Move FAST_PWM_FAN code to HALs (#13491)

2.0.x
Chris Pepper 6 years ago committed by Scott Lahteine
parent 263f8edff8
commit ffc2c2d7c5

@ -372,3 +372,22 @@ inline void HAL_adc_init(void) {
// AVR compatibility
#define strtof strtod
/**
* set_pwm_frequency
* Sets the frequency of the timer corresponding to the provided pin
* as close as possible to the provided desired frequency. Internally
* calculates the required waveform generation mode, prescaler and
* resolution values required and sets the timer registers accordingly.
* NOTE that the frequency is applied to all pins on the timer (Ex OC3A, OC3B and OC3B)
* NOTE that there are limitations, particularly if using TIMER2. (see Configuration_adv.h -> FAST FAN PWM Settings)
*/
void set_pwm_frequency(const pin_t pin, int f_desired);
/**
* set_pwm_duty
* Sets the PWM duty cycle of the provided pin to the provided value
* Optionally allows inverting the duty cycle [default = false]
* Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255]
*/
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false);

@ -0,0 +1,250 @@
#ifdef __AVR__
#include "../../inc/MarlinConfigPre.h"
/**
* get_pwm_timer
* Grabs timer information and registers of the provided pin
* returns Timer struct containing this information
* Used by set_pwm_frequency, set_pwm_duty
*
*/
#if ENABLED(FAST_PWM_FAN)
#include "HAL.h"
struct Timer {
volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer
volatile uint16_t* OCRnQ[3]; // max 3 OCR registers per timer
volatile uint16_t* ICRn; // max 1 ICR register per timer
uint8_t n; // the timer number [0->5]
uint8_t q; // the timer output [0->2] (A->C)
};
Timer get_pwm_timer(pin_t pin) {
uint8_t q = 0;
switch (digitalPinToTimer(pin)) {
// Protect reserved timers (TIMER0 & TIMER1)
#ifdef TCCR0A
#if !AVR_AT90USB1286_FAMILY
case TIMER0A:
#endif
case TIMER0B:
#endif
#ifdef TCCR1A
case TIMER1A: case TIMER1B:
#endif
break;
#if defined(TCCR2) || defined(TCCR2A)
#ifdef TCCR2
case TIMER2: {
Timer timer = {
/*TCCRnQ*/ { &TCCR2, NULL, NULL},
/*OCRnQ*/ { (uint16_t*)&OCR2, NULL, NULL},
/*ICRn*/ NULL,
/*n, q*/ 2, 0
};
}
#elif defined TCCR2A
#if ENABLED(USE_OCR2A_AS_TOP)
case TIMER2A: break; // protect TIMER2A
case TIMER2B: {
Timer timer = {
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, NULL},
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, NULL},
/*ICRn*/ NULL,
/*n, q*/ 2, 1
};
return timer;
}
#else
case TIMER2B: ++q;
case TIMER2A: {
Timer timer = {
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, NULL},
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, NULL},
/*ICRn*/ NULL,
2, q
};
return timer;
}
#endif
#endif
#endif
#ifdef TCCR3A
case TIMER3C: ++q;
case TIMER3B: ++q;
case TIMER3A: {
Timer timer = {
/*TCCRnQ*/ { &TCCR3A, &TCCR3B, &TCCR3C},
/*OCRnQ*/ { &OCR3A, &OCR3B, &OCR3C},
/*ICRn*/ &ICR3,
/*n, q*/ 3, q
};
return timer;
}
#endif
#ifdef TCCR4A
case TIMER4C: ++q;
case TIMER4B: ++q;
case TIMER4A: {
Timer timer = {
/*TCCRnQ*/ { &TCCR4A, &TCCR4B, &TCCR4C},
/*OCRnQ*/ { &OCR4A, &OCR4B, &OCR4C},
/*ICRn*/ &ICR4,
/*n, q*/ 4, q
};
return timer;
}
#endif
#ifdef TCCR5A
case TIMER5C: ++q;
case TIMER5B: ++q;
case TIMER5A: {
Timer timer = {
/*TCCRnQ*/ { &TCCR5A, &TCCR5B, &TCCR5C},
/*OCRnQ*/ { &OCR5A, &OCR5B, &OCR5C },
/*ICRn*/ &ICR5,
/*n, q*/ 5, q
};
return timer;
}
#endif
}
Timer timer = {
/*TCCRnQ*/ { NULL, NULL, NULL},
/*OCRnQ*/ { NULL, NULL, NULL},
/*ICRn*/ NULL,
0, 0
};
return timer;
}
void set_pwm_frequency(const pin_t pin, int f_desired) {
Timer timer = get_pwm_timer(pin);
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
uint16_t size;
if (timer.n == 2) size = 255; else size = 65535;
uint16_t res = 255; // resolution (TOP value)
uint8_t j = 0; // prescaler index
uint8_t wgm = 1; // waveform generation mode
// Calculating the prescaler and resolution to use to achieve closest frequency
if (f_desired != 0) {
int f = (F_CPU) / (2 * 1024 * size) + 1; // Initialize frequency as lowest (non-zero) achievable
uint16_t prescaler[] = { 0, 1, 8, /*TIMER2 ONLY*/32, 64, /*TIMER2 ONLY*/128, 256, 1024 };
// loop over prescaler values
for (uint8_t i = 1; i < 8; i++) {
uint16_t res_temp_fast = 255, res_temp_phase_correct = 255;
if (timer.n == 2) {
// No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP
#if ENABLED(USE_OCR2A_AS_TOP)
const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired);
res_temp_fast = rtf - 1;
res_temp_phase_correct = rtf / 2;
#endif
}
else {
// Skip TIMER2 specific prescalers when not TIMER2
if (i == 3 || i == 5) continue;
const uint16_t rtf = (F_CPU) / (prescaler[i] * f_desired);
res_temp_fast = rtf - 1;
res_temp_phase_correct = rtf / 2;
}
LIMIT(res_temp_fast, 1u, size);
LIMIT(res_temp_phase_correct, 1u, size);
// Calculate frequencies of test prescaler and resolution values
const int f_temp_fast = (F_CPU) / (prescaler[i] * (1 + res_temp_fast)),
f_temp_phase_correct = (F_CPU) / (2 * prescaler[i] * res_temp_phase_correct),
f_diff = ABS(f - f_desired),
f_fast_diff = ABS(f_temp_fast - f_desired),
f_phase_diff = ABS(f_temp_phase_correct - f_desired);
// If FAST values are closest to desired f
if (f_fast_diff < f_diff && f_fast_diff <= f_phase_diff) {
// Remember this combination
f = f_temp_fast;
res = res_temp_fast;
j = i;
// Set the Wave Generation Mode to FAST PWM
if (timer.n == 2) {
wgm = (
#if ENABLED(USE_OCR2A_AS_TOP)
WGM2_FAST_PWM_OCR2A
#else
WGM2_FAST_PWM
#endif
);
}
else wgm = WGM_FAST_PWM_ICRn;
}
// If PHASE CORRECT values are closes to desired f
else if (f_phase_diff < f_diff) {
f = f_temp_phase_correct;
res = res_temp_phase_correct;
j = i;
// Set the Wave Generation Mode to PWM PHASE CORRECT
if (timer.n == 2) {
wgm = (
#if ENABLED(USE_OCR2A_AS_TOP)
WGM2_PWM_PC_OCR2A
#else
WGM2_PWM_PC
#endif
);
}
else wgm = WGM_PWM_PC_ICRn;
}
}
}
_SET_WGMnQ(timer.TCCRnQ, wgm);
_SET_CSn(timer.TCCRnQ, j);
if (timer.n == 2) {
#if ENABLED(USE_OCR2A_AS_TOP)
_SET_OCRnQ(timer.OCRnQ, 0, res); // Set OCR2A value (TOP) = res
#endif
}
else
_SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res
}
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
// If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
// Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
if (v == 0)
digitalWrite(pin, invert);
else if (v == v_size)
digitalWrite(pin, !invert);
else {
Timer timer = get_pwm_timer(pin);
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
// Set compare output mode to CLEAR -> SET or SET -> CLEAR (if inverted)
_SET_COMnQ(timer.TCCRnQ, (timer.q
#ifdef TCCR2
+ (timer.q == 2) // COM20 is on bit 4 of TCCR2, thus requires q + 1 in the macro
#endif
), COM_CLEAR_SET + invert
);
uint16_t top;
if (timer.n == 2) { // if TIMER2
top = (
#if ENABLED(USE_OCR2A_AS_TOP)
*timer.OCRnQ[0] // top = OCR2A
#else
255 // top = 0xFF (max)
#endif
);
}
else
top = *timer.ICRn; // top = ICRn
_SET_OCRnQ(timer.OCRnQ, timer.q, v * float(top / v_size)); // Scale 8/16-bit v to top value
}
}
#endif // FAST_PWM_FAN
#endif // __AVR__

