigned long)axis);
SERIAL_CHAR(')');
SERIAL_EOL;
}
#endif
}
#if ENABLED(FWRETRACT)
void retract(bool retracting, bool swapping=false) {
if (retracting == retracted[active_extruder]) return;
float oldFeedrate = feedrate;
set_destination_to_current();
if (retracting) {
feedrate = retract_feedrate * 60;
current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder];
plan_set_e_position(current_position[E_AXIS]);
prepare_move();
if (retract_zlift > 0.01) {
current_position[Z_AXIS] -= retract_zlift;
#if ENABLED(DELTA)
sync_plan_position_delta();
#else
sync_plan_position();
#endif
prepare_move();
}
}
else {
if (retract_zlift > 0.01) {
current_position[Z_AXIS] += retract_zlift;
#if ENABLED(DELTA)
sync_plan_position_delta();
#else
sync_plan_position();
#endif
//prepare_move();
}
feedrate = retract_recover_feedrate * 60;
float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length;
current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder];
plan_set_e_position(current_position[E_AXIS]);
prepare_move();
}
feedrate = oldFeedrate;
retracted[active_extruder] = retracting;
} // retract()
#endif // FWRETRACT
/**
*
* G-Code Handler functions
*
*/
/**
* Set XYZE destination and feedrate from the current GCode command
*
* - Set destination from included axis codes
* - Set to current for missing axis codes
* - Set the feedrate, if included
*/
void gcode_get_destination() {
for (int i = 0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i]))
destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0);
else
destination[i] = current_position[i];
}
if (code_seen('F')) {
float next_feedrate = code_value();
if (next_feedrate > 0.0) feedrate = next_feedrate;
}
}
void unknown_command_error() {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND);
SERIAL_ECHO(current_command);
SERIAL_ECHOPGM("\"\n");
}
/**
* G0, G1: Coordinated movement of X Y Z E axes
*/
inline void gcode_G0_G1() {
if (IsRunning()) {
gcode_get_destination(); // For X Y Z E F
#if ENABLED(FWRETRACT)
if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) {
float echange = destination[E_AXIS] - current_position[E_AXIS];
// Is this move an attempt to retract or recover?
if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) {
current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations
plan_set_e_position(current_position[E_AXIS]); // AND from the planner
retract(!retracted[active_extruder]);
return;
}
}
#endif //FWRETRACT
prepare_move();
}
}
/**
* G2: Clockwise Arc
* G3: Counterclockwise Arc
*/
inline void gcode_G2_G3(bool clockwise) {
if (IsRunning()) {
#if ENABLED(SF_ARC_FIX)
bool relative_mode_backup = relative_mode;
relative_mode = true;
#endif
gcode_get_destination();
#if ENABLED(SF_ARC_FIX)
relative_mode = relative_mode_backup;
#endif
// Center of arc as offset from current_position
float arc_offset[2] = {
code_seen('I') ? code_value() : 0,
code_seen('J') ? code_value() : 0
};
// Send an arc to the planner
plan_arc(destination, arc_offset, clockwise);
refresh_cmd_timeout();
}
}
/**
* G4: Dwell S<seconds> or P<milliseconds>
*/
inline void gcode_G4() {
millis_t codenum = 0;
if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait
if (code_seen('S')) codenum = code_value() * 1000; // seconds to wait
st_synchronize();
refresh_cmd_timeout();
codenum += previous_cmd_ms; // keep track of when we started waiting
if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL);
while (millis() < codenum) idle();
}
#if ENABLED(FWRETRACT)
/**
* G10 - Retract filament according to settings of M207
* G11 - Recover filament according to settings of M208
*/
inline void gcode_G10_G11(bool doRetract=false) {
#if EXTRUDERS > 1
if (doRetract) {
retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument
}
#endif
retract(doRetract
#if EXTRUDERS > 1
, retracted_swap[active_extruder]
#endif
);
}
#endif //FWRETRACT
/**
* G28: Home all axes according to settings
*
* Parameters
*
* None Home to all axes with no parameters.
* With QUICK_HOME enabled XY will home together, then Z.
*
* Cartesian parameters
*
* X Home to the X endstop
* Y Home to the Y endstop
* Z Home to the Z endstop
*
*/
inline void gcode_G28() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("gcode_G28 >>>");
}
#endif
// Wait for planner moves to finish!
st_synchronize();
// For auto bed leveling, clear the level matrix
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
plan_bed_level_matrix.set_to_identity();
#if ENABLED(DELTA)
reset_bed_level();
#endif
#endif
// For manual bed leveling deactivate the matrix temporarily
#if ENABLED(MESH_BED_LEVELING)
uint8_t mbl_was_active = mbl.active;
mbl.active = 0;
#endif
setup_for_endstop_move();
set_destination_to_current();
feedrate = 0.0;
#if ENABLED(DELTA)
// A delta can only safely home all axis at the same time
// all axis have to home at the same time
// Pretend the current position is 0,0,0
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0;
sync_plan_position();
// Move all carriages up together until the first endstop is hit.
for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * Z_MAX_LENGTH;
feedrate = 1.732 * homing_feedrate[X_AXIS];
line_to_destination();
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
// Destination reached
for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i];
// take care of back off and rehome now we are all at the top
HOMEAXIS(X);
HOMEAXIS(Y);
HOMEAXIS(Z);
sync_plan_position_delta();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("(DELTA) > current_position", current_position);
}
#endif
#else // NOT DELTA
bool homeX = code_seen(axis_codes[X_AXIS]),
homeY = code_seen(axis_codes[Y_AXIS]),
homeZ = code_seen(axis_codes[Z_AXIS]);
home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ);
if (home_all_axis || homeZ) {
#if Z_HOME_DIR > 0 // If homing away from BED do Z first
HOMEAXIS(Z);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("> HOMEAXIS(Z) > current_position", current_position);
}
#endif
#elif DISABLED(Z_SAFE_HOMING) && defined(Z_RAISE_BEFORE_HOMING) && Z_RAISE_BEFORE_HOMING > 0
// Raise Z before homing any other axes
// (Does this need to be "negative home direction?" Why not just use Z_RAISE_BEFORE_HOMING?)
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("Raise Z (before homing) by ", (float)Z_RAISE_BEFORE_HOMING);
SERIAL_EOL;
print_xyz("> (home_all_axis || homeZ) > destination", destination);
}
#endif
feedrate = max_feedrate[Z_AXIS] * 60;
line_to_destination();
st_synchronize();
#endif
} // home_all_axis || homeZ
#if ENABLED(QUICK_HOME)
if (home_all_axis || (homeX && homeY)) { // First diagonal move
current_position[X_AXIS] = current_position[Y_AXIS] = 0;
#if ENABLED(DUAL_X_CARRIAGE)
int x_axis_home_dir = x_home_dir(active_extruder);
extruder_duplication_enabled = false;
#else
int x_axis_home_dir = home_dir(X_AXIS);
#endif
sync_plan_position();
float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS),
mlratio = mlx>mly ? mly/mlx : mlx/mly;
destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir;
destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS);
feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1);
line_to_destination();
st_synchronize();
set_axis_is_at_home(X_AXIS);
set_axis_is_at_home(Y_AXIS);
sync_plan_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("> QUICK_HOME > current_position 1", current_position);
}
#endif
destination[X_AXIS] = current_position[X_AXIS];
destination[Y_AXIS] = current_position[Y_AXIS];
line_to_destination();
feedrate = 0.0;
st_synchronize();
endstops_hit_on_purpose(); // clear endstop hit flags
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
#if DISABLED(SCARA)
current_position[Z_AXIS] = destination[Z_AXIS];
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("> QUICK_HOME > current_position 2", current_position);
}
#endif
}
#endif // QUICK_HOME
#if ENABLED(HOME_Y_BEFORE_X)
// Home Y
if (home_all_axis || homeY) HOMEAXIS(Y);
#endif
// Home X
if (home_all_axis || homeX) {
#if ENABLED(DUAL_X_CARRIAGE)
int tmp_extruder = active_extruder;
extruder_duplication_enabled = false;
active_extruder = !active_extruder;
HOMEAXIS(X);
inactive_extruder_x_pos = current_position[X_AXIS];
active_extruder = tmp_extruder;
HOMEAXIS(X);
// reset state used by the different modes
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
delayed_move_time = 0;
active_extruder_parked = true;
#else
HOMEAXIS(X);
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("> homeX", current_position);
}
#endif
}
#if DISABLED(HOME_Y_BEFORE_X)
// Home Y
if (home_all_axis || homeY) {
HOMEAXIS(Y);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("> homeY", current_position);
}
#endif
}
#endif
// Home Z last if homing towards the bed
#if Z_HOME_DIR < 0
if (home_all_axis || homeZ) {
#if ENABLED(Z_SAFE_HOMING)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>");
}
#endif
if (home_all_axis) {
current_position[Z_AXIS] = 0;
sync_plan_position();
//
// Set the Z probe (or just the nozzle) destination to the safe homing point
//
// NOTE: If current_position[X_AXIS] or current_position[Y_AXIS] were set above
// then this may not work as expected.
destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - X_PROBE_OFFSET_FROM_EXTRUDER);
destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - Y_PROBE_OFFSET_FROM_EXTRUDER);
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS); // Set destination away from bed
feedrate = XY_TRAVEL_SPEED;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("Raise Z (before homing) by ", (float)Z_RAISE_BEFORE_HOMING);
SERIAL_EOL;
print_xyz("> home_all_axis > current_position", current_position);
print_xyz("> home_all_axis > destination", destination);
}
#endif
// This could potentially move X, Y, Z all together
line_to_destination();
st_synchronize();
// Set current X, Y is the Z_SAFE_HOMING_POINT minus PROBE_OFFSET_FROM_EXTRUDER
current_position[X_AXIS] = destination[X_AXIS];
current_position[Y_AXIS] = destination[Y_AXIS];
// Home the Z axis
HOMEAXIS(Z);
}
else if (homeZ) { // Don't need to Home Z twice
// Let's see if X and Y are homed
if (axis_known_position[X_AXIS] && axis_known_position[Y_AXIS]) {
// Make sure the Z probe is within the physical limits
// NOTE: This doesn't necessarily ensure the Z probe is also within the bed!
float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS];
if ( cpx >= X_MIN_POS - X_PROBE_OFFSET_FROM_EXTRUDER
&& cpx <= X_MAX_POS - X_PROBE_OFFSET_FROM_EXTRUDER
&& cpy >= Y_MIN_POS - Y_PROBE_OFFSET_FROM_EXTRUDER
&& cpy <= Y_MAX_POS - Y_PROBE_OFFSET_FROM_EXTRUDER) {
// Set the plan current position to X, Y, 0
current_position[Z_AXIS] = 0;
plan_set_position(cpx, cpy, 0, current_position[E_AXIS]); // = sync_plan_position
// Set Z destination away from bed and raise the axis
// NOTE: This should always just be Z_RAISE_BEFORE_HOMING unless...???
destination[Z_AXIS] = -Z_RAISE_BEFORE_HOMING * home_dir(Z_AXIS);
feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("Raise Z (before homing) by ", (float)Z_RAISE_BEFORE_HOMING);
SERIAL_EOL;
print_xyz("> homeZ > current_position", current_position);
print_xyz("> homeZ > destination", destination);
}
#endif
line_to_destination();
st_synchronize();
// Home the Z axis
HOMEAXIS(Z);
}
else {
LCD_MESSAGEPGM(MSG_ZPROBE_OUT);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT);
}
}
else {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
}
} // !home_all_axes && homeZ
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING");
}
#endif
#else // !Z_SAFE_HOMING
HOMEAXIS(Z);
#endif // !Z_SAFE_HOMING
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("> (home_all_axis || homeZ) > final", current_position);
}
#endif
} // home_all_axis || homeZ
#endif // Z_HOME_DIR < 0
sync_plan_position();
#endif // else DELTA
#if ENABLED(SCARA)
sync_plan_position_delta();
#endif
#if ENABLED(ENDSTOPS_ONLY_FOR_HOMING)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)");
}
#endif
enable_endstops(false);
#endif
// For manual leveling move back to 0,0
#if ENABLED(MESH_BED_LEVELING)
if (mbl_was_active) {
current_position[X_AXIS] = mbl.get_x(0);
current_position[Y_AXIS] = mbl.get_y(0);
set_destination_to_current();
feedrate = homing_feedrate[X_AXIS];
line_to_destination();
st_synchronize();
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
sync_plan_position();
mbl.active = 1;
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("mbl_was_active > current_position", current_position);
}
#endif
}
#endif
feedrate = saved_feedrate;
feedrate_multiplier = saved_feedrate_multiplier;
refresh_cmd_timeout();
endstops_hit_on_purpose(); // clear endstop hit flags
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("<<< gcode_G28");
}
#endif
}
#if ENABLED(MESH_BED_LEVELING)
enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet };
/**
* G29: Mesh-based Z probe, probes a grid and produces a
* mesh to compensate for variable bed height
*
* Parameters With MESH_BED_LEVELING:
*
* S0 Produce a mesh report
* S1 Start probing mesh points
* S2 Probe the next mesh point
* S3 Xn Yn Zn.nn Manually modify a single point
*
* The S0 report the points as below
*
* +----> X-axis
* |
* |
* v Y-axis
*
*/
inline void gcode_G29() {
static int probe_point = -1;
MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport;
if (state < 0 || state > 3) {
SERIAL_PROTOCOLLNPGM("S out of range (0-3).");
return;
}
int ix, iy;
float z;
switch(state) {
case MeshReport:
if (mbl.active) {
SERIAL_PROTOCOLPGM("Num X,Y: ");
SERIAL_PROTOCOL(MESH_NUM_X_POINTS);
SERIAL_PROTOCOLCHAR(',');
SERIAL_PROTOCOL(MESH_NUM_Y_POINTS);
SERIAL_PROTOCOLPGM("\nZ search height: ");
SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z);
SERIAL_PROTOCOLLNPGM("\nMeasured points:");
for (int y = 0; y < MESH_NUM_Y_POINTS; y++) {
for (int x = 0; x < MESH_NUM_X_POINTS; x++) {
SERIAL_PROTOCOLPGM(" ");
SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5);
}
SERIAL_EOL;
}
}
else
SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active.");
break;
case MeshStart:
mbl.reset();
probe_point = 0;
enqueuecommands_P(PSTR("G28\nG29 S2"));
break;
case MeshNext:
if (probe_point < 0) {
SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first.");
return;
}
if (probe_point == 0) {
// Set Z to a positive value before recording the first Z.
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
sync_plan_position();
}
else {
// For others, save the Z of the previous point, then raise Z again.
ix = (probe_point - 1) % MESH_NUM_X_POINTS;
iy = (probe_point - 1) / MESH_NUM_X_POINTS;
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
mbl.set_z(ix, iy, current_position[Z_AXIS]);
current_position[Z_AXIS] = MESH_HOME_SEARCH_Z;
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
st_synchronize();
}
// Is there another point to sample? Move there.
if (probe_point < MESH_NUM_X_POINTS * MESH_NUM_Y_POINTS) {
ix = probe_point % MESH_NUM_X_POINTS;
iy = probe_point / MESH_NUM_X_POINTS;
if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag
current_position[X_AXIS] = mbl.get_x(ix);
current_position[Y_AXIS] = mbl.get_y(iy);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS]/60, active_extruder);
st_synchronize();
probe_point++;
}
else {
// After recording the last point, activate the mbl and home
SERIAL_PROTOCOLLNPGM("Mesh probing done.");
probe_point = -1;
mbl.active = 1;
enqueuecommands_P(PSTR("G28"));
}
break;
case MeshSet:
if (code_seen('X')) {
ix = code_value_long()-1;
if (ix < 0 || ix >= MESH_NUM_X_POINTS) {
SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n");
return;
}
} else {
SERIAL_PROTOCOLPGM("X not entered.\n");
return;
}
if (code_seen('Y')) {
iy = code_value_long()-1;
if (iy < 0 || iy >= MESH_NUM_Y_POINTS) {
SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n");
return;
}
} else {
SERIAL_PROTOCOLPGM("Y not entered.\n");
return;
}
if (code_seen('Z')) {
z = code_value();
} else {
SERIAL_PROTOCOLPGM("Z not entered.\n");
return;
}
mbl.z_values[iy][ix] = z;
} // switch(state)
}
#elif ENABLED(AUTO_BED_LEVELING_FEATURE)
void out_of_range_error(const char *p_edge) {
SERIAL_PROTOCOLPGM("?Probe ");
serialprintPGM(p_edge);
SERIAL_PROTOCOLLNPGM(" position out of range.");
}
/**
* G29: Detailed Z probe, probes the bed at 3 or more points.
