You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

382 lines
11 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* temperature.h - temperature controller
*/
#ifndef TEMPERATURE_H
#define TEMPERATURE_H
#include "Marlin.h"
#include "planner.h"
#if ENABLED(PID_ADD_EXTRUSION_RATE)
#include "stepper.h"
#endif
#ifndef SOFT_PWM_SCALE
#define SOFT_PWM_SCALE 0
#endif
class Temperature {
public:
int current_temperature_raw[EXTRUDERS] = { 0 };
float current_temperature[EXTRUDERS] = { 0.0 };
int target_temperature[EXTRUDERS] = { 0 };
int current_temperature_bed_raw = 0;
float current_temperature_bed = 0.0;
int target_temperature_bed = 0;
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
float redundant_temperature = 0.0;
#endif
unsigned char soft_pwm_bed;
#if ENABLED(FAN_SOFT_PWM)
unsigned char fanSpeedSoftPwm[FAN_COUNT];
#endif
#if ENABLED(PIDTEMP) || ENABLED(PIDTEMPBED)
#define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
#endif
#if ENABLED(PIDTEMP)
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
static float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS];
#if ENABLED(PID_ADD_EXTRUSION_RATE)
float Kc[EXTRUDERS];
#endif
#define PID_PARAM(param, e) Temperature::param[e]
#else
static float Kp, Ki, Kd;
#if ENABLED(PID_ADD_EXTRUSION_RATE)
static float Kc;
#endif
#define PID_PARAM(param, e) Temperature::param
#endif // PID_PARAMS_PER_EXTRUDER
// Apply the scale factors to the PID values
#define scalePID_i(i) ( (i) * PID_dT )
#define unscalePID_i(i) ( (i) / PID_dT )
#define scalePID_d(d) ( (d) / PID_dT )
#define unscalePID_d(d) ( (d) * PID_dT )
#endif
#if ENABLED(PIDTEMPBED)
float bedKp = DEFAULT_bedKp,
bedKi = ((DEFAULT_bedKi) * PID_dT),
bedKd = ((DEFAULT_bedKd) / PID_dT);
#endif
#if ENABLED(BABYSTEPPING)
volatile int babystepsTodo[3] = { 0 };
#endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
int watch_target_temp[EXTRUDERS] = { 0 };
millis_t watch_heater_next_ms[EXTRUDERS] = { 0 };
#endif
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_BED_TEMP_PERIOD > 0
int watch_target_bed_temp = 0;
millis_t watch_bed_next_ms = 0;
#endif
#if ENABLED(PREVENT_DANGEROUS_EXTRUDE)
float extrude_min_temp = EXTRUDE_MINTEMP;
FORCE_INLINE bool tooColdToExtrude(uint8_t e) { return degHotend(e) < extrude_min_temp; }
#else
FORCE_INLINE bool tooColdToExtrude(uint8_t e) { UNUSED(e); return false; }
#endif
private:
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
int redundant_temperature_raw = 0;
float redundant_temperature = 0.0;
#endif
volatile bool temp_meas_ready = false;
#if ENABLED(PIDTEMP)
float temp_iState[EXTRUDERS] = { 0 };
float temp_dState[EXTRUDERS] = { 0 };
float pTerm[EXTRUDERS];
float iTerm[EXTRUDERS];
float dTerm[EXTRUDERS];
#if ENABLED(PID_ADD_EXTRUSION_RATE)
float cTerm[EXTRUDERS];
long last_position[EXTRUDERS];
long lpq[LPQ_MAX_LEN];
int lpq_ptr = 0;
#endif
float pid_error[EXTRUDERS];
float temp_iState_min[EXTRUDERS];
float temp_iState_max[EXTRUDERS];
bool pid_reset[EXTRUDERS];
#endif
#if ENABLED(PIDTEMPBED)
float temp_iState_bed = { 0 };
float temp_dState_bed = { 0 };
float pTerm_bed;
float iTerm_bed;
float dTerm_bed;
float pid_error_bed;
float temp_iState_min_bed;
float temp_iState_max_bed;
#else
millis_t next_bed_check_ms;
#endif
unsigned long raw_temp_value[4] = { 0 };
unsigned long raw_temp_bed_value = 0;
// Init min and max temp with extreme values to prevent false errors during startup
int minttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_LO_TEMP , HEATER_1_RAW_LO_TEMP , HEATER_2_RAW_LO_TEMP, HEATER_3_RAW_LO_TEMP);
int maxttemp_raw[EXTRUDERS] = ARRAY_BY_EXTRUDERS(HEATER_0_RAW_HI_TEMP , HEATER_1_RAW_HI_TEMP , HEATER_2_RAW_HI_TEMP, HEATER_3_RAW_HI_TEMP);
int minttemp[EXTRUDERS] = { 0 };
int maxttemp[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(16383);
#ifdef BED_MINTEMP
int bed_minttemp_raw = HEATER_BED_RAW_LO_TEMP;
#endif
#ifdef BED_MAXTEMP
int bed_maxttemp_raw = HEATER_BED_RAW_HI_TEMP;
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
int meas_shift_index; // Index of a delayed sample in buffer
#endif
#if HAS_AUTO_FAN
millis_t next_auto_fan_check_ms;
#endif
unsigned char soft_pwm[EXTRUDERS];
#if ENABLED(FAN_SOFT_PWM)
unsigned char soft_pwm_fan[FAN_COUNT];
#endif
#if ENABLED(FILAMENT_WIDTH_SENSOR)
int current_raw_filwidth = 0; //Holds measured filament diameter - one extruder only
#endif
public:
/**
* Static (class) methods
*/
static float analog2temp(int raw, uint8_t e);
static float analog2tempBed(int raw);
/**
* Instance Methods
*/
Temperature();
void init();
/**
* Called from the Temperature ISR
*/
void isr();
/**
* Call periodically to manage heaters
*/
void manage_heater();
#if ENABLED(FILAMENT_WIDTH_SENSOR)
float analog2widthFil(); // Convert raw Filament Width to millimeters
int widthFil_to_size_ratio(); // Convert raw Filament Width to an extrusion ratio
#endif
//high level conversion routines, for use outside of temperature.cpp
//inline so that there is no performance decrease.