@ -200,7 +200,7 @@ enum ClockSource2 : char {
TCCR##T##B = (TCCR##T##B & ~(0x3 << WGM##T##2)) | (((int(V) >> 2) & 0x3) << WGM##T##2); \
}while(0)
#define SET_WGM(T,V) _SET_WGM(T,WGM_##V)
// Runtime (see Temperature::set_pwm_frequency):
// Runtime (see set_pwm_frequency):
#define _SET_WGMnQ(TCCRnQ, V) do{ \
*(TCCRnQ)[0] = (*(TCCRnQ)[0] & ~(0x3 << 0)) | (( int(V) & 0x3) << 0); \
*(TCCRnQ)[1] = (*(TCCRnQ)[1] & ~(0x3 << 3)) | (((int(V) >> 2) & 0x3) << 3); \
@ -230,7 +230,7 @@ enum ClockSource2 : char {
#define SET_CS4(V) _SET_CS4(CS_##V)
#define SET_CS5(V) _SET_CS5(CS_##V)
#define SET_CS(T,V) SET_CS##T(V)
// Runtime (see Temperature::set_pwm_frequency)
// Runtime (see set_pwm_frequency)
#define _SET_CSn(TCCRnQ, V) do{ \
(*(TCCRnQ)[1] = (*(TCCRnQ[1]) & ~(0x7 << 0)) | ((int(V) & 0x7) << 0)); \
}while(0)
@ -243,19 +243,19 @@ enum ClockSource2 : char {
#define SET_COMB(T,V) SET_COM(T,B,V)
#define SET_COMC(T,V) SET_COM(T,C,V)
#define SET_COMS(T,V1,V2,V3) do{ SET_COMA(T,V1); SET_COMB(T,V2); SET_COMC(T,V3); }while(0)
// Runtime (see Temperature::set_pwm_duty)
// Runtime (see set_pwm_duty)
#define _SET_COMnQ(TCCRnQ, Q, V) do{ \
(*(TCCRnQ)[0] = (*(TCCRnQ)[0] & ~(0x3 << (6-2*(Q)))) | (int(V) << (6-2*(Q)))); \
}while(0)
// Set OCRnQ register
// Runtime (see Temperature::set_pwm_duty):
// Runtime (see set_pwm_duty):
#define _SET_OCRnQ(OCRnQ, Q, V) do{ \
(*(OCRnQ)[(Q)] = (0x0000) | (int(V) & 0xFFFF)); \
}while(0)
// Set ICRn register (one per timer)
// Runtime (see Temperature::set_pwm_frequency)
// Runtime (see set_pwm_frequency)
#define _SET_ICRn(ICRn, V) do{ \
(*(ICRn) = (0x0000) | (int(V) & 0xFFFF)); \
}while(0)