* Will fail if the printer has not been homed with G28.
*
* Enhanced G29 Auto Bed Leveling Probe Routine
*
* Parameters With AUTO_BED_LEVELING_GRID:
*
* P Set the size of the grid that will be probed (P x P points).
* Not supported by non-linear delta printer bed leveling.
* Example: "G29 P4"
*
* S Set the XY travel speed between probe points (in mm/min)
*
* D Dry-Run mode. Just evaluate the bed Topology - Don't apply
* or clean the rotation Matrix. Useful to check the topology
* after a first run of G29.
*
* V Set the verbose level (0-4). Example: "G29 V3"
*
* T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report.
* This is useful for manual bed leveling and finding flaws in the bed (to
* assist with part placement).
* Not supported by non-linear delta printer bed leveling.
*
* F Set the Front limit of the probing grid
* B Set the Back limit of the probing grid
* L Set the Left limit of the probing grid
* R Set the Right limit of the probing grid
*
* Global Parameters:
*
* E/e By default G29 will engage the Z probe, test the bed, then disengage.
* Include "E" to engage/disengage the Z probe for each sample.
* There's no extra effect if you have a fixed Z probe.
* Usage: "G29 E" or "G29 e"
*
*/
inline void gcode_G29() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("gcode_G29 >>>");
}
#endif
// Don't allow auto-leveling without homing first
if (!axis_known_position[X_AXIS] || !axis_known_position[Y_AXIS]) {
LCD_MESSAGEPGM(MSG_POSITION_UNKNOWN);
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_POSITION_UNKNOWN);
return;
}
int verbose_level = code_seen('V') ? code_value_short() : 1;
if (verbose_level < 0 || verbose_level > 4) {
SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4).");
return;
}
bool dryrun = code_seen('D'),
deploy_probe_for_each_reading = code_seen('E');
#if ENABLED(AUTO_BED_LEVELING_GRID)
#if DISABLED(DELTA)
bool do_topography_map = verbose_level > 2 || code_seen('T');
#endif
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n");
if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode");
}
int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS;
#if DISABLED(DELTA)
if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short();
if (auto_bed_leveling_grid_points < 2) {
SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n");
return;
}
#endif
xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED;
int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION,
right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION,
front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION,
back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION;
bool left_out_l = left_probe_bed_position < MIN_PROBE_X,
left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - MIN_PROBE_EDGE,
right_out_r = right_probe_bed_position > MAX_PROBE_X,
right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE,
front_out_f = front_probe_bed_position < MIN_PROBE_Y,
front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - MIN_PROBE_EDGE,
back_out_b = back_probe_bed_position > MAX_PROBE_Y,
back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE;
if (left_out || right_out || front_out || back_out) {
if (left_out) {
out_of_range_error(PSTR("(L)eft"));
left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - MIN_PROBE_EDGE;
}
if (right_out) {
out_of_range_error(PSTR("(R)ight"));
right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE;
}
if (front_out) {
out_of_range_error(PSTR("(F)ront"));
front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - MIN_PROBE_EDGE;
}
if (back_out) {
out_of_range_error(PSTR("(B)ack"));
back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE;
}
return;
}
#endif // AUTO_BED_LEVELING_GRID
#if ENABLED(Z_PROBE_SLED)
dock_sled(false); // engage (un-dock) the Z probe
#elif ENABLED(Z_PROBE_ALLEN_KEY) //|| SERVO_LEVELING
deploy_z_probe();
#endif
st_synchronize();
if (!dryrun) {
// make sure the bed_level_rotation_matrix is identity or the planner will get it wrong
plan_bed_level_matrix.set_to_identity();
#if ENABLED(DELTA)
reset_bed_level();
#else //!DELTA
//vector_3 corrected_position = plan_get_position_mm();
//corrected_position.debug("position before G29");
vector_3 uncorrected_position = plan_get_position();
//uncorrected_position.debug("position during G29");
current_position[X_AXIS] = uncorrected_position.x;
current_position[Y_AXIS] = uncorrected_position.y;
current_position[Z_AXIS] = uncorrected_position.z;
sync_plan_position();
#endif // !DELTA
}
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
#if ENABLED(AUTO_BED_LEVELING_GRID)
// probe at the points of a lattice grid
const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1),
yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1);
#if ENABLED(DELTA)
delta_grid_spacing[0] = xGridSpacing;
delta_grid_spacing[1] = yGridSpacing;
float z_offset = zprobe_zoffset;
if (code_seen(axis_codes[Z_AXIS])) z_offset += code_value();
#else // !DELTA
// solve the plane equation ax + by + d = z
// A is the matrix with rows [x y 1] for all the probed points
// B is the vector of the Z positions
// the normal vector to the plane is formed by the coefficients of the plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0
// so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z
int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points;
double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations
eqnBVector[abl2], // "B" vector of Z points
mean = 0.0;
int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points];
#endif // !DELTA
int probePointCounter = 0;
bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION]
for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) {
double yProbe = front_probe_bed_position + yGridSpacing * yCount;
int xStart, xStop, xInc;
if (zig) {
xStart = 0;
xStop = auto_bed_leveling_grid_points;
xInc = 1;
}
else {
xStart = auto_bed_leveling_grid_points - 1;
xStop = -1;
xInc = -1;
}
zig = !zig;
for (int xCount = xStart; xCount != xStop; xCount += xInc) {
double xProbe = left_probe_bed_position + xGridSpacing * xCount;
// raise extruder
float measured_z,
z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING;
if (probePointCounter) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("z_before = (between) ", (float)(Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS]));
SERIAL_EOL;
}
#endif
}
else {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("z_before = (before) ", (float)Z_RAISE_BEFORE_PROBING);
SERIAL_EOL;
}
#endif
}
#if ENABLED(DELTA)
// Avoid probing the corners (outside the round or hexagon print surface) on a delta printer.
float distance_from_center = sqrt(xProbe*xProbe + yProbe*yProbe);
if (distance_from_center > DELTA_PROBABLE_RADIUS) continue;
#endif //DELTA
ProbeAction act;
if (deploy_probe_for_each_reading) // G29 E - Stow between probes
act = ProbeDeployAndStow;
else if (yCount == 0 && xCount == xStart)
act = ProbeDeploy;
else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc)
act = ProbeStow;
else
act = ProbeStay;
measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level);
#if DISABLED(DELTA)
mean += measured_z;
eqnBVector[probePointCounter] = measured_z;
eqnAMatrix[probePointCounter + 0 * abl2] = xProbe;
eqnAMatrix[probePointCounter + 1 * abl2] = yProbe;
eqnAMatrix[probePointCounter + 2 * abl2] = 1;
indexIntoAB[xCount][yCount] = probePointCounter;
#else
bed_level[xCount][yCount] = measured_z + z_offset;
#endif
probePointCounter++;
idle();
} //xProbe
} //yProbe
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("> probing complete > current_position", current_position);
}
#endif
clean_up_after_endstop_move();
#if ENABLED(DELTA)
if (!dryrun) extrapolate_unprobed_bed_level();
print_bed_level();
#else // !DELTA
// solve lsq problem
double plane_equation_coefficients[3];
qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector);
mean /= abl2;
if (verbose_level) {
SERIAL_PROTOCOLPGM("Eqn coefficients: a: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8);
SERIAL_PROTOCOLPGM(" b: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8);
SERIAL_PROTOCOLPGM(" d: ");
SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8);
SERIAL_EOL;
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM("Mean of sampled points: ");
SERIAL_PROTOCOL_F(mean, 8);
SERIAL_EOL;
}
}
if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients);
// Show the Topography map if enabled
if (do_topography_map) {
SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n");
SERIAL_PROTOCOLPGM("+-----------+\n");
SERIAL_PROTOCOLPGM("|...Back....|\n");
SERIAL_PROTOCOLPGM("|Left..Right|\n");
SERIAL_PROTOCOLPGM("|...Front...|\n");
SERIAL_PROTOCOLPGM("+-----------+\n");
float min_diff = 999;
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
int ind = indexIntoAB[xx][yy];
float diff = eqnBVector[ind] - mean;
float x_tmp = eqnAMatrix[ind + 0 * abl2],
y_tmp = eqnAMatrix[ind + 1 * abl2],
z_tmp = 0;
apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
if (eqnBVector[ind] - z_tmp < min_diff)
min_diff = eqnBVector[ind] - z_tmp;
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment
else
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_EOL;
} // yy
SERIAL_EOL;
if (verbose_level > 3) {
SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n");
for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) {
for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) {
int ind = indexIntoAB[xx][yy];
float x_tmp = eqnAMatrix[ind + 0 * abl2],
y_tmp = eqnAMatrix[ind + 1 * abl2],
z_tmp = 0;
apply_rotation_xyz(plan_bed_level_matrix,x_tmp,y_tmp,z_tmp);
float diff = eqnBVector[ind] - z_tmp - min_diff;
if (diff >= 0.0)
SERIAL_PROTOCOLPGM(" +");
// Include + for column alignment
else
SERIAL_PROTOCOLCHAR(' ');
SERIAL_PROTOCOL_F(diff, 5);
} // xx
SERIAL_EOL;
} // yy
SERIAL_EOL;
}
} //do_topography_map
#endif //!DELTA
#else // !AUTO_BED_LEVELING_GRID
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("> 3-point Leveling");
}
#endif
// Actions for each probe
ProbeAction p1, p2, p3;
if (deploy_probe_for_each_reading)
p1 = p2 = p3 = ProbeDeployAndStow;
else
p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow;
// Probe at 3 arbitrary points
float z_at_pt_1 = probe_pt(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, Z_RAISE_BEFORE_PROBING, p1, verbose_level),
z_at_pt_2 = probe_pt(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level),
z_at_pt_3 = probe_pt(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level);
clean_up_after_endstop_move();
if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3);
#endif // !AUTO_BED_LEVELING_GRID
#if ENABLED(DELTA)
// Allen Key Probe for Delta
#if ENABLED(Z_PROBE_ALLEN_KEY)
stow_z_probe();
#elif Z_RAISE_AFTER_PROBING > 0
raise_z_after_probing();
#endif
#else // !DELTA
if (verbose_level > 0)
plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:");
if (!dryrun) {
// Correct the Z height difference from Z probe position and nozzle tip position.
// The Z height on homing is measured by Z probe, but the Z probe is quite far from the nozzle.
// When the bed is uneven, this height must be corrected.
float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER,
y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER,
z_tmp = current_position[Z_AXIS],
real_z = st_get_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane)
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp);
SERIAL_EOL;
SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z);
SERIAL_EOL;
}
#endif
apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); // Apply the correction sending the Z probe offset
// Get the current Z position and send it to the planner.
//
// >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z (most recent plan_set_position/sync_plan_position)
//
// >> zprobe_zoffset : Z distance from nozzle to Z probe (set by default, M851, EEPROM, or Menu)
//
// >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted after the last probe
//
// >> Should home_offset[Z_AXIS] be included?
//
// Discussion: home_offset[Z_AXIS] was applied in G28 to set the starting Z.
// If Z is not tweaked in G29 -and- the Z probe in G29 is not actually "homing" Z...
// then perhaps it should not be included here. The purpose of home_offset[] is to
// adjust for inaccurate endstops, not for reasonably accurate probes. If it were
// added here, it could be seen as a compensating factor for the Z probe.
//
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp);
SERIAL_EOL;
}
#endif
current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z)
#if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED)
+ Z_RAISE_AFTER_PROBING
#endif
;
// current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home"
sync_plan_position();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
print_xyz("> corrected Z in G29", current_position);
}
#endif
}
// Sled assembly for Cartesian bots
#if ENABLED(Z_PROBE_SLED)
dock_sled(true); // dock the sled
#endif
#endif // !DELTA
#ifdef Z_PROBE_END_SCRIPT
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHO("Z Probe End Script: ");
SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT);
}
#endif
enqueuecommands_P(PSTR(Z_PROBE_END_SCRIPT));
st_synchronize();
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("<<< gcode_G29");
}
#endif
}
#if DISABLED(Z_PROBE_SLED)
/**
* G30: Do a single Z probe at the current XY
*/
inline void gcode_G30() {
#if HAS_SERVO_ENDSTOPS
raise_z_for_servo();
#endif
deploy_z_probe(); // Engage Z Servo endstop if available
st_synchronize();
// TODO: clear the leveling matrix or the planner will be set incorrectly
setup_for_endstop_move();
feedrate = homing_feedrate[Z_AXIS];
run_z_probe();
SERIAL_PROTOCOLPGM("Bed X: ");
SERIAL_PROTOCOL(current_position[X_AXIS] + 0.0001);
SERIAL_PROTOCOLPGM(" Y: ");
SERIAL_PROTOCOL(current_position[Y_AXIS] + 0.0001);
SERIAL_PROTOCOLPGM(" Z: ");
SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001);
SERIAL_EOL;
clean_up_after_endstop_move();
#if HAS_SERVO_ENDSTOPS
raise_z_for_servo();
#endif
stow_z_probe(false); // Retract Z Servo endstop if available
}
#endif //!Z_PROBE_SLED
#endif //AUTO_BED_LEVELING_FEATURE
/**
* G92: Set current position to given X Y Z E
*/
inline void gcode_G92() {
if (!code_seen(axis_codes[E_AXIS]))
st_synchronize();
bool didXYZ = false;
for (int i = 0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
float v = current_position[i] = code_value();
if (i == E_AXIS)
plan_set_e_position(v);
else
didXYZ = true;
}
}
if (didXYZ) {
#if ENABLED(DELTA) || ENABLED(SCARA)
sync_plan_position_delta();
#else
sync_plan_position();
#endif
}
}
#if ENABLED(ULTIPANEL)
/**
* M0: // M0 - Unconditional stop - Wait for user button press on LCD
* M1: // M1 - Conditional stop - Wait for user button press on LCD
*/
inline void gcode_M0_M1() {
char *args = current_command_args;
millis_t codenum = 0;
bool hasP = false, hasS = false;
if (code_seen('P')) {
codenum = code_value_short(); // milliseconds to wait
hasP = codenum > 0;
}
if (code_seen('S')) {
codenum = code_value() * 1000; // seconds to wait
hasS = codenum > 0;
}
if (!hasP && !hasS && *args != '\0')
lcd_setstatus(args, true);
else {
LCD_MESSAGEPGM(MSG_USERWAIT);
#if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0
dontExpireStatus();
#endif
}
lcd_ignore_click();
st_synchronize();
refresh_cmd_timeout();
if (codenum > 0) {
codenum += previous_cmd_ms; // wait until this time for a click
while (millis() < codenum && !lcd_clicked()) idle();
lcd_ignore_click(false);
}
else {
if (!lcd_detected()) return;
while (!lcd_clicked()) idle();
}
if (IS_SD_PRINTING)
LCD_MESSAGEPGM(MSG_RESUMING);
else
LCD_MESSAGEPGM(WELCOME_MSG);
}
#endif // ULTIPANEL
/**
* M17: Enable power on all stepper motors
*/
inline void gcode_M17() {
LCD_MESSAGEPGM(MSG_NO_MOVE);
enable_all_steppers();
}
#if ENABLED(SDSUPPORT)
/**
* M20: List SD card to serial output
*/
inline void gcode_M20() {
SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST);
card.ls();
SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST);
}
/**
* M21: Init SD Card
*/
inline void gcode_M21() {
card.initsd();
}
/**
* M22: Release SD Card
*/
inline void gcode_M22() {
card.release();
}
/**
* M23: Select a file
*/
inline void gcode_M23() {
card.openFile(current_command_args, true);
}
/**
* M24: Start SD Print
*/
inline void gcode_M24() {
card.startFileprint();
print_job_start_ms = millis();
}
/**
* M25: Pause SD Print
*/
inline void gcode_M25() {
card.pauseSDPrint();
}
/**
* M26: Set SD Card file index
*/
inline void gcode_M26() {
if (card.cardOK && code_seen('S'))
card.setIndex(code_value_short());
}
/**
* M27: Get SD Card status
*/
inline void gcode_M27() {
card.getStatus();
}
/**
* M28: Start SD Write
*/
inline void gcode_M28() {
card.openFile(current_command_args, false);
}
/**
* M29: Stop SD Write
* Processed in write to file routine above
*/
inline void gcode_M29() {
// card.saving = false;
}
/**
* M30 <filename>: Delete SD Card file
*/
inline void gcode_M30() {
if (card.cardOK) {
card.closefile();
card.removeFile(current_command_args);
}
}
#endif
/**
* M31: Get the time since the start of SD Print (or last M109)
*/
inline void gcode_M31() {
print_job_stop_ms = millis();
millis_t t = (print_job_stop_ms - print_job_start_ms) / 1000;
int min = t / 60, sec = t % 60;
char time[30];
sprintf_P(time, PSTR("%i min, %i sec"), min, sec);
SERIAL_ECHO_START;
SERIAL_ECHOLN(time);
lcd_setstatus(time);
autotempShutdown();
}
#if ENABLED(SDSUPPORT)
/**
* M32: Select file and start SD Print
*/
inline void gcode_M32() {
if (card.sdprinting)
st_synchronize();
char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start.
if (!namestartpos)
namestartpos = current_command_args; // Default name position, 4 letters after the M
else
namestartpos++; //to skip the '!'
bool call_procedure = code_seen('P') && (seen_pointer < namestartpos);
if (card.cardOK) {
card.openFile(namestartpos, true, !call_procedure);
if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!)
card.setIndex(code_value_short());
card.startFileprint();
if (!call_procedure)
print_job_start_ms = millis(); //procedure calls count as normal print time.