//deg=degreeCelsius
FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
FORCE_INLINE float degBed() { return current_temperature_bed; }
#if ENABLED(SHOW_TEMP_ADC_VALUES)
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
#endif
FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
void start_watching_heater(int e = 0);
#endif
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
void start_watching_bed();
#endif
FORCE_INLINE void setTargetHotend(const float& celsius, uint8_t extruder) {
target_temperature[extruder] = celsius;
#if ENABLED(THERMAL_PROTECTION_HOTENDS) && WATCH_TEMP_PERIOD > 0
start_watching_heater(extruder);
#endif
}
FORCE_INLINE void setTargetBed(const float& celsius) {
target_temperature_bed = celsius;
#if ENABLED(THERMAL_PROTECTION_BED) && WATCH_BED_TEMP_PERIOD > 0
start_watching_bed();
#endif
}
FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
/**
* The software PWM power for a heater
*/
int getHeaterPower(int heater);
/**
* Switch off all heaters, set all target temperatures to 0
*/
void disable_all_heaters();
/**
* Perform auto-tuning for hotend or bed in response to M303
*/
#if HAS_PID_HEATING
void PID_autotune(float temp, int extruder, int ncycles, bool set_result=false);
#endif
/**
* Update the temp manager when PID values change
*/
void updatePID();
FORCE_INLINE void autotempShutdown() {
#if ENABLED(AUTOTEMP)
if (planner.autotemp_enabled) {
planner.autotemp_enabled = false;
if (degTargetHotend(active_extruder) > planner.autotemp_min)
setTargetHotend(0, active_extruder);
}
#endif
}
#if ENABLED(BABYSTEPPING)
FORCE_INLINE void babystep_axis(AxisEnum axis, int distance) {
#if ENABLED(COREXY) || ENABLED(COREXZ)
#if ENABLED(BABYSTEP_XY)
switch (axis) {
case X_AXIS: // X on CoreXY and CoreXZ
babystepsTodo[A_AXIS] += distance * 2;
babystepsTodo[CORE_AXIS_2] += distance * 2;
break;
case CORE_AXIS_2: // Y on CoreXY, Z on CoreXZ
babystepsTodo[A_AXIS] += distance * 2;
babystepsTodo[CORE_AXIS_2] -= distance * 2;
break;
case CORE_AXIS_3: // Z on CoreXY, Y on CoreXZ
babystepsTodo[CORE_AXIS_3] += distance;
break;
}
#elif ENABLED(COREXZ)
babystepsTodo[A_AXIS] += distance * 2;
babystepsTodo[C_AXIS] -= distance * 2;
#else
babystepsTodo[Z_AXIS] += distance;
#endif
#else
babystepsTodo[axis] += distance;
#endif
}
#endif // BABYSTEPPING
private:
void set_current_temp_raw();
void updateTemperaturesFromRawValues();
#if ENABLED(HEATER_0_USES_MAX6675)
int read_max6675();
#endif
void checkExtruderAutoFans();
float get_pid_output(int e);
#if ENABLED(PIDTEMPBED)
float get_pid_output_bed();
#endif
void _temp_error(int e, const char* serial_msg, const char* lcd_msg);
void min_temp_error(uint8_t e);
void max_temp_error(uint8_t e);
#if ENABLED(THERMAL_PROTECTION_HOTENDS) || HAS_THERMALLY_PROTECTED_BED
typedef enum TRState { TRReset, TRInactive, TRFirstHeating, TRStable, TRRunaway } TRstate;
void thermal_runaway_protection(TRState* state, millis_t* timer, float temperature, float target_temperature, int heater_id, int period_seconds, int hysteresis_degc);
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
TRState thermal_runaway_state_machine[EXTRUDERS] = { TRReset };
millis_t thermal_runaway_timer[EXTRUDERS] = { 0 };
#endif
#if HAS_THERMALLY_PROTECTED_BED
TRState thermal_runaway_bed_state_machine = TRReset;
millis_t thermal_runaway_bed_timer;
#endif
#endif // THERMAL_PROTECTION
};
extern Temperature thermalManager;
#endif // TEMPERATURE_H