160 lines
5.1 KiB
C
160 lines
5.1 KiB
C
/*
|
|
temperature.h - temperature controller
|
|
Part of Marlin
|
|
|
|
Copyright (c) 2011 Erik van der Zalm
|
|
|
|
Grbl is free software: you can redistribute it and/or modify
|
|
it under the terms of the GNU General Public License as published by
|
|
the Free Software Foundation, either version 3 of the License, or
|
|
(at your option) any later version.
|
|
|
|
Grbl is distributed in the hope that it will be useful,
|
|
but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
GNU General Public License for more details.
|
|
|
|
You should have received a copy of the GNU General Public License
|
|
along with Grbl. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef TEMPERATURE_H
|
|
#define TEMPERATURE_H
|
|
|
|
#include "Marlin.h"
|
|
#include "planner.h"
|
|
#if ENABLED(PID_ADD_EXTRUSION_RATE)
|
|
#include "stepper.h"
|
|
#endif
|
|
|
|
// public functions
|
|
void tp_init(); //initialize the heating
|
|
void manage_heater(); //it is critical that this is called periodically.
|
|
|
|
#if ENABLED(FILAMENT_SENSOR)
|
|
// For converting raw Filament Width to milimeters
|
|
float analog2widthFil();
|
|
|
|
// For converting raw Filament Width to an extrusion ratio
|
|
int widthFil_to_size_ratio();
|
|
#endif
|
|
|
|
// low level conversion routines
|
|
// do not use these routines and variables outside of temperature.cpp
|
|
extern int target_temperature[4];
|
|
extern float current_temperature[4];
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
extern int current_temperature_raw[4];
|
|
extern int current_temperature_bed_raw;
|
|
#endif
|
|
extern int target_temperature_bed;
|
|
extern float current_temperature_bed;
|
|
#if ENABLED(TEMP_SENSOR_1_AS_REDUNDANT)
|
|
extern float redundant_temperature;
|
|
#endif
|
|
|
|
#if HAS_CONTROLLERFAN
|
|
extern unsigned char soft_pwm_bed;
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMP)
|
|
|
|
#if ENABLED(PID_PARAMS_PER_EXTRUDER)
|
|
extern float Kp[EXTRUDERS], Ki[EXTRUDERS], Kd[EXTRUDERS], Kc[EXTRUDERS]; // one param per extruder
|
|
#define PID_PARAM(param,e) param[e] // use macro to point to array value
|
|
#else
|
|
extern float Kp, Ki, Kd, Kc; // one param per extruder - saves 20 or 36 bytes of ram (inc array pointer)
|
|
#define PID_PARAM(param, e) param // use macro to point directly to value
|
|
#endif // PID_PARAMS_PER_EXTRUDER
|
|
float scalePID_i(float i);
|
|
float scalePID_d(float d);
|
|
float unscalePID_i(float i);
|
|
float unscalePID_d(float d);
|
|
|
|
#endif
|
|
|
|
#if ENABLED(PIDTEMPBED)
|
|
extern float bedKp, bedKi, bedKd;
|
|
#endif
|
|
|
|
#if ENABLED(BABYSTEPPING)
|
|
extern volatile int babystepsTodo[3];
|
|
#endif
|
|
|
|
//high level conversion routines, for use outside of temperature.cpp
|
|
//inline so that there is no performance decrease.
|
|
//deg=degreeCelsius
|
|
|
|
FORCE_INLINE float degHotend(uint8_t extruder) { return current_temperature[extruder]; }
|
|
FORCE_INLINE float degBed() { return current_temperature_bed; }
|
|
|
|
#if ENABLED(SHOW_TEMP_ADC_VALUES)
|
|
FORCE_INLINE float rawHotendTemp(uint8_t extruder) { return current_temperature_raw[extruder]; }
|
|
FORCE_INLINE float rawBedTemp() { return current_temperature_bed_raw; }
|
|
#endif
|
|
|
|
FORCE_INLINE float degTargetHotend(uint8_t extruder) { return target_temperature[extruder]; }
|
|
FORCE_INLINE float degTargetBed() { return target_temperature_bed; }
|
|
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
void start_watching_heater(int e = 0);
|
|
#endif
|
|
|
|
FORCE_INLINE void setTargetHotend(const float& celsius, uint8_t extruder) {
|
|
target_temperature[extruder] = celsius;
|
|
#if ENABLED(THERMAL_PROTECTION_HOTENDS)
|
|
start_watching_heater(extruder);
|
|
#endif
|
|
}
|
|
FORCE_INLINE void setTargetBed(const float& celsius) { target_temperature_bed = celsius; }
|
|
|
|
FORCE_INLINE bool isHeatingHotend(uint8_t extruder) { return target_temperature[extruder] > current_temperature[extruder]; }
|
|
FORCE_INLINE bool isHeatingBed() { return target_temperature_bed > current_temperature_bed; }
|
|
|
|
FORCE_INLINE bool isCoolingHotend(uint8_t extruder) { return target_temperature[extruder] < current_temperature[extruder]; }
|
|
FORCE_INLINE bool isCoolingBed() { return target_temperature_bed < current_temperature_bed; }
|
|
|
|
#define HOTEND_ROUTINES(NR) \
|
|
FORCE_INLINE float degHotend##NR() { return degHotend(NR); } \
|
|
FORCE_INLINE float degTargetHotend##NR() { return degTargetHotend(NR); } \
|
|
FORCE_INLINE void setTargetHotend##NR(const float c) { setTargetHotend(c, NR); } \
|
|
FORCE_INLINE bool isHeatingHotend##NR() { return isHeatingHotend(NR); } \
|
|
FORCE_INLINE bool isCoolingHotend##NR() { return isCoolingHotend(NR); }
|
|
HOTEND_ROUTINES(0);
|
|
#if EXTRUDERS > 1
|
|
HOTEND_ROUTINES(1);
|
|
#else
|
|
#define setTargetHotend1(c) do{}while(0)
|
|
#endif
|
|
#if EXTRUDERS > 2
|
|
HOTEND_ROUTINES(2);
|
|
#else
|
|
#define setTargetHotend2(c) do{}while(0)
|
|
#endif
|
|
#if EXTRUDERS > 3
|
|
HOTEND_ROUTINES(3);
|
|
#else
|
|
#define setTargetHotend3(c) do{}while(0)
|
|
#endif
|
|
|
|
int getHeaterPower(int heater);
|
|
void disable_all_heaters();
|
|
void updatePID();
|
|
|
|
void PID_autotune(float temp, int extruder, int ncycles);
|
|
|
|
void setExtruderAutoFanState(int pin, bool state);
|
|
void checkExtruderAutoFans();
|
|
|
|
FORCE_INLINE void autotempShutdown() {
|
|
#if ENABLED(AUTOTEMP)
|
|
if (autotemp_enabled) {
|
|
autotemp_enabled = false;
|
|
if (degTargetHotend(active_extruder) > autotemp_min)
|
|
setTargetHotend(0, active_extruder);
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#endif // TEMPERATURE_H
|