}
}
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
/**
* M33: Get the long full path of a file or folder
*
* Parameters:
* <dospath> Case-insensitive DOS-style path to a file or folder
*
* Example:
* M33 miscel~1/armchair/armcha~1.gco
*
* Output:
* /Miscellaneous/Armchair/Armchair.gcode
*/
inline void gcode_M33() {
card.printLongPath(current_command_args);
}
#endif
/**
* M928: Start SD Write
*/
inline void gcode_M928() {
card.openLogFile(current_command_args);
}
#endif // SDSUPPORT
/**
* M42: Change pin status via GCode
*/
inline void gcode_M42() {
if (code_seen('S')) {
int pin_status = code_value_short(),
pin_number = LED_PIN;
if (code_seen('P') && pin_status >= 0 && pin_status <= 255)
pin_number = code_value_short();
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
if (sensitive_pins[i] == pin_number) {
pin_number = -1;
break;
}
}
#if HAS_FAN
if (pin_number == FAN_PIN) fanSpeed = pin_status;
#endif
if (pin_number > -1) {
pinMode(pin_number, OUTPUT);
digitalWrite(pin_number, pin_status);
analogWrite(pin_number, pin_status);
}
} // code_seen('S')
}
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
// This is redundant since the SanityCheck.h already checks for a valid Z_MIN_PROBE_PIN, but here for clarity.
#if ENABLED(Z_MIN_PROBE_ENDSTOP)
#if !HAS_Z_PROBE
#error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation.
#endif
#elif !HAS_Z_MIN
#error You must define Z_MIN_PIN to enable Z probe repeatability calculation.
#endif
/**
* M48: Z probe repeatability measurement function.
*
* Usage:
* M48 <P#> <X#> <Y#> <V#> <E> <L#>
* P = Number of sampled points (4-50, default 10)
* X = Sample X position
* Y = Sample Y position
* V = Verbose level (0-4, default=1)
* E = Engage Z probe for each reading
* L = Number of legs of movement before probe
*
* This function assumes the bed has been homed. Specifically, that a G28 command
* as been issued prior to invoking the M48 Z probe repeatability measurement function.
* Any information generated by a prior G29 Bed leveling command will be lost and need to be
* regenerated.
*/
inline void gcode_M48() {
double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50];
uint8_t verbose_level = 1, n_samples = 10, n_legs = 0;
if (code_seen('V')) {
verbose_level = code_value_short();
if (verbose_level < 0 || verbose_level > 4 ) {
SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n");
return;
}
}
if (verbose_level > 0)
SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n");
if (code_seen('P')) {
n_samples = code_value_short();
if (n_samples < 4 || n_samples > 50) {
SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n");
return;
}
}
double X_current = st_get_position_mm(X_AXIS),
Y_current = st_get_position_mm(Y_AXIS),
Z_current = st_get_position_mm(Z_AXIS),
E_current = st_get_position_mm(E_AXIS),
X_probe_location = X_current, Y_probe_location = Y_current,
Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING;
bool deploy_probe_for_each_reading = code_seen('E');
if (code_seen('X')) {
X_probe_location = code_value() - X_PROBE_OFFSET_FROM_EXTRUDER;
if (X_probe_location < X_MIN_POS || X_probe_location > X_MAX_POS) {
out_of_range_error(PSTR("X"));
return;
}
}
if (code_seen('Y')) {
Y_probe_location = code_value() - Y_PROBE_OFFSET_FROM_EXTRUDER;
if (Y_probe_location < Y_MIN_POS || Y_probe_location > Y_MAX_POS) {
out_of_range_error(PSTR("Y"));
return;
}
}
if (code_seen('L')) {
n_legs = code_value_short();
if (n_legs == 1) n_legs = 2;
if (n_legs < 0 || n_legs > 15) {
SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n");
return;
}
}
//
// Do all the preliminary setup work. First raise the Z probe.
//
st_synchronize();
plan_bed_level_matrix.set_to_identity();
plan_buffer_line(X_current, Y_current, Z_start_location, E_current, homing_feedrate[Z_AXIS] / 60, active_extruder);
st_synchronize();
//
// Now get everything to the specified probe point So we can safely do a probe to
// get us close to the bed. If the Z-Axis is far from the bed, we don't want to
// use that as a starting point for each probe.
//
if (verbose_level > 2)
SERIAL_PROTOCOLPGM("Positioning the probe...\n");
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
E_current,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[X_AXIS] = X_current = st_get_position_mm(X_AXIS);
current_position[Y_AXIS] = Y_current = st_get_position_mm(Y_AXIS);
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
current_position[E_AXIS] = E_current = st_get_position_mm(E_AXIS);
//
// OK, do the initial probe to get us close to the bed.
// Then retrace the right amount and use that in subsequent probes
//
deploy_z_probe();
setup_for_endstop_move();
run_z_probe();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
Z_start_location = st_get_position_mm(Z_AXIS) + Z_RAISE_BEFORE_PROBING;
plan_buffer_line( X_probe_location, Y_probe_location, Z_start_location,
E_current,
homing_feedrate[X_AXIS]/60,
active_extruder);
st_synchronize();
current_position[Z_AXIS] = Z_current = st_get_position_mm(Z_AXIS);
if (deploy_probe_for_each_reading) stow_z_probe();
for (uint8_t n=0; n < n_samples; n++) {
// Make sure we are at the probe location
do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
if (n_legs) {
millis_t ms = millis();
double radius = ms % (X_MAX_LENGTH / 4), // limit how far out to go
theta = RADIANS(ms % 360L);
float dir = (ms & 0x0001) ? 1 : -1; // clockwise or counter clockwise
//SERIAL_ECHOPAIR("starting radius: ",radius);
//SERIAL_ECHOPAIR(" theta: ",theta);
//SERIAL_ECHOPAIR(" direction: ",dir);
//SERIAL_EOL;
for (uint8_t l = 0; l < n_legs - 1; l++) {
ms = millis();
theta += RADIANS(dir * (ms % 20L));
radius += (ms % 10L) - 5L;
if (radius < 0.0) radius = -radius;
X_current = X_probe_location + cos(theta) * radius;
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
Y_current = Y_probe_location + sin(theta) * radius;
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
if (verbose_level > 3) {
SERIAL_ECHOPAIR("x: ", X_current);
SERIAL_ECHOPAIR("y: ", Y_current);
SERIAL_EOL;
}
do_blocking_move_to(X_current, Y_current, Z_current); // this also updates current_position
} // n_legs loop
// Go back to the probe location
do_blocking_move_to(X_probe_location, Y_probe_location, Z_start_location); // this also updates current_position
} // n_legs
if (deploy_probe_for_each_reading) {
deploy_z_probe();
delay(1000);
}
setup_for_endstop_move();
run_z_probe();
sample_set[n] = current_position[Z_AXIS];
//
// Get the current mean for the data points we have so far
//
sum = 0.0;
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
mean = sum / (n + 1);
//
// Now, use that mean to calculate the standard deviation for the
// data points we have so far
//
sum = 0.0;
for (uint8_t j = 0; j <= n; j++) {
float ss = sample_set[j] - mean;
sum += ss * ss;
}
sigma = sqrt(sum / (n + 1));
if (verbose_level > 1) {
SERIAL_PROTOCOL(n+1);
SERIAL_PROTOCOLPGM(" of ");
SERIAL_PROTOCOL((int)n_samples);
SERIAL_PROTOCOLPGM(" z: ");
SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6);
if (verbose_level > 2) {
SERIAL_PROTOCOLPGM(" mean: ");
SERIAL_PROTOCOL_F(mean,6);
SERIAL_PROTOCOLPGM(" sigma: ");
SERIAL_PROTOCOL_F(sigma,6);
}
}
if (verbose_level > 0) SERIAL_EOL;
plan_buffer_line(X_probe_location, Y_probe_location, Z_start_location, current_position[E_AXIS], homing_feedrate[Z_AXIS]/60, active_extruder);
st_synchronize();
// Stow between
if (deploy_probe_for_each_reading) {
stow_z_probe();
delay(1000);
}
}
// Stow after
if (!deploy_probe_for_each_reading) {
stow_z_probe();
delay(1000);
}
clean_up_after_endstop_move();
if (verbose_level > 0) {
SERIAL_PROTOCOLPGM("Mean: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_EOL;
}
SERIAL_PROTOCOLPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_EOL; SERIAL_EOL;
}
#endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
/**
* M104: Set hot end temperature
*/
inline void gcode_M104() {
if (setTargetedHotend(104)) return;
if (marlin_debug_flags & DEBUG_DRYRUN) return;
if (code_seen('S')) {
float temp = code_value();
setTargetHotend(temp, target_extruder);
#if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
#endif
}
}
/**
* M105: Read hot end and bed temperature
*/
inline void gcode_M105() {
if (setTargetedHotend(105)) return;
#if HAS_TEMP_0 || HAS_TEMP_BED || ENABLED(HEATER_0_USES_MAX6675)
SERIAL_PROTOCOLPGM(MSG_OK);
#if HAS_TEMP_0 || ENABLED(HEATER_0_USES_MAX6675)
SERIAL_PROTOCOLPGM(" T:");
SERIAL_PROTOCOL_F(degHotend(target_extruder), 1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1);
#endif
#if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetBed(), 1);
#endif
for (int8_t e = 0; e < EXTRUDERS; ++e) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(e);
SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOL_F(degHotend(e), 1);
SERIAL_PROTOCOLPGM(" /");
SERIAL_PROTOCOL_F(degTargetHotend(e), 1);
}
#else // !HAS_TEMP_0 && !HAS_TEMP_BED
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS);
#endif
SERIAL_PROTOCOLPGM(" @:");
#ifdef EXTRUDER_WATTS
SERIAL_PROTOCOL((EXTRUDER_WATTS * getHeaterPower(target_extruder))/127);
SERIAL_PROTOCOLCHAR('W');
#else
SERIAL_PROTOCOL(getHeaterPower(target_extruder));
#endif
SERIAL_PROTOCOLPGM(" B@:");
#ifdef BED_WATTS
SERIAL_PROTOCOL((BED_WATTS * getHeaterPower(-1))/127);
SERIAL_PROTOCOLCHAR('W');
#else
SERIAL_PROTOCOL(getHeaterPower(-1));
#endif
#if ENABLED(SHOW_TEMP_ADC_VALUES)
#if HAS_TEMP_BED
SERIAL_PROTOCOLPGM(" ADC B:");
SERIAL_PROTOCOL_F(degBed(),1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawBedTemp()/OVERSAMPLENR,0);
#endif
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) {
SERIAL_PROTOCOLPGM(" T");
SERIAL_PROTOCOL(cur_extruder);
SERIAL_PROTOCOLCHAR(':');
SERIAL_PROTOCOL_F(degHotend(cur_extruder),1);
SERIAL_PROTOCOLPGM("C->");
SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder)/OVERSAMPLENR,0);
}
#endif
SERIAL_EOL;
}
#if HAS_FAN
/**
* M106: Set Fan Speed
*/
inline void gcode_M106() { fanSpeed = code_seen('S') ? constrain(code_value_short(), 0, 255) : 255; }
/**
* M107: Fan Off
*/
inline void gcode_M107() { fanSpeed = 0; }
#endif // HAS_FAN
/**
* M109: Wait for extruder(s) to reach temperature
*/
inline void gcode_M109() {
if (setTargetedHotend(109)) return;
if (marlin_debug_flags & DEBUG_DRYRUN) return;
LCD_MESSAGEPGM(MSG_HEATING);
no_wait_for_cooling = code_seen('S');
if (no_wait_for_cooling || code_seen('R')) {
float temp = code_value();
setTargetHotend(temp, target_extruder);
#if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0)
setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset);
#endif
}
#if ENABLED(AUTOTEMP)
autotemp_enabled = code_seen('F');
if (autotemp_enabled) autotemp_factor = code_value();
if (code_seen('S')) autotemp_min = code_value();
if (code_seen('B')) autotemp_max = code_value();
#endif
millis_t temp_ms = millis();
/* See if we are heating up or cooling down */
target_direction = isHeatingHotend(target_extruder); // true if heating, false if cooling
cancel_heatup = false;
#ifdef TEMP_RESIDENCY_TIME
long residency_start_ms = -1;
/* continue to loop until we have reached the target temp
_and_ until TEMP_RESIDENCY_TIME hasn't passed since we reached it */
while((!cancel_heatup)&&((residency_start_ms == -1) ||
(residency_start_ms >= 0 && (((unsigned int) (millis() - residency_start_ms)) < (TEMP_RESIDENCY_TIME * 1000UL)))) )
#else
while ( target_direction ? (isHeatingHotend(target_extruder)) : (isCoolingHotend(target_extruder)&&(no_wait_for_cooling==false)) )
#endif //TEMP_RESIDENCY_TIME
{ // while loop
if (millis() > temp_ms + 1000UL) { //Print temp & remaining time every 1s while waiting
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL_F(degHotend(target_extruder),1);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)target_extruder);
#ifdef TEMP_RESIDENCY_TIME
SERIAL_PROTOCOLPGM(" W:");
if (residency_start_ms > -1) {
temp_ms = ((TEMP_RESIDENCY_TIME * 1000UL) - (millis() - residency_start_ms)) / 1000UL;
SERIAL_PROTOCOLLN(temp_ms);
}
else {
SERIAL_PROTOCOLLNPGM("?");
}
#else
SERIAL_EOL;
#endif
temp_ms = millis();
}
idle();
#ifdef TEMP_RESIDENCY_TIME
// start/restart the TEMP_RESIDENCY_TIME timer whenever we reach target temp for the first time
// or when current temp falls outside the hysteresis after target temp was reached
if ((residency_start_ms == -1 && target_direction && (degHotend(target_extruder) >= (degTargetHotend(target_extruder)-TEMP_WINDOW))) ||
(residency_start_ms == -1 && !target_direction && (degHotend(target_extruder) <= (degTargetHotend(target_extruder)+TEMP_WINDOW))) ||
(residency_start_ms > -1 && labs(degHotend(target_extruder) - degTargetHotend(target_extruder)) > TEMP_HYSTERESIS) )
{
residency_start_ms = millis();
}
#endif //TEMP_RESIDENCY_TIME
}
LCD_MESSAGEPGM(MSG_HEATING_COMPLETE);
refresh_cmd_timeout();
print_job_start_ms = previous_cmd_ms;
}
#if HAS_TEMP_BED
/**
* M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating
* Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling
*/
inline void gcode_M190() {
if (marlin_debug_flags & DEBUG_DRYRUN) return;
LCD_MESSAGEPGM(MSG_BED_HEATING);
no_wait_for_cooling = code_seen('S');
if (no_wait_for_cooling || code_seen('R'))
setTargetBed(code_value());
millis_t temp_ms = millis();
cancel_heatup = false;
target_direction = isHeatingBed(); // true if heating, false if cooling
while ((target_direction && !cancel_heatup) ? isHeatingBed() : isCoolingBed() && !no_wait_for_cooling) {
millis_t ms = millis();
if (ms > temp_ms + 1000UL) { //Print Temp Reading every 1 second while heating up.
temp_ms = ms;
float tt = degHotend(active_extruder);
SERIAL_PROTOCOLPGM("T:");
SERIAL_PROTOCOL(tt);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL((int)active_extruder);
SERIAL_PROTOCOLPGM(" B:");
SERIAL_PROTOCOL_F(degBed(), 1);
SERIAL_EOL;
}
idle();
}
LCD_MESSAGEPGM(MSG_BED_DONE);
refresh_cmd_timeout();
}
#endif // HAS_TEMP_BED
/**
* M111: Set the debug level
*/
inline void gcode_M111() {
marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_INFO|DEBUG_COMMUNICATION;
if (marlin_debug_flags & DEBUG_ECHO) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_DEBUG_ECHO);
}
// FOR MOMENT NOT ACTIVE
//if (marlin_debug_flags & DEBUG_INFO) SERIAL_ECHOLNPGM(MSG_DEBUG_INFO);
//if (marlin_debug_flags & DEBUG_ERRORS) SERIAL_ECHOLNPGM(MSG_DEBUG_ERRORS);
if (marlin_debug_flags & DEBUG_DRYRUN) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_DEBUG_DRYRUN);
disable_all_heaters();
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_DEBUG_LEVELING);
}
#endif
}
/**
* M112: Emergency Stop
*/
inline void gcode_M112() { kill(PSTR(MSG_KILLED)); }
#if ENABLED(BARICUDA)
#if HAS_HEATER_1
/**
* M126: Heater 1 valve open
*/
inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
/**
* M127: Heater 1 valve close
*/
inline void gcode_M127() { ValvePressure = 0; }
#endif
#if HAS_HEATER_2
/**
* M128: Heater 2 valve open
*/
inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; }
/**
* M129: Heater 2 valve close
*/
inline void gcode_M129() { EtoPPressure = 0; }
#endif
#endif //BARICUDA
/**
* M140: Set bed temperature
*/
inline void gcode_M140() {
if (marlin_debug_flags & DEBUG_DRYRUN) return;
if (code_seen('S')) setTargetBed(code_value());
}
#if ENABLED(ULTIPANEL)
/**
* M145: Set the heatup state for a material in the LCD menu
* S<material> (0=PLA, 1=ABS)
* H<hotend temp>
* B<bed temp>
* F<fan speed>
*/
inline void gcode_M145() {
uint8_t material = code_seen('S') ? code_value_short() : 0;
if (material < 0 || material > 1) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX);
}
else {
int v;
switch (material) {
case 0:
if (code_seen('H')) {
v = code_value_short();
plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
}
if (code_seen('F')) {
v = code_value_short();
plaPreheatFanSpeed = constrain(v, 0, 255);
}
#if TEMP_SENSOR_BED != 0
if (code_seen('B')) {
v = code_value_short();
plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
}
#endif
break;
case 1:
if (code_seen('H')) {
v = code_value_short();
absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15);
}
if (code_seen('F')) {
v = code_value_short();
absPreheatFanSpeed = constrain(v, 0, 255);
}
#if TEMP_SENSOR_BED != 0
if (code_seen('B')) {
v = code_value_short();
absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15);
}
#endif
break;
}
}
}
#endif
#if HAS_POWER_SWITCH
/**
* M80: Turn on Power Supply
*/
inline void gcode_M80() {
OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND
// If you have a switch on suicide pin, this is useful
// if you want to start another print with suicide feature after
// a print without suicide...
#if HAS_SUICIDE
OUT_WRITE(SUICIDE_PIN, HIGH);
#endif
#if ENABLED(ULTIPANEL)
powersupply = true;
LCD_MESSAGEPGM(WELCOME_MSG);
lcd_update();
#endif
}
#endif // HAS_POWER_SWITCH
/**
* M81: Turn off Power, including Power Supply, if there is one.
*
* This code should ALWAYS be available for EMERGENCY SHUTDOWN!
*/
inline void gcode_M81() {
disable_all_heaters();
finishAndDisableSteppers();
fanSpeed = 0;
delay(1000); // Wait 1 second before switching off
#if HAS_SUICIDE
st_synchronize();
suicide();
#elif HAS_POWER_SWITCH
OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP);
#endif
#if ENABLED(ULTIPANEL)
#if HAS_POWER_SWITCH
powersupply = false;
#endif
LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF ".");
lcd_update();
#endif
}
/**
* M82: Set E codes absolute (default)
*/
inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; }
/**
* M83: Set E codes relative while in Absolute Coordinates (G90) mode
*/
inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; }
/**
* M18, M84: Disable all stepper motors
*/
inline void gcode_M18_M84() {
if (code_seen('S')) {
stepper_inactive_time = code_value() * 1000;
}
else {
bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS]))|| (code_seen(axis_codes[E_AXIS])));
if (all_axis) {
finishAndDisableSteppers();
}
else {
st_synchronize();
if (code_seen('X')) disable_x();
if (code_seen('Y')) disable_y();
if (code_seen('Z')) disable_z();
#if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS
if (code_seen('E')) {
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
#endif
}
}
}
/**
* M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default)
*/
inline void gcode_M85() {
if (code_seen('S')) max_inactive_time = code_value() * 1000;
}
/**
* M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E.
* (Follows the same syntax as G92)
*/
inline void gcode_M92() {
for(int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
if (i == E_AXIS) {
float value = code_value();
if (value < 20.0) {
float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab.
max_e_jerk *= factor;
max_feedrate[i] *= factor;
axis_steps_per_sqr_second[i] *= factor;
}
axis_steps_per_unit[i] = value;
}
else {
axis_steps_per_unit[i] = code_value();
}
}
}
}
/**
* M114: Output current position to serial port
*/
inline void gcode_M114() {
SERIAL_PROTOCOLPGM("X:");
SERIAL_PROTOCOL(current_position[X_AXIS]);
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(current_position[Y_AXIS]);
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(current_position[Z_AXIS]);
SERIAL_PROTOCOLPGM(" E:");
SERIAL_PROTOCOL(current_position[E_AXIS]);
SERIAL_PROTOCOLPGM(MSG_COUNT_X);
SERIAL_PROTOCOL(st_get_position_mm(X_AXIS));
SERIAL_PROTOCOLPGM(" Y:");
SERIAL_PROTOCOL(st_get_position_mm(Y_AXIS));
SERIAL_PROTOCOLPGM(" Z:");
SERIAL_PROTOCOL(st_get_position_mm(Z_AXIS));
SERIAL_EOL;
#if ENABLED(SCARA)
SERIAL_PROTOCOLPGM("SCARA Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL(delta[Y_AXIS]);
SERIAL_EOL;
SERIAL_PROTOCOLPGM("SCARA Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]+home_offset[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta (90):");
SERIAL_PROTOCOL(delta[Y_AXIS]-delta[X_AXIS]-90+home_offset[Y_AXIS]);
SERIAL_EOL;
SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:");
SERIAL_PROTOCOL(delta[X_AXIS]/90*axis_steps_per_unit[X_AXIS]);
SERIAL_PROTOCOLPGM(" Psi+Theta:");
SERIAL_PROTOCOL((delta[Y_AXIS]-delta[X_AXIS])/90*axis_steps_per_unit[Y_AXIS]);
SERIAL_EOL; SERIAL_EOL;
#endif
}
/**
* M115: Capabilities string
*/
inline void gcode_M115() {
SERIAL_PROTOCOLPGM(MSG_M115_REPORT);
}
/**
* M117: Set LCD Status Message
*/
inline void gcode_M117() {
lcd_setstatus(current_command_args);
}
/**
* M119: Output endstop states to serial output
*/
inline void gcode_M119() {
SERIAL_PROTOCOLLN(MSG_M119_REPORT);
#if HAS_X_MIN
SERIAL_PROTOCOLPGM(MSG_X_MIN);
SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_X_MAX
SERIAL_PROTOCOLPGM(MSG_X_MAX);
SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Y_MIN
SERIAL_PROTOCOLPGM(MSG_Y_MIN);
SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Y_MAX
SERIAL_PROTOCOLPGM(MSG_Y_MAX);
SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z_MIN
SERIAL_PROTOCOLPGM(MSG_Z_MIN);
SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z_MAX
SERIAL_PROTOCOLPGM(MSG_Z_MAX);
SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z2_MAX
SERIAL_PROTOCOLPGM(MSG_Z2_MAX);
SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
#if HAS_Z_PROBE
SERIAL_PROTOCOLPGM(MSG_Z_PROBE);
SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING)?MSG_ENDSTOP_HIT:MSG_ENDSTOP_OPEN));
#endif
}
/**
* M120: Enable endstops
*/
inline void gcode_M120() { enable_endstops(true); }
/**
* M121: Disable endstops
*/
inline void gcode_M121() { enable_endstops(false); }
#if ENABLED(BLINKM)
/**
* M150: Set Status LED Color - Use R-U-B for R-G-B
*/
inline void gcode_M150() {
SendColors(
code_seen('R') ? (byte)code_value_short() : 0,
code_seen('U') ? (byte)code_value_short() : 0,
code_seen('B') ? (byte)code_value_short() : 0
);
}
#endif // BLINKM
/**
* M200: Set filament diameter and set E axis units to cubic millimeters
*
* T<extruder> - Optional extruder number. Current extruder if omitted.
* D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters.
*/
inline void gcode_M200() {
if (setTargetedHotend(200)) return;
if (code_seen('D')) {
float diameter = code_value();
// setting any extruder filament size disables volumetric on the assumption that
// slicers either generate in extruder values as cubic mm or as as filament feeds
// for all extruders
volumetric_enabled = (diameter != 0.0);
if (volumetric_enabled) {
filament_size[target_extruder] = diameter;
// make sure all extruders have some sane value for the filament size
for (int i=0; i<EXTRUDERS; i++)
if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA;
}
}
else {
//reserved for setting filament diameter via UFID or filament measuring device
return;
}
calculate_volumetric_multipliers();
}
/**
* M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000)
*/
inline void gcode_M201() {
for (int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
max_acceleration_units_per_sq_second[i] = code_value();
}
}
// steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner)
reset_acceleration_rates();
}
#if 0 // Not used for Sprinter/grbl gen6
inline void gcode_M202() {
for(int8_t i=0; i < NUM_AXIS; i++) {
if(code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i];
}
}
#endif
/**
* M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec
*/
inline void gcode_M203() {
for (int8_t i=0; i < NUM_AXIS; i++) {
if (code_seen(axis_codes[i])) {
max_feedrate[i] = code_value();
}
}
}
/**
* M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000)
*
* P = Printing moves
* R = Retract only (no X, Y, Z) moves
* T = Travel (non printing) moves
*
* Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate
*/
inline void gcode_M204() {
if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments.
travel_acceleration = acceleration = code_value();
SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration);
SERIAL_EOL;
}
if (code_seen('P')) {
acceleration = code_value();
SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration );
SERIAL_EOL;
}
if (code_seen('R')) {
retract_acceleration = code_value();
SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration );
SERIAL_EOL;
}
if (code_seen('T')) {
travel_acceleration = code_value();
SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration );
SERIAL_EOL;
}
}
/**
* M205: Set Advanced Settings
*
* S = Min Feed Rate (mm/s)
* T = Min Travel Feed Rate (mm/s)
* B = Min Segment Time (µs)
* X = Max XY Jerk (mm/s/s)
* Z = Max Z Jerk (mm/s/s)
* E = Max E Jerk (mm/s/s)
*/
inline void gcode_M205() {
if (code_seen('S')) minimumfeedrate = code_value();
if (code_seen('T')) mintravelfeedrate = code_value();
if (code_seen('B')) minsegmenttime = code_value();
if (code_seen('X')) max_xy_jerk = code_value();
if (code_seen('Z')) max_z_jerk = code_value();
if (code_seen('E')) max_e_jerk = code_value();
}
/**
* M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y
*/
inline void gcode_M206() {
for (int8_t i=X_AXIS; i <= Z_AXIS; i++) {
if (code_seen(axis_codes[i])) {
home_offset[i] = code_value();
}
}
#if ENABLED(SCARA)
if (code_seen('T')) home_offset[X_AXIS] = code_value(); // Theta
if (code_seen('P')) home_offset[Y_AXIS] = code_value(); // Psi
#endif
}
#if ENABLED(DELTA)
/**
* M665: Set delta configurations
*
* L = diagonal rod
* R = delta radius
* S = segments per second
* A = Alpha (Tower 1) diagonal rod trim
* B = Beta (Tower 2) diagonal rod trim
* C = Gamma (Tower 3) diagonal rod trim
*/
inline void gcode_M665() {
if (code_seen('L')) delta_diagonal_rod = code_value();
if (code_seen('R')) delta_radius = code_value();
if (code_seen('S')) delta_segments_per_second = code_value();
if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value();
if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value();
if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value();
recalc_delta_settings(delta_radius, delta_diagonal_rod);
}
/**
* M666: Set delta endstop adjustment
*/
inline void gcode_M666() {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM(">>> gcode_M666");
}
#endif
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
if (code_seen(axis_codes[i])) {
endstop_adj[i] = code_value();
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPGM("endstop_adj[");
SERIAL_ECHO(axis_codes[i]);
SERIAL_ECHOPAIR("] = ", endstop_adj[i]);
SERIAL_EOL;
}
#endif
}
}
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOLNPGM("<<< gcode_M666");
}
#endif
}
#elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS)
/**
* M666: For Z Dual Endstop setup, set z axis offset to the z2 axis.
*/
inline void gcode_M666() {
if (code_seen('Z')) z_endstop_adj = code_value();
SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj);
SERIAL_EOL;
}
#endif // !DELTA && Z_DUAL_ENDSTOPS
#if ENABLED(FWRETRACT)
/**
* M207: Set firmware retraction values
*
* S[+mm] retract_length
* W[+mm] retract_length_swap (multi-extruder)
* F[mm/min] retract_feedrate
* Z[mm] retract_zlift
*/
inline void gcode_M207() {
if (code_seen('S')) retract_length = code_value();
if (code_seen('F')) retract_feedrate = code_value() / 60;
if (code_seen('Z')) retract_zlift = code_value();
#if EXTRUDERS > 1
if (code_seen('W')) retract_length_swap = code_value();
#endif
}
/**
* M208: Set firmware un-retraction values
*
* S[+mm] retract_recover_length (in addition to M207 S*)
* W[+mm] retract_recover_length_swap (multi-extruder)
* F[mm/min] retract_recover_feedrate
*/
inline void gcode_M208() {
if (code_seen('S')) retract_recover_length = code_value();
if (code_seen('F')) retract_recover_feedrate = code_value() / 60;
#if EXTRUDERS > 1
if (code_seen('W')) retract_recover_length_swap = code_value();
#endif
}
/**
* M209: Enable automatic retract (M209 S1)
* detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
*/
inline void gcode_M209() {
if (code_seen('S')) {
int t = code_value_short();
switch(t) {
case 0:
autoretract_enabled = false;
break;
case 1:
autoretract_enabled = true;
break;
default:
unknown_command_error();
return;
}
for (int i=0; i<EXTRUDERS; i++) retracted[i] = false;
}
}
#endif // FWRETRACT
#if EXTRUDERS > 1
/**
* M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
*/
inline void gcode_M218() {
if (setTargetedHotend(218)) return;
if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value();
if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value();
#if ENABLED(DUAL_X_CARRIAGE)
if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value();
#endif
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
for (int e = 0; e < EXTRUDERS; e++) {
SERIAL_CHAR(' ');
SERIAL_ECHO(extruder_offset[X_AXIS][e]);
SERIAL_CHAR(',');
SERIAL_ECHO(extruder_offset[Y_AXIS][e]);
#if ENABLED(DUAL_X_CARRIAGE)
SERIAL_CHAR(',');
SERIAL_ECHO(extruder_offset[Z_AXIS][e]);
#endif
}
SERIAL_EOL;
}
#endif // EXTRUDERS > 1
/**
* M220: Set speed percentage factor, aka "Feed Rate" (M220 S95)
*/
inline void gcode_M220() {
if (code_seen('S')) feedrate_multiplier = code_value();
}
/**
* M221: Set extrusion percentage (M221 T0 S95)
*/
inline void gcode_M221() {
if (code_seen('S')) {
int sval = code_value();
if (code_seen('T')) {
if (setTargetedHotend(221)) return;
extruder_multiplier[target_extruder] = sval;
}
else {
extruder_multiplier[active_extruder] = sval;
}
}
}
/**
* M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>)
*/
inline void gcode_M226() {
if (code_seen('P')) {
int pin_number = code_value();
int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted
if (pin_state >= -1 && pin_state <= 1) {
for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) {
if (sensitive_pins[i] == pin_number) {
pin_number = -1;
break;
}
}
if (pin_number > -1) {
int target = LOW;
st_synchronize();
pinMode(pin_number, INPUT);
switch(pin_state){
case 1:
target = HIGH;
break;
case 0:
target = LOW;
break;
case -1:
target = !digitalRead(pin_number);
break;
}
while (digitalRead(pin_number) != target) idle();
} // pin_number > -1
} // pin_state -1 0 1
} // code_seen('P')
}
#if HAS_SERVOS
/**
* M280: Get or set servo position. P<index> S<angle>
*/
inline void gcode_M280() {
int servo_index = code_seen('P') ? code_value_short() : -1;
int servo_position = 0;
if (code_seen('S')) {
servo_position = code_value_short();
if (servo_index >= 0 && servo_index < NUM_SERVOS)
servo[servo_index].move(servo_position);
else {
SERIAL_ECHO_START;
SERIAL_ECHO("Servo ");
SERIAL_ECHO(servo_index);
SERIAL_ECHOLN(" out of range");
}
}
else if (servo_index >= 0) {
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" Servo ");
SERIAL_PROTOCOL(servo_index);
SERIAL_PROTOCOL(": ");
SERIAL_PROTOCOL(servo[servo_index].read());
SERIAL_EOL;
}
}
#endif // HAS_SERVOS
#if HAS_BUZZER
/**
* M300: Play beep sound S<frequency Hz> P<duration ms>
*/
inline void gcode_M300() {
uint16_t beepS = code_seen('S') ? code_value_short() : 110;
uint32_t beepP = code_seen('P') ? code_value_long() : 1000;
if (beepP > 5000) beepP = 5000; // limit to 5 seconds
buzz(beepP, beepS);
}
#endif // HAS_BUZZER
#if ENABLED(PIDTEMP)
/**
* M301: Set PID parameters P I D (and optionally C, L)
*
* P[float] Kp term
* I[float] Ki term (unscaled)
* D[float] Kd term (unscaled)
*
* With PID_ADD_EXTRUSION_RATE:
*
* C[float] Kc term
* L[float] LPQ length
*/
inline void gcode_M301() {
// multi-extruder PID patch: M301 updates or prints a single extruder's PID values
// default behaviour (omitting E parameter) is to update for extruder 0 only
int e = code_seen('E') ? code_value() : 0; // extruder being updated
if (e < EXTRUDERS) { // catch bad input value
if (code_seen('P')) PID_PARAM(Kp, e) = code_value();
if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value());
if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value());
#if ENABLED(PID_ADD_EXTRUSION_RATE)
if (code_seen('C')) PID_PARAM(Kc, e) = code_value();
if (code_seen('L')) lpq_len = code_value();
NOMORE(lpq_len, LPQ_MAX_LEN);
#endif
updatePID();
SERIAL_PROTOCOL(MSG_OK);
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
SERIAL_PROTOCOL(" e:"); // specify extruder in serial output
SERIAL_PROTOCOL(e);
#endif // PID_PARAMS_PER_EXTRUDER
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(PID_PARAM(Kp, e));
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(PID_PARAM(Ki, e)));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(PID_PARAM(Kd, e)));
#if ENABLED(PID_ADD_EXTRUSION_RATE)
SERIAL_PROTOCOL(" c:");
//Kc does not have scaling applied above, or in resetting defaults
SERIAL_PROTOCOL(PID_PARAM(Kc, e));
#endif
SERIAL_EOL;
}
else {
SERIAL_ECHO_START;
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
}
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
inline void gcode_M304() {
if (code_seen('P')) bedKp = code_value();
if (code_seen('I')) bedKi = scalePID_i(code_value());
if (code_seen('D')) bedKd = scalePID_d(code_value());
updatePID();
SERIAL_PROTOCOL(MSG_OK);
SERIAL_PROTOCOL(" p:");
SERIAL_PROTOCOL(bedKp);
SERIAL_PROTOCOL(" i:");
SERIAL_PROTOCOL(unscalePID_i(bedKi));
SERIAL_PROTOCOL(" d:");
SERIAL_PROTOCOL(unscalePID_d(bedKd));
SERIAL_EOL;
}
#endif // PIDTEMPBED
#if defined(CHDK) || HAS_PHOTOGRAPH
/**
* M240: Trigger a camera by emulating a Canon RC-1
* See http://www.doc-diy.net/photo/rc-1_hacked/
*/
inline void gcode_M240() {
#ifdef CHDK
OUT_WRITE(CHDK, HIGH);
chdkHigh = millis();
chdkActive = true;
#elif HAS_PHOTOGRAPH
const uint8_t NUM_PULSES = 16;
const float PULSE_LENGTH = 0.01524;
for (int i = 0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
delay(7.33);
for (int i = 0; i < NUM_PULSES; i++) {
WRITE(PHOTOGRAPH_PIN, HIGH);
_delay_ms(PULSE_LENGTH);
WRITE(PHOTOGRAPH_PIN, LOW);
_delay_ms(PULSE_LENGTH);
}
#endif // !CHDK && HAS_PHOTOGRAPH
}
#endif // CHDK || PHOTOGRAPH_PIN
#if ENABLED(HAS_LCD_CONTRAST)
/**
* M250: Read and optionally set the LCD contrast
*/
inline void gcode_M250() {
if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F);
SERIAL_PROTOCOLPGM("lcd contrast value: ");
SERIAL_PROTOCOL(lcd_contrast);
SERIAL_EOL;
}
#endif // HAS_LCD_CONTRAST
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
void set_extrude_min_temp(float temp) { extrude_min_temp = temp; }
/**
* M302: Allow cold extrudes, or set the minimum extrude S<temperature>.
*/
inline void gcode_M302() {
set_extrude_min_temp(code_seen('S') ? code_value() : 0);
}
#endif // PREVENT_DANGEROUS_EXTRUDE
/**
* M303: PID relay autotune
* S<temperature> sets the target temperature. (default target temperature = 150C)
* E<extruder> (-1 for the bed)
* C<cycles>
*/
inline void gcode_M303() {
int e = code_seen('E') ? code_value_short() : 0;
int c = code_seen('C') ? code_value_short() : 5;
float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0);
PID_autotune(temp, e, c);
}
#if ENABLED(SCARA)
bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) {
//SoftEndsEnabled = false; // Ignore soft endstops during calibration
//SERIAL_ECHOLN(" Soft endstops disabled ");
if (IsRunning()) {
//gcode_get_destination(); // For X Y Z E F
delta[X_AXIS] = delta_x;
delta[Y_AXIS] = delta_y;
calculate_SCARA_forward_Transform(delta);
destination[X_AXIS] = delta[X_AXIS]/axis_scaling[X_AXIS];
destination[Y_AXIS] = delta[Y_AXIS]/axis_scaling[Y_AXIS];
prepare_move();
//ok_to_send();
return true;
}
return false;
}
/**
* M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration)
*/
inline bool gcode_M360() {
SERIAL_ECHOLN(" Cal: Theta 0 ");
return SCARA_move_to_cal(0, 120);
}
/**
* M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree)
*/
inline bool gcode_M361() {
SERIAL_ECHOLN(" Cal: Theta 90 ");
return SCARA_move_to_cal(90, 130);
}
/**
* M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration)
*/
inline bool gcode_M362() {
SERIAL_ECHOLN(" Cal: Psi 0 ");
return SCARA_move_to_cal(60, 180);
}
/**
* M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree)
*/
inline bool gcode_M363() {
SERIAL_ECHOLN(" Cal: Psi 90 ");
return SCARA_move_to_cal(50, 90);
}
/**
* M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position)
*/
inline bool gcode_M364() {
SERIAL_ECHOLN(" Cal: Theta-Psi 90 ");
return SCARA_move_to_cal(45, 135);
}
/**
* M365: SCARA calibration: Scaling factor, X, Y, Z axis
*/
inline void gcode_M365() {
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
if (code_seen(axis_codes[i])) {
axis_scaling[i] = code_value();
}
}
}
#endif // SCARA
#if ENABLED(EXT_SOLENOID)
void enable_solenoid(uint8_t num) {
switch(num) {
case 0:
OUT_WRITE(SOL0_PIN, HIGH);
break;
#if HAS_SOLENOID_1
case 1:
OUT_WRITE(SOL1_PIN, HIGH);
break;
#endif
#if HAS_SOLENOID_2
case 2:
OUT_WRITE(SOL2_PIN, HIGH);
break;
#endif
#if HAS_SOLENOID_3
case 3:
OUT_WRITE(SOL3_PIN, HIGH);
break;
#endif
default:
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID);
break;
}
}
void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); }
void disable_all_solenoids() {
OUT_WRITE(SOL0_PIN, LOW);
OUT_WRITE(SOL1_PIN, LOW);
OUT_WRITE(SOL2_PIN, LOW);
OUT_WRITE(SOL3_PIN, LOW);
}
/**
* M380: Enable solenoid on the active extruder
*/
inline void gcode_M380() { enable_solenoid_on_active_extruder(); }
/**
* M381: Disable all solenoids
*/
inline void gcode_M381() { disable_all_solenoids(); }
#endif // EXT_SOLENOID
/**
* M400: Finish all moves
*/
inline void gcode_M400() { st_synchronize(); }
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY))
/**
* M401: Engage Z Servo endstop if available
*/
inline void gcode_M401() {
#if HAS_SERVO_ENDSTOPS
raise_z_for_servo();
#endif
deploy_z_probe();
}
/**
* M402: Retract Z Servo endstop if enabled
*/
inline void gcode_M402() {
#if HAS_SERVO_ENDSTOPS
raise_z_for_servo();
#endif
stow_z_probe(false);
}
#endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
#if ENABLED(FILAMENT_SENSOR)
/**
* M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0>
*/
inline void gcode_M404() {
#if HAS_FILWIDTH
if (code_seen('W')) {
filament_width_nominal = code_value();
}
else {
SERIAL_PROTOCOLPGM("Filament dia (nominal mm):");
SERIAL_PROTOCOLLN(filament_width_nominal);
}
#endif
}
/**
* M405: Turn on filament sensor for control
*/
inline void gcode_M405() {
if (code_seen('D')) meas_delay_cm = code_value();
if (meas_delay_cm > MAX_MEASUREMENT_DELAY) meas_delay_cm = MAX_MEASUREMENT_DELAY;
if (delay_index2 == -1) { //initialize the ring buffer if it has not been done since startup
int temp_ratio = widthFil_to_size_ratio();
for (delay_index1 = 0; delay_index1 < MAX_MEASUREMENT_DELAY + 1; ++delay_index1)
measurement_delay[delay_index1] = temp_ratio - 100; //subtract 100 to scale within a signed byte
delay_index1 = delay_index2 = 0;
}
filament_sensor = true;
//SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
//SERIAL_PROTOCOL(filament_width_meas);
//SERIAL_PROTOCOLPGM("Extrusion ratio(%):");
//SERIAL_PROTOCOL(extruder_multiplier[active_extruder]);
}
/**
* M406: Turn off filament sensor for control
*/
inline void gcode_M406() { filament_sensor = false; }
/**
* M407: Get measured filament diameter on serial output
*/
inline void gcode_M407() {
SERIAL_PROTOCOLPGM("Filament dia (measured mm):");
SERIAL_PROTOCOLLN(filament_width_meas);
}
#endif // FILAMENT_SENSOR
/**
* M410: Quickstop - Abort all planned moves
*
* This will stop the carriages mid-move, so most likely they
* will be out of sync with the stepper position after this.
*/
inline void gcode_M410() { quickStop(); }
#if ENABLED(MESH_BED_LEVELING)
/**
* M420: Enable/Disable Mesh Bed Leveling
*/
inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); }
/**
* M421: Set a single Mesh Bed Leveling Z coordinate
*/
inline void gcode_M421() {
float x, y, z;
bool err = false, hasX, hasY, hasZ;
if ((hasX = code_seen('X'))) x = code_value();
if ((hasY = code_seen('Y'))) y = code_value();
if ((hasZ = code_seen('Z'))) z = code_value();
if (!hasX || !hasY || !hasZ) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ);
err = true;
}
if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB);
err = true;
}
if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z);
}
#endif
/**
* M428: Set home_offset based on the distance between the
* current_position and the nearest "reference point."
* If an axis is past center its endstop position
* is the reference-point. Otherwise it uses 0. This allows
* the Z offset to be set near the bed when using a max endstop.
*
* M428 can't be used more than 2cm away from 0 or an endstop.
*
* Use M206 to set these values directly.
*/
inline void gcode_M428() {
bool err = false;
float new_offs[3], new_pos[3];
memcpy(new_pos, current_position, sizeof(new_pos));
memcpy(new_offs, home_offset, sizeof(new_offs));
for (int8_t i = X_AXIS; i <= Z_AXIS; i++) {
if (axis_known_position[i]) {
float base = (new_pos[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0,
diff = new_pos[i] - base;
if (diff > -20 && diff < 20) {
new_offs[i] -= diff;
new_pos[i] = base;
}
else {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR);
LCD_ALERTMESSAGEPGM("Err: Too far!");
#if HAS_BUZZER
enqueuecommands_P(PSTR("M300 S40 P200"));
#endif
err = true;
break;
}
}
}
if (!err) {
memcpy(current_position, new_pos, sizeof(new_pos));
memcpy(home_offset, new_offs, sizeof(new_offs));
sync_plan_position();
LCD_ALERTMESSAGEPGM("Offset applied.");
#if HAS_BUZZER
enqueuecommands_P(PSTR("M300 S659 P200\nM300 S698 P200"));
#endif
}
}
/**
* M500: Store settings in EEPROM
*/
inline void gcode_M500() {
Config_StoreSettings();
}
/**
* M501: Read settings from EEPROM
*/
inline void gcode_M501() {
Config_RetrieveSettings();
}
/**
* M502: Revert to default settings
*/
inline void gcode_M502() {
Config_ResetDefault();
}
/**
* M503: print settings currently in memory
*/
inline void gcode_M503() {
Config_PrintSettings(code_seen('S') && code_value() == 0);
}
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
/**
* M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>)
*/
inline void gcode_M540() {
if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0);
}
#endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
inline void gcode_SET_Z_PROBE_OFFSET() {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET);
SERIAL_CHAR(' ');
if (code_seen('Z')) {
float value = code_value();
if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) {
zprobe_zoffset = value;
SERIAL_ECHOPGM(MSG_OK);
}
else {
SERIAL_ECHOPGM(MSG_Z_MIN);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN);
SERIAL_ECHOPGM(MSG_Z_MAX);
SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX);
}
}
else {
SERIAL_ECHOPAIR(": ", zprobe_zoffset);
}
SERIAL_EOL;
}
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#if ENABLED(FILAMENTCHANGEENABLE)
/**
* M600: Pause for filament change
*
* E[distance] - Retract the filament this far (negative value)
* Z[distance] - Move the Z axis by this distance
* X[position] - Move to this X position, with Y
* Y[position] - Move to this Y position, with X
* L[distance] - Retract distance for removal (manual reload)
*
* Default values are used for omitted arguments.
*
*/
inline void gcode_M600() {
if (degHotend(active_extruder) < extrude_min_temp) {
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600);
return;
}
float lastpos[NUM_AXIS], fr60 = feedrate / 60;
for (int i=0; i<NUM_AXIS; i++)
lastpos[i] = destination[i] = current_position[i];
#if ENABLED(DELTA)
#define RUNPLAN calculate_delta(destination); \
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
#else
#define RUNPLAN line_to_destination();
#endif
//retract by E
if (code_seen('E')) destination[E_AXIS] += code_value();
#ifdef FILAMENTCHANGE_FIRSTRETRACT
else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT;
#endif
RUNPLAN;
//lift Z
if (code_seen('Z')) destination[Z_AXIS] += code_value();
#ifdef FILAMENTCHANGE_ZADD
else destination[Z_AXIS] += FILAMENTCHANGE_ZADD;
#endif
RUNPLAN;
//move xy
if (code_seen('X')) destination[X_AXIS] = code_value();
#ifdef FILAMENTCHANGE_XPOS
else destination[X_AXIS] = FILAMENTCHANGE_XPOS;
#endif
if (code_seen('Y')) destination[Y_AXIS] = code_value();
#ifdef FILAMENTCHANGE_YPOS
else destination[Y_AXIS] = FILAMENTCHANGE_YPOS;
#endif
RUNPLAN;
if (code_seen('L')) destination[E_AXIS] += code_value();
#ifdef FILAMENTCHANGE_FINALRETRACT
else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT;
#endif
RUNPLAN;
//finish moves
st_synchronize();
//disable extruder steppers so filament can be removed
disable_e0();
disable_e1();
disable_e2();
disable_e3();
delay(100);
LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE);
millis_t next_tick = 0;
while (!lcd_clicked()) {
#if DISABLED(AUTO_FILAMENT_CHANGE)
millis_t ms = millis();
if (ms >= next_tick) {
lcd_quick_feedback();
next_tick = ms + 2500; // feedback every 2.5s while waiting
}
manage_heater();
manage_inactivity(true);
lcd_update();
#else
current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH;
destination[E_AXIS] = current_position[E_AXIS];
line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE);
st_synchronize();
#endif
} // while(!lcd_clicked)
lcd_quick_feedback(); // click sound feedback
#if ENABLED(AUTO_FILAMENT_CHANGE)
current_position[E_AXIS] = 0;
st_synchronize();
#endif
//return to normal
if (code_seen('L')) destination[E_AXIS] -= code_value();
#ifdef FILAMENTCHANGE_FINALRETRACT
else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT;
#endif
current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding
plan_set_e_position(current_position[E_AXIS]);
RUNPLAN; //should do nothing
lcd_reset_alert_level();
#if ENABLED(DELTA)
// Move XYZ to starting position, then E
calculate_delta(lastpos);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder);
#else
// Move XY to starting position, then Z, then E
destination[X_AXIS] = lastpos[X_AXIS];
destination[Y_AXIS] = lastpos[Y_AXIS];
line_to_destination();
destination[Z_AXIS] = lastpos[Z_AXIS];
line_to_destination();
destination[E_AXIS] = lastpos[E_AXIS];
line_to_destination();
#endif
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
filrunoutEnqueued = false;
#endif
}
#endif // FILAMENTCHANGEENABLE
#if ENABLED(DUAL_X_CARRIAGE)
/**
* M605: Set dual x-carriage movement mode
*
* M605 S0: Full control mode. The slicer has full control over x-carriage movement
* M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement
* M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn
* millimeters x-offset and an optional differential hotend temperature of
* mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate
* the first with a spacing of 100mm in the x direction and 2 degrees hotter.
*
* Note: the X axis should be homed after changing dual x-carriage mode.
*/
inline void gcode_M605() {
st_synchronize();
if (code_seen('S')) dual_x_carriage_mode = code_value();
switch(dual_x_carriage_mode) {
case DXC_DUPLICATION_MODE:
if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0));
if (code_seen('R')) duplicate_extruder_temp_offset = code_value();
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_HOTEND_OFFSET);
SERIAL_CHAR(' ');
SERIAL_ECHO(extruder_offset[X_AXIS][0]);
SERIAL_CHAR(',');
SERIAL_ECHO(extruder_offset[Y_AXIS][0]);
SERIAL_CHAR(' ');
SERIAL_ECHO(duplicate_extruder_x_offset);
SERIAL_CHAR(',');
SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]);
break;
case DXC_FULL_CONTROL_MODE:
case DXC_AUTO_PARK_MODE:
break;
default:
dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE;
break;
}
active_extruder_parked = false;
extruder_duplication_enabled = false;
delayed_move_time = 0;
}
#endif // DUAL_X_CARRIAGE
/**
* M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S
*/
inline void gcode_M907() {
#if HAS_DIGIPOTSS
for (int i=0;i<NUM_AXIS;i++)
if (code_seen(axis_codes[i])) digipot_current(i, code_value());
if (code_seen('B')) digipot_current(4, code_value());
if (code_seen('S')) for (int i=0; i<=4; i++) digipot_current(i, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_XY_PIN
if (code_seen('X')) digipot_current(0, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_Z_PIN
if (code_seen('Z')) digipot_current(1, code_value());
#endif
#ifdef MOTOR_CURRENT_PWM_E_PIN
if (code_seen('E')) digipot_current(2, code_value());
#endif
#if ENABLED(DIGIPOT_I2C)
// this one uses actual amps in floating point
for (int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value());
// for each additional extruder (named B,C,D,E..., channels 4,5,6,7...)
for (int i=NUM_AXIS;i<DIGIPOT_I2C_NUM_CHANNELS;i++) if(code_seen('B'+i-NUM_AXIS)) digipot_i2c_set_current(i, code_value());
#endif
}
#if HAS_DIGIPOTSS
/**
* M908: Control digital trimpot directly (M908 P<pin> S<current>)
*/
inline void gcode_M908() {
digitalPotWrite(
code_seen('P') ? code_value() : 0,
code_seen('S') ? code_value() : 0
);
}
#endif // HAS_DIGIPOTSS
#if HAS_MICROSTEPS
// M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
inline void gcode_M350() {
if(code_seen('S')) for(int i=0;i<=4;i++) microstep_mode(i,code_value());
for(int i=0;i<NUM_AXIS;i++) if(code_seen(axis_codes[i])) microstep_mode(i,(uint8_t)code_value());
if(code_seen('B')) microstep_mode(4,code_value());
microstep_readings();
}
/**
* M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B
* S# determines MS1 or MS2, X# sets the pin high/low.
*/
inline void gcode_M351() {
if (code_seen('S')) switch(code_value_short()) {
case 1:
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1);
if (code_seen('B')) microstep_ms(4, code_value(), -1);
break;
case 2:
for(int i=0;i<NUM_AXIS;i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value());
if (code_seen('B')) microstep_ms(4, -1, code_value());
break;
}
microstep_readings();
}
#endif // HAS_MICROSTEPS
/**
* M999: Restart after being stopped
*/
inline void gcode_M999() {
Running = true;
lcd_reset_alert_level();
// gcode_LastN = Stopped_gcode_LastN;
FlushSerialRequestResend();
}
/**
* T0-T3: Switch tool, usually switching extruders
*
* F[mm/min] Set the movement feedrate
*/
inline void gcode_T(uint8_t tmp_extruder) {
if (tmp_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_CHAR('T');
SERIAL_PROTOCOL_F(tmp_extruder,DEC);
SERIAL_ECHOLN(MSG_INVALID_EXTRUDER);
}
else {
target_extruder = tmp_extruder;
#if EXTRUDERS > 1
bool make_move = false;
#endif
if (code_seen('F')) {
#if EXTRUDERS > 1
make_move = true;
#endif
float next_feedrate = code_value();
if (next_feedrate > 0.0) feedrate = next_feedrate;
}
#if EXTRUDERS > 1
if (tmp_extruder != active_extruder) {
// Save current position to return to after applying extruder offset
set_destination_to_current();
#if ENABLED(DUAL_X_CARRIAGE)
if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() &&
(delayed_move_time != 0 || current_position[X_AXIS] != x_home_pos(active_extruder))) {
// Park old head: 1) raise 2) move to park position 3) lower
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT,
current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder);
plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS],
current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
st_synchronize();
}
// apply Y & Z extruder offset (x offset is already used in determining home pos)
current_position[Y_AXIS] = current_position[Y_AXIS] -
extruder_offset[Y_AXIS][active_extruder] +
extruder_offset[Y_AXIS][tmp_extruder];
current_position[Z_AXIS] = current_position[Z_AXIS] -
extruder_offset[Z_AXIS][active_extruder] +
extruder_offset[Z_AXIS][tmp_extruder];
active_extruder = tmp_extruder;
// This function resets the max/min values - the current position may be overwritten below.
set_axis_is_at_home(X_AXIS);
if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) {
current_position[X_AXIS] = inactive_extruder_x_pos;
inactive_extruder_x_pos = destination[X_AXIS];
}
else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) {
active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position
if (active_extruder == 0 || active_extruder_parked)
current_position[X_AXIS] = inactive_extruder_x_pos;
else
current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset;
inactive_extruder_x_pos = destination[X_AXIS];
extruder_duplication_enabled = false;
}
else {
// record raised toolhead position for use by unpark
memcpy(raised_parked_position, current_position, sizeof(raised_parked_position));
raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT;
active_extruder_parked = true;
delayed_move_time = 0;
}
#else // !DUAL_X_CARRIAGE
// Offset extruder (only by XY)
for (int i=X_AXIS; i<=Y_AXIS; i++)
current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder];
// Set the new active extruder and position
active_extruder = tmp_extruder;
#endif // !DUAL_X_CARRIAGE
#if ENABLED(DELTA)
sync_plan_position_delta();
#else
sync_plan_position();
#endif
// Move to the old position if 'F' was in the parameters
if (make_move && IsRunning()) prepare_move();
}
#if ENABLED(EXT_SOLENOID)
st_synchronize();
disable_all_solenoids();
enable_solenoid_on_active_extruder();
#endif // EXT_SOLENOID
#endif // EXTRUDERS > 1
SERIAL_ECHO_START;
SERIAL_ECHO(MSG_ACTIVE_EXTRUDER);
SERIAL_PROTOCOLLN((int)active_extruder);
}
}
/**
* Process a single command and dispatch it to its handler
* This is called from the main loop()
*/
void process_next_command() {
current_command = command_queue[cmd_queue_index_r];
if ((marlin_debug_flags & DEBUG_ECHO)) {
SERIAL_ECHO_START;
SERIAL_ECHOLN(current_command);
}
// Sanitize the current command:
// - Skip leading spaces
// - Bypass N[0-9][0-9]*[ ]*
// - Overwrite * with nul to mark the end
while (*current_command == ' ') ++current_command;
if (*current_command == 'N' && ((current_command[1] >= '0' && current_command[1] <= '9') || current_command[1] == '-')) {
current_command += 2; // skip N[-0-9]
while (*current_command >= '0' && *current_command <= '9') ++current_command; // skip [0-9]*
while (*current_command == ' ') ++current_command; // skip [ ]*
}
char *starpos = strchr(current_command, '*'); // * should always be the last parameter
if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' '
// Get the command code, which must be G, M, or T
char command_code = *current_command;
// The code must have a numeric value
bool code_is_good = (current_command[1] >= '0' && current_command[1] <= '9');
int codenum; // define ahead of goto
// Bail early if there's no code
if (!code_is_good) goto ExitUnknownCommand;
// Args pointer optimizes code_seen, especially those taking XYZEF
// This wastes a little cpu on commands that expect no arguments.
current_command_args = current_command;
while (*current_command_args && *current_command_args != ' ') ++current_command_args;
while (*current_command_args == ' ') ++current_command_args;
// Interpret the code int
seen_pointer = current_command;
codenum = code_value_short();
// Handle a known G, M, or T
switch(command_code) {
case 'G': switch (codenum) {
// G0, G1
case 0:
case 1:
gcode_G0_G1();
break;
// G2, G3
#if DISABLED(SCARA)
case 2: // G2 - CW ARC
case 3: // G3 - CCW ARC
gcode_G2_G3(codenum == 2);
break;
#endif
// G4 Dwell
case 4:
gcode_G4();
break;
#if ENABLED(FWRETRACT)
case 10: // G10: retract
case 11: // G11: retract_recover
gcode_G10_G11(codenum == 10);
break;
#endif //FWRETRACT
case 28: // G28: Home all axes, one at a time
gcode_G28();
break;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING)
case 29: // G29 Detailed Z probe, probes the bed at 3 or more points.
gcode_G29();
break;
#endif
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
#if DISABLED(Z_PROBE_SLED)
case 30: // G30 Single Z probe
gcode_G30();
break;
#else // Z_PROBE_SLED
case 31: // G31: dock the sled
case 32: // G32: undock the sled
dock_sled(codenum == 31);
break;
#endif // Z_PROBE_SLED
#endif // AUTO_BED_LEVELING_FEATURE
case 90: // G90
relative_mode = false;
break;
case 91: // G91
relative_mode = true;
break;
case 92: // G92
gcode_G92();
break;
}
break;
case 'M': switch (codenum) {
#if ENABLED(ULTIPANEL)
case 0: // M0 - Unconditional stop - Wait for user button press on LCD
case 1: // M1 - Conditional stop - Wait for user button press on LCD
gcode_M0_M1();
break;
#endif // ULTIPANEL
case 17:
gcode_M17();
break;
#if ENABLED(SDSUPPORT)
case 20: // M20 - list SD card
gcode_M20(); break;
case 21: // M21 - init SD card
gcode_M21(); break;
case 22: //M22 - release SD card
gcode_M22(); break;
case 23: //M23 - Select file
gcode_M23(); break;
case 24: //M24 - Start SD print
gcode_M24(); break;
case 25: //M25 - Pause SD print
gcode_M25(); break;
case 26: //M26 - Set SD index
gcode_M26(); break;
case 27: //M27 - Get SD status
gcode_M27(); break;
case 28: //M28 - Start SD write
gcode_M28(); break;
case 29: //M29 - Stop SD write
gcode_M29(); break;
case 30: //M30 <filename> Delete File
gcode_M30(); break;
case 32: //M32 - Select file and start SD print
gcode_M32(); break;
#if ENABLED(LONG_FILENAME_HOST_SUPPORT)
case 33: //M33 - Get the long full path to a file or folder
gcode_M33(); break;
#endif // LONG_FILENAME_HOST_SUPPORT
case 928: //M928 - Start SD write
gcode_M928(); break;
#endif //SDSUPPORT
case 31: //M31 take time since the start of the SD print or an M109 command
gcode_M31();
break;
case 42: //M42 -Change pin status via gcode
gcode_M42();
break;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
case 48: // M48 Z probe repeatability
gcode_M48();
break;
#endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST
#if ENABLED(M100_FREE_MEMORY_WATCHER)
case 100:
gcode_M100();
break;
#endif
case 104: // M104
gcode_M104();
break;
case 111: // M111: Set debug level
gcode_M111();
break;
case 112: // M112: Emergency Stop
gcode_M112();
break;
case 140: // M140: Set bed temp
gcode_M140();
break;
case 105: // M105: Read current temperature
gcode_M105();
return; // "ok" already printed
case 109: // M109: Wait for temperature
gcode_M109();
break;
#if HAS_TEMP_BED
case 190: // M190: Wait for bed heater to reach target
gcode_M190();
break;
#endif // HAS_TEMP_BED
#if HAS_FAN
case 106: // M106: Fan On
gcode_M106();
break;
case 107: // M107: Fan Off
gcode_M107();
break;
#endif // HAS_FAN
#if ENABLED(BARICUDA)
// PWM for HEATER_1_PIN
#if HAS_HEATER_1
case 126: // M126: valve open
gcode_M126();
break;
case 127: // M127: valve closed
gcode_M127();
break;
#endif // HAS_HEATER_1
// PWM for HEATER_2_PIN
#if HAS_HEATER_2
case 128: // M128: valve open
gcode_M128();
break;
case 129: // M129: valve closed
gcode_M129();
break;
#endif // HAS_HEATER_2
#endif // BARICUDA
#if HAS_POWER_SWITCH
case 80: // M80: Turn on Power Supply
gcode_M80();
break;
#endif // HAS_POWER_SWITCH
case 81: // M81: Turn off Power, including Power Supply, if possible
gcode_M81();
break;
case 82:
gcode_M82();
break;
case 83:
gcode_M83();
break;
case 18: // (for compatibility)
case 84: // M84
gcode_M18_M84();
break;
case 85: // M85
gcode_M85();
break;
case 92: // M92: Set the steps-per-unit for one or more axes
gcode_M92();
break;
case 115: // M115: Report capabilities
gcode_M115();
break;
case 117: // M117: Set LCD message text, if possible
gcode_M117();
break;
case 114: // M114: Report current position
gcode_M114();
break;
case 120: // M120: Enable endstops
gcode_M120();
break;
case 121: // M121: Disable endstops
gcode_M121();
break;
case 119: // M119: Report endstop states
gcode_M119();
break;
#if ENABLED(ULTIPANEL)
case 145: // M145: Set material heatup parameters
gcode_M145();
break;
#endif
#if ENABLED(BLINKM)
case 150: // M150
gcode_M150();
break;
#endif //BLINKM
case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).
gcode_M200();
break;
case 201: // M201
gcode_M201();
break;
#if 0 // Not used for Sprinter/grbl gen6
case 202: // M202
gcode_M202();
break;
#endif
case 203: // M203 max feedrate mm/sec
gcode_M203();
break;
case 204: // M204 acclereration S normal moves T filmanent only moves
gcode_M204();
break;
case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk
gcode_M205();
break;
case 206: // M206 additional homing offset
gcode_M206();
break;
#if ENABLED(DELTA)
case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec>
gcode_M665();
break;
#endif
#if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS)
case 666: // M666 set delta / dual endstop adjustment
gcode_M666();
break;
#endif
#if ENABLED(FWRETRACT)
case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop]
gcode_M207();
break;
case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min]
gcode_M208();
break;
case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction.
gcode_M209();
break;
#endif // FWRETRACT
#if EXTRUDERS > 1
case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y>
gcode_M218();
break;
#endif
case 220: // M220 S<factor in percent>- set speed factor override percentage
gcode_M220();
break;
case 221: // M221 S<factor in percent>- set extrude factor override percentage
gcode_M221();
break;
case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required
gcode_M226();
break;
#if HAS_SERVOS
case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds
gcode_M280();
break;
#endif // HAS_SERVOS
#if HAS_BUZZER
case 300: // M300 - Play beep tone
gcode_M300();
break;
#endif // HAS_BUZZER
#if ENABLED(PIDTEMP)
case 301: // M301
gcode_M301();
break;
#endif // PIDTEMP
#if ENABLED(PIDTEMPBED)
case 304: // M304
gcode_M304();
break;
#endif // PIDTEMPBED
#if defined(CHDK) || HAS_PHOTOGRAPH
case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/
gcode_M240();
break;
#endif // CHDK || PHOTOGRAPH_PIN
#if ENABLED(HAS_LCD_CONTRAST)
case 250: // M250 Set LCD contrast value: C<value> (value 0..63)
gcode_M250();
break;
#endif // HAS_LCD_CONTRAST
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
case 302: // allow cold extrudes, or set the minimum extrude temperature
gcode_M302();
break;
#endif // PREVENT_DANGEROUS_EXTRUDE
case 303: // M303 PID autotune
gcode_M303();
break;
#if ENABLED(SCARA)
case 360: // M360 SCARA Theta pos1
if (gcode_M360()) return;
break;
case 361: // M361 SCARA Theta pos2
if (gcode_M361()) return;
break;
case 362: // M362 SCARA Psi pos1
if (gcode_M362()) return;
break;
case 363: // M363 SCARA Psi pos2
if (gcode_M363()) return;
break;
case 364: // M364 SCARA Psi pos3 (90 deg to Theta)
if (gcode_M364()) return;
break;
case 365: // M365 Set SCARA scaling for X Y Z
gcode_M365();
break;
#endif // SCARA
case 400: // M400 finish all moves
gcode_M400();
break;
#if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED)
case 401:
gcode_M401();
break;
case 402:
gcode_M402();
break;
#endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED
#if ENABLED(FILAMENT_SENSOR)
case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width
gcode_M404();
break;
case 405: //M405 Turn on filament sensor for control
gcode_M405();
break;
case 406: //M406 Turn off filament sensor for control
gcode_M406();
break;
case 407: //M407 Display measured filament diameter
gcode_M407();
break;
#endif // FILAMENT_SENSOR
case 410: // M410 quickstop - Abort all the planned moves.
gcode_M410();
break;
#if ENABLED(MESH_BED_LEVELING)
case 420: // M420 Enable/Disable Mesh Bed Leveling
gcode_M420();
break;
case 421: // M421 Set a Mesh Bed Leveling Z coordinate
gcode_M421();
break;
#endif
case 428: // M428 Apply current_position to home_offset
gcode_M428();
break;
case 500: // M500 Store settings in EEPROM
gcode_M500();
break;
case 501: // M501 Read settings from EEPROM
gcode_M501();
break;
case 502: // M502 Revert to default settings
gcode_M502();
break;
case 503: // M503 print settings currently in memory
gcode_M503();
break;
#if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED)
case 540:
gcode_M540();
break;
#endif
#ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET:
gcode_SET_Z_PROBE_OFFSET();
break;
#endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET
#if ENABLED(FILAMENTCHANGEENABLE)
case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal]
gcode_M600();
break;
#endif // FILAMENTCHANGEENABLE
#if ENABLED(DUAL_X_CARRIAGE)
case 605:
gcode_M605();
break;
#endif // DUAL_X_CARRIAGE
case 907: // M907 Set digital trimpot motor current using axis codes.
gcode_M907();
break;
#if HAS_DIGIPOTSS
case 908: // M908 Control digital trimpot directly.
gcode_M908();
break;
#endif // HAS_DIGIPOTSS
#if HAS_MICROSTEPS
case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers.
gcode_M350();
break;
case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low.
gcode_M351();
break;
#endif // HAS_MICROSTEPS
case 999: // M999: Restart after being Stopped
gcode_M999();
break;
}
break;
case 'T':
gcode_T(codenum);
break;
default: code_is_good = false;
}
ExitUnknownCommand:
// Still unknown command? Throw an error
if (!code_is_good) unknown_command_error();
ok_to_send();
}
void FlushSerialRequestResend() {
//char command_queue[cmd_queue_index_r][100]="Resend:";
MYSERIAL.flush();
SERIAL_PROTOCOLPGM(MSG_RESEND);
SERIAL_PROTOCOLLN(gcode_LastN + 1);
ok_to_send();
}
void ok_to_send() {
refresh_cmd_timeout();
#if ENABLED(SDSUPPORT)
if (fromsd[cmd_queue_index_r]) return;
#endif
SERIAL_PROTOCOLPGM(MSG_OK);
#if ENABLED(ADVANCED_OK)
SERIAL_PROTOCOLPGM(" N"); SERIAL_PROTOCOL(gcode_LastN);
SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1));
SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue);
#endif
SERIAL_EOL;
}
void clamp_to_software_endstops(float target[3]) {
if (min_software_endstops) {
NOLESS(target[X_AXIS], min_pos[X_AXIS]);
NOLESS(target[Y_AXIS], min_pos[Y_AXIS]);
float negative_z_offset = 0;
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset;
if (home_offset[Z_AXIS] < 0) {
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (marlin_debug_flags & DEBUG_LEVELING) {
SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]);
SERIAL_EOL;
}
#endif
negative_z_offset += home_offset[Z_AXIS];
}
#endif
NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset);
}
if (max_software_endstops) {
NOMORE(target[X_AXIS], max_pos[X_AXIS]);
NOMORE(target[Y_AXIS], max_pos[Y_AXIS]);
NOMORE(target[Z_AXIS], max_pos[Z_AXIS]);
}
}
#if ENABLED(DELTA)
void recalc_delta_settings(float radius, float diagonal_rod) {
delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower
delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1);
delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower
delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2);
delta_tower3_x = 0.0; // back middle tower
delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3);
delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1);
delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2);
delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3);
}
void calculate_delta(float cartesian[3]) {
delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1
- sq(delta_tower1_x-cartesian[X_AXIS])
- sq(delta_tower1_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2
- sq(delta_tower2_x-cartesian[X_AXIS])
- sq(delta_tower2_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3
- sq(delta_tower3_x-cartesian[X_AXIS])
- sq(delta_tower3_y-cartesian[Y_AXIS])
) + cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]);
SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]);
SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]);
*/
}
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
// Adjust print surface height by linear interpolation over the bed_level array.
void adjust_delta(float cartesian[3]) {
if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done!
int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2;
float h1 = 0.001 - half, h2 = half - 0.001,
grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])),
grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1]));
int floor_x = floor(grid_x), floor_y = floor(grid_y);
float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y,
z1 = bed_level[floor_x + half][floor_y + half],
z2 = bed_level[floor_x + half][floor_y + half + 1],
z3 = bed_level[floor_x + half + 1][floor_y + half],
z4 = bed_level[floor_x + half + 1][floor_y + half + 1],
left = (1 - ratio_y) * z1 + ratio_y * z2,
right = (1 - ratio_y) * z3 + ratio_y * z4,
offset = (1 - ratio_x) * left + ratio_x * right;
delta[X_AXIS] += offset;
delta[Y_AXIS] += offset;
delta[Z_AXIS] += offset;
/*
SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x);
SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y);
SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x);
SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y);
SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x);
SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y);
SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1);
SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2);
SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3);
SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4);
SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left);
SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right);
SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset);
*/
}
#endif // AUTO_BED_LEVELING_FEATURE
#endif // DELTA
#if ENABLED(MESH_BED_LEVELING)
// This function is used to split lines on mesh borders so each segment is only part of one mesh area
void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t &extruder, uint8_t x_splits=0xff, uint8_t y_splits=0xff)
{
if (!mbl.active) {
plan_buffer_line(x, y, z, e, feed_rate, extruder);
set_current_to_destination();
return;
}
int pix = mbl.select_x_index(current_position[X_AXIS]);
int piy = mbl.select_y_index(current_position[Y_AXIS]);
int ix = mbl.select_x_index(x);
int iy = mbl.select_y_index(y);
pix = min(pix, MESH_NUM_X_POINTS - 2);
piy = min(piy, MESH_NUM_Y_POINTS - 2);
ix = min(ix, MESH_NUM_X_POINTS - 2);
iy = min(iy, MESH_NUM_Y_POINTS - 2);
if (pix == ix && piy == iy) {
// Start and end on same mesh square
plan_buffer_line(x, y, z, e, feed_rate, extruder);
set_current_to_destination();
return;
}
float nx, ny, ne, normalized_dist;
if (ix > pix && (x_splits) & BIT(ix)) {
nx = mbl.get_x(ix);
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
x_splits ^= BIT(ix);
} else if (ix < pix && (x_splits) & BIT(pix)) {
nx = mbl.get_x(pix);
normalized_dist = (nx - current_position[X_AXIS])/(x - current_position[X_AXIS]);
ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
x_splits ^= BIT(pix);
} else if (iy > piy && (y_splits) & BIT(iy)) {
ny = mbl.get_y(iy);
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
y_splits ^= BIT(iy);
} else if (iy < piy && (y_splits) & BIT(piy)) {
ny = mbl.get_y(piy);
normalized_dist = (ny - current_position[Y_AXIS])/(y - current_position[Y_AXIS]);
nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist;
ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist;
y_splits ^= BIT(piy);
} else {
// Already split on a border
plan_buffer_line(x, y, z, e, feed_rate, extruder);
set_current_to_destination();
return;
}
// Do the split and look for more borders
destination[X_AXIS] = nx;
destination[Y_AXIS] = ny;
destination[E_AXIS] = ne;
mesh_plan_buffer_line(nx, ny, z, ne, feed_rate, extruder, x_splits, y_splits);
destination[X_AXIS] = x;
destination[Y_AXIS] = y;
destination[E_AXIS] = e;
mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits);
}
#endif // MESH_BED_LEVELING
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
inline void prevent_dangerous_extrude(float &curr_e, float &dest_e) {
if (marlin_debug_flags & DEBUG_DRYRUN) return;
float de = dest_e - curr_e;
if (de) {
if (degHotend(active_extruder) < extrude_min_temp) {
curr_e = dest_e; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP);
}
#if ENABLED(PREVENT_LENGTHY_EXTRUDE)
if (labs(de) > EXTRUDE_MAXLENGTH) {
curr_e = dest_e; // Behave as if the move really took place, but ignore E part
SERIAL_ECHO_START;
SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP);
}
#endif
}
}
#endif // PREVENT_DANGEROUS_EXTRUDE
#if ENABLED(DELTA) || ENABLED(SCARA)
inline bool prepare_move_delta(float target[NUM_AXIS]) {
float difference[NUM_AXIS];
for (int8_t i=0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i];
float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS]));
if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]);
if (cartesian_mm < 0.000001) return false;
float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier;
int steps = max(1, int(delta_segments_per_second * seconds));
// SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm);
// SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds);
// SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps);
for (int s = 1; s <= steps; s++) {
float fraction = float(s) / float(steps);
for (int8_t i = 0; i < NUM_AXIS; i++)
target[i] = current_position[i] + difference[i] * fraction;
calculate_delta(target);
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(target);
#endif
//SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]);
//SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]);
//SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]);
//SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]);
//SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
//SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]);
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate/60*feedrate_multiplier/100.0, active_extruder);
}
return true;
}
#endif // DELTA || SCARA
#if ENABLED(SCARA)
inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); }
#endif
#if ENABLED(DUAL_X_CARRIAGE)
inline bool prepare_move_dual_x_carriage() {
if (active_extruder_parked) {
if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) {
// move duplicate extruder into correct duplication position.
plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]);
plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset,
current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1);
sync_plan_position();
st_synchronize();
extruder_duplication_enabled = true;
active_extruder_parked = false;
}
else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head
if (current_position[E_AXIS] == destination[E_AXIS]) {
// This is a travel move (with no extrusion)
// Skip it, but keep track of the current position
// (so it can be used as the start of the next non-travel move)
if (delayed_move_time != 0xFFFFFFFFUL) {
set_current_to_destination();
NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]);
delayed_move_time = millis();
return false;
}
}
delayed_move_time = 0;
// unpark extruder: 1) raise, 2) move into starting XY position, 3) lower
plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder);
plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder);
active_extruder_parked = false;
}
}
return true;
}
#endif // DUAL_X_CARRIAGE
#if DISABLED(DELTA) && DISABLED(SCARA)
inline bool prepare_move_cartesian() {
// Do not use feedrate_multiplier for E or Z only moves
if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) {
line_to_destination();
}
else {
#if ENABLED(MESH_BED_LEVELING)
mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate/60)*(feedrate_multiplier/100.0), active_extruder);
return false;
#else
line_to_destination(feedrate * feedrate_multiplier / 100.0);
#endif
}
return true;
}
#endif // !DELTA && !SCARA
/**
* Prepare a single move and get ready for the next one
*
* (This may call plan_buffer_line several times to put
* smaller moves into the planner for DELTA or SCARA.)
*/
void prepare_move() {
clamp_to_software_endstops(destination);
refresh_cmd_timeout();
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]);
#endif
#if ENABLED(SCARA)
if (!prepare_move_scara(destination)) return;
#elif ENABLED(DELTA)
if (!prepare_move_delta(destination)) return;
#endif
#if ENABLED(DUAL_X_CARRIAGE)
if (!prepare_move_dual_x_carriage()) return;
#endif
#if DISABLED(DELTA) && DISABLED(SCARA)
if (!prepare_move_cartesian()) return;
#endif
set_current_to_destination();
}
/**
* Plan an arc in 2 dimensions
*
* The arc is approximated by generating many small linear segments.
* The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm)
* Arcs should only be made relatively large (over 5mm), as larger arcs with
* larger segments will tend to be more efficient. Your slicer should have
* options for G2/G3 arc generation. In future these options may be GCode tunable.
*/
void plan_arc(
float target[NUM_AXIS], // Destination position
float *offset, // Center of rotation relative to current_position
uint8_t clockwise // Clockwise?
) {
float radius = hypot(offset[X_AXIS], offset[Y_AXIS]),
center_axis0 = current_position[X_AXIS] + offset[X_AXIS],
center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS],
linear_travel = target[Z_AXIS] - current_position[Z_AXIS],
extruder_travel = target[E_AXIS] - current_position[E_AXIS],
r_axis0 = -offset[X_AXIS], // Radius vector from center to current location
r_axis1 = -offset[Y_AXIS],
rt_axis0 = target[X_AXIS] - center_axis0,
rt_axis1 = target[Y_AXIS] - center_axis1;
// CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required.
float angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
if (angular_travel < 0) { angular_travel += RADIANS(360); }
if (clockwise) { angular_travel -= RADIANS(360); }
// Make a circle if the angular rotation is 0
if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0)
angular_travel += RADIANS(360);
float mm_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
if (mm_of_travel < 0.001) { return; }
uint16_t segments = floor(mm_of_travel / MM_PER_ARC_SEGMENT);
if (segments == 0) segments = 1;
float theta_per_segment = angular_travel/segments;
float linear_per_segment = linear_travel/segments;
float extruder_per_segment = extruder_travel/segments;
/* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
r_T = [cos(phi) -sin(phi);
sin(phi) cos(phi] * r ;
For arc generation, the center of the circle is the axis of rotation and the radius vector is
defined from the circle center to the initial position. Each line segment is formed by successive
vector rotations. This requires only two cos() and sin() computations to form the rotation
matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
all double numbers are single precision on the Arduino. (True double precision will not have
round off issues for CNC applications.) Single precision error can accumulate to be greater than
tool precision in some cases. Therefore, arc path correction is implemented.
Small angle approximation may be used to reduce computation overhead further. This approximation
holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words,
theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
issue for CNC machines with the single precision Arduino calculations.
This approximation also allows plan_arc to immediately insert a line segment into the planner
without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead.
This is important when there are successive arc motions.
*/
// Vector rotation matrix values
float cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
float sin_T = theta_per_segment;
float arc_target[NUM_AXIS];
float sin_Ti;
float cos_Ti;
float r_axisi;
uint16_t i;
int8_t count = 0;
// Initialize the linear axis
arc_target[Z_AXIS] = current_position[Z_AXIS];
// Initialize the extruder axis
arc_target[E_AXIS] = current_position[E_AXIS];
float feed_rate = feedrate*feedrate_multiplier/60/100.0;
for (i = 1; i < segments; i++) { // Increment (segments-1)
if (count < N_ARC_CORRECTION) {
// Apply vector rotation matrix to previous r_axis0 / 1
r_axisi = r_axis0*sin_T + r_axis1*cos_T;
r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
r_axis1 = r_axisi;
count++;
}
else {
// Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
// Compute exact location by applying transformation matrix from initial radius vector(=-offset).
cos_Ti = cos(i*theta_per_segment);
sin_Ti = sin(i*theta_per_segment);
r_axis0 = -offset[X_AXIS]*cos_Ti + offset[Y_AXIS]*sin_Ti;
r_axis1 = -offset[X_AXIS]*sin_Ti - offset[Y_AXIS]*cos_Ti;
count = 0;
}
// Update arc_target location
arc_target[X_AXIS] = center_axis0 + r_axis0;
arc_target[Y_AXIS] = center_axis1 + r_axis1;
arc_target[Z_AXIS] += linear_per_segment;
arc_target[E_AXIS] += extruder_per_segment;
clamp_to_software_endstops(arc_target);
#if ENABLED(DELTA) || ENABLED(SCARA)
calculate_delta(arc_target);
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(arc_target);
#endif
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
#else
plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder);
#endif
}
// Ensure last segment arrives at target location.
#if ENABLED(DELTA) || ENABLED(SCARA)
calculate_delta(target);
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
adjust_delta(target);
#endif
plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
#else
plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder);
#endif
// As far as the parser is concerned, the position is now == target. In reality the
// motion control system might still be processing the action and the real tool position
// in any intermediate location.
set_current_to_destination();
}
#if HAS_CONTROLLERFAN
void controllerFan() {
static millis_t lastMotor = 0; // Last time a motor was turned on
static millis_t lastMotorCheck = 0; // Last time the state was checked
millis_t ms = millis();
if (ms >= lastMotorCheck + 2500) { // Not a time critical function, so we only check every 2500ms
lastMotorCheck = ms;
if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0
|| E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled...
#if EXTRUDERS > 1
|| E1_ENABLE_READ == E_ENABLE_ON
#if HAS_X2_ENABLE
|| X2_ENABLE_READ == X_ENABLE_ON
#endif
#if EXTRUDERS > 2
|| E2_ENABLE_READ == E_ENABLE_ON
#if EXTRUDERS > 3
|| E3_ENABLE_READ == E_ENABLE_ON
#endif
#endif
#endif
) {
lastMotor = ms; //... set time to NOW so the fan will turn on
}
uint8_t speed = (lastMotor == 0 || ms >= lastMotor + (CONTROLLERFAN_SECS * 1000UL)) ? 0 : CONTROLLERFAN_SPEED;
// allows digital or PWM fan output to be used (see M42 handling)
digitalWrite(CONTROLLERFAN_PIN, speed);
analogWrite(CONTROLLERFAN_PIN, speed);
}
}
#endif // HAS_CONTROLLERFAN
#if ENABLED(SCARA)
void calculate_SCARA_forward_Transform(float f_scara[3]) {
// Perform forward kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float x_sin, x_cos, y_sin, y_cos;
//SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]);
//SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]);
x_sin = sin(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
x_cos = cos(f_scara[X_AXIS]/SCARA_RAD2DEG) * Linkage_1;
y_sin = sin(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
y_cos = cos(f_scara[Y_AXIS]/SCARA_RAD2DEG) * Linkage_2;
//SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin);
//SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos);
//SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin);
//SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos);
delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta
delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi
//SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]);
//SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]);
}
void calculate_delta(float cartesian[3]){
//reverse kinematics.
// Perform reversed kinematics, and place results in delta[3]
// The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014
float SCARA_pos[2];
static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi;
SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y
SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor.
#if (Linkage_1 == Linkage_2)
SCARA_C2 = ( ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) ) / (2 * (float)L1_2) ) - 1;
#else
SCARA_C2 = ( sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2 ) / 45000;
#endif
SCARA_S2 = sqrt( 1 - sq(SCARA_C2) );
SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2;
SCARA_K2 = Linkage_2 * SCARA_S2;
SCARA_theta = ( atan2(SCARA_pos[X_AXIS],SCARA_pos[Y_AXIS])-atan2(SCARA_K1, SCARA_K2) ) * -1;
SCARA_psi = atan2(SCARA_S2,SCARA_C2);
delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle
delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor)
delta[Z_AXIS] = cartesian[Z_AXIS];
/*
SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]);
SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]);
SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]);
SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]);
SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]);
SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2);
SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2);
SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta);
SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi);
SERIAL_EOL;
*/
}
#endif // SCARA
#if ENABLED(TEMP_STAT_LEDS)
static bool red_led = false;
static millis_t next_status_led_update_ms = 0;
void handle_status_leds(void) {
float max_temp = 0.0;
if (millis() > next_status_led_update_ms) {
next_status_led_update_ms += 500; // Update every 0.5s
for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder)
max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder));
#if HAS_TEMP_BED
max_temp = max(max(max_temp, degTargetBed()), degBed());
#endif
bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led;
if (new_led != red_led) {
red_led = new_led;
digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW);
digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH);
}
}
}
#endif
void enable_all_steppers() {
enable_x();
enable_y();
enable_z();
enable_e0();
enable_e1();
enable_e2();
enable_e3();
}
void disable_all_steppers() {
disable_x();
disable_y();
disable_z();
disable_e0();
disable_e1();
disable_e2();
disable_e3();
}
/**
* Standard idle routine keeps the machine alive
*/
void idle() {
manage_heater();
manage_inactivity();
lcd_update();
}
/**
* Manage several activities:
* - Check for Filament Runout
* - Keep the command buffer full
* - Check for maximum inactive time between commands
* - Check for maximum inactive time between stepper commands
* - Check if pin CHDK needs to go LOW
* - Check for KILL button held down
* - Check for HOME button held down
* - Check if cooling fan needs to be switched on
* - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT)
*/
void manage_inactivity(bool ignore_stepper_queue/*=false*/) {
#if HAS_FILRUNOUT
if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING))
filrunout();
#endif
if (commands_in_queue < BUFSIZE - 1) get_command();
millis_t ms = millis();
if (max_inactive_time && ms > previous_cmd_ms + max_inactive_time) kill(PSTR(MSG_KILLED));
if (stepper_inactive_time && ms > previous_cmd_ms + stepper_inactive_time
&& !ignore_stepper_queue && !blocks_queued()) {
#if DISABLE_X == true
disable_x();
#endif
#if DISABLE_Y == true
disable_y();
#endif
#if DISABLE_Z == true
disable_z();
#endif
#if DISABLE_E == true
disable_e0();
disable_e1();
disable_e2();
disable_e3();
#endif
}
#ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH
if (chdkActive && ms > chdkHigh + CHDK_DELAY) {
chdkActive = false;
WRITE(CHDK, LOW);
}
#endif
#if HAS_KILL
// Check if the kill button was pressed and wait just in case it was an accidental
// key kill key press
// -------------------------------------------------------------------------------
static int killCount = 0; // make the inactivity button a bit less responsive
const int KILL_DELAY = 750;
if (!READ(KILL_PIN))
killCount++;
else if (killCount > 0)
killCount--;
// Exceeded threshold and we can confirm that it was not accidental
// KILL the machine
// ----------------------------------------------------------------
if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED));
#endif
#if HAS_HOME
// Check to see if we have to home, use poor man's debouncer
// ---------------------------------------------------------
static int homeDebounceCount = 0; // poor man's debouncing count
const int HOME_DEBOUNCE_DELAY = 2500;
if (!READ(HOME_PIN)) {
if (!homeDebounceCount) {
enqueuecommands_P(PSTR("G28"));
LCD_MESSAGEPGM(MSG_AUTO_HOME);
}
if (homeDebounceCount < HOME_DEBOUNCE_DELAY)
homeDebounceCount++;
else
homeDebounceCount = 0;
}
#endif
#if HAS_CONTROLLERFAN
controllerFan(); // Check if fan should be turned on to cool stepper drivers down
#endif
#if ENABLED(EXTRUDER_RUNOUT_PREVENT)
if (ms > previous_cmd_ms + EXTRUDER_RUNOUT_SECONDS * 1000)
if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) {
bool oldstatus;
switch(active_extruder) {
case 0:
oldstatus = E0_ENABLE_READ;
enable_e0();
break;
#if EXTRUDERS > 1
case 1:
oldstatus = E1_ENABLE_READ;
enable_e1();
break;
#if EXTRUDERS > 2
case 2:
oldstatus = E2_ENABLE_READ;
enable_e2();
break;
#if EXTRUDERS > 3
case 3:
oldstatus = E3_ENABLE_READ;
enable_e3();
break;
#endif
#endif
#endif
}
float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS];
plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS],
destination[E_AXIS] + EXTRUDER_RUNOUT_EXTRUDE * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS],
EXTRUDER_RUNOUT_SPEED / 60. * EXTRUDER_RUNOUT_ESTEPS / axis_steps_per_unit[E_AXIS], active_extruder);
current_position[E_AXIS] = oldepos;
destination[E_AXIS] = oldedes;
plan_set_e_position(oldepos);
previous_cmd_ms = ms; // refresh_cmd_timeout()
st_synchronize();
switch(active_extruder) {
case 0:
E0_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 1
case 1:
E1_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 2
case 2:
E2_ENABLE_WRITE(oldstatus);
break;
#if EXTRUDERS > 3
case 3:
E3_ENABLE_WRITE(oldstatus);
break;
#endif
#endif
#endif
}
}
#endif
#if ENABLED(DUAL_X_CARRIAGE)
// handle delayed move timeout
if (delayed_move_time && ms > delayed_move_time + 1000 && IsRunning()) {
// travel moves have been received so enact them
delayed_move_time = 0xFFFFFFFFUL; // force moves to be done
set_destination_to_current();
prepare_move();
}
#endif
#if ENABLED(TEMP_STAT_LEDS)
handle_status_leds();
#endif
check_axes_activity();
}
void kill(const char *lcd_msg) {
#if ENABLED(ULTRA_LCD)
lcd_setalertstatuspgm(lcd_msg);
#endif
cli(); // Stop interrupts
disable_all_heaters();
disable_all_steppers();
#if HAS_POWER_SWITCH
pinMode(PS_ON_PIN, INPUT);
#endif
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_KILLED);
// FMC small patch to update the LCD before ending
sei(); // enable interrupts
for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time
cli(); // disable interrupts
suicide();
while(1) { /* Intentionally left empty */ } // Wait for reset
}
#if ENABLED(FILAMENT_RUNOUT_SENSOR)
void filrunout() {
if (!filrunoutEnqueued) {
filrunoutEnqueued = true;
enqueuecommands_P(PSTR(FILAMENT_RUNOUT_SCRIPT));
st_synchronize();
}
}
#endif // FILAMENT_RUNOUT_SENSOR
#if ENABLED(FAST_PWM_FAN)
void setPwmFrequency(uint8_t pin, int val) {
val &= 0x07;
switch (digitalPinToTimer(pin)) {
#if defined(TCCR0A)
case TIMER0A:
case TIMER0B:
// TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02));
// TCCR0B |= val;
break;
#endif
#if defined(TCCR1A)
case TIMER1A:
case TIMER1B:
// TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
// TCCR1B |= val;
break;
#endif
#if defined(TCCR2)
case TIMER2:
case TIMER2:
TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12));
TCCR2 |= val;
break;
#endif
#if defined(TCCR2A)
case TIMER2A:
case TIMER2B:
TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22));
TCCR2B |= val;
break;
#endif
#if defined(TCCR3A)
case TIMER3A:
case TIMER3B:
case TIMER3C:
TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32));
TCCR3B |= val;
break;
#endif
#if defined(TCCR4A)
case TIMER4A:
case TIMER4B:
case TIMER4C:
TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42));
TCCR4B |= val;
break;
#endif
#if defined(TCCR5A)
case TIMER5A:
case TIMER5B:
case TIMER5C:
TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52));
TCCR5B |= val;
break;
#endif
}
}
#endif // FAST_PWM_FAN
void Stop() {
disable_all_heaters();
if (IsRunning()) {
Running = false;
Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart
SERIAL_ERROR_START;
SERIAL_ERRORLNPGM(MSG_ERR_STOPPED);
LCD_MESSAGEPGM(MSG_STOPPED);
}
}
/**
* Set target_extruder from the T parameter or the active_extruder
*
* Returns TRUE if the target is invalid
*/
bool setTargetedHotend(int code) {
target_extruder = active_extruder;
if (code_seen('T')) {
target_extruder = code_value_short();
if (target_extruder >= EXTRUDERS) {
SERIAL_ECHO_START;
SERIAL_CHAR('M');
SERIAL_ECHO(code);
SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " ");
SERIAL_ECHOLN(target_extruder);
return true;
}
}
return false;
}
float calculate_volumetric_multiplier(float diameter) {
if (!volumetric_enabled || diameter == 0) return 1.0;
float d2 = diameter * 0.5;
return 1.0 / (M_PI * d2 * d2);
}
void calculate_volumetric_multipliers() {
for (int i=0; i<EXTRUDERS; i++)
volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]);
}