@ -50,3 +50,7 @@
#error "DUE software SPI is required but is incompatible with TMC2130 hardware SPI. Enable TMC_USE_SW_SPI to fix."
#endif
#endif
#if ENABLED(FAST_PWM_FAN)
#error "FAST_PWM_FAN is not yet implemented for this platform."
#endif

@ -23,3 +23,7 @@
#if ENABLED(EMERGENCY_PARSER)
#error "EMERGENCY_PARSER is not yet implemented for ESP32. Disable EMERGENCY_PARSER to continue."
#endif
#if ENABLED(FAST_PWM_FAN)
#error "FAST_PWM_FAN is not yet implemented for this platform."
#endif

@ -65,3 +65,7 @@
#endif
#endif
#endif // SPINDLE_LASER_ENABLE
#if ENABLED(FAST_PWM_FAN)
#error "FAST_PWM_FAN is not yet implemented for this platform."
#endif

@ -157,3 +157,19 @@ void HAL_idletask(void);
#define PLATFORM_M997_SUPPORT
void flashFirmware(int16_t value);
/**
* set_pwm_frequency
* Set the frequency of the timer corresponding to the provided pin
* All Hardware PWM pins run at the same frequency and all
* Software PWM pins run at the same frequency
*/
void set_pwm_frequency(const pin_t pin, int f_desired);
/**
* set_pwm_duty
* Set the PWM duty cycle of the provided pin to the provided value
* Optionally allows inverting the duty cycle [default = false]
* Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255]
*/
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false);

@ -0,0 +1,40 @@
/**
* Marlin 3D Printer Firmware
* Copyright (C) 2019 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#ifdef TARGET_LPC1768
#include "../../inc/MarlinConfigPre.h"
#if ENABLED(FAST_PWM_FAN)
#include <pwm.h>
void set_pwm_frequency(const pin_t pin, int f_desired) {
pwm_set_frequency(pin, f_desired);
}
void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
pwm_write_ratio(pin, invert ? 1.0f - (float)v / v_size : (float)v / v_size);
}
#endif // FAST_PWM_FAN
#endif // TARGET_LPC1768

@ -69,3 +69,7 @@
#if ENABLED(EMERGENCY_PARSER)
#error "EMERGENCY_PARSER is not yet implemented for STM32. Disable EMERGENCY_PARSER to continue."
#endif
#if ENABLED(FAST_PWM_FAN)
#error "FAST_PWM_FAN is not yet implemented for this platform."
#endif

@ -74,3 +74,7 @@
#if ENABLED(SDIO_SUPPORT) && DISABLED(SDSUPPORT)
#error "SDIO_SUPPORT requires SDSUPPORT. Enable SDSUPPORT to continue."
#endif
#if ENABLED(FAST_PWM_FAN)
#error "FAST_PWM_FAN is not yet implemented for this platform."
#endif

@ -68,3 +68,7 @@
#if ENABLED(EMERGENCY_PARSER)
#error "EMERGENCY_PARSER is not yet implemented for STM32F4. Disable EMERGENCY_PARSER to continue."
#endif
#if ENABLED(FAST_PWM_FAN)
#error "FAST_PWM_FAN is not yet implemented for this platform."
#endif

@ -70,3 +70,7 @@
#if ENABLED(EMERGENCY_PARSER)
#error "EMERGENCY_PARSER is not yet implemented for STM32F7. Disable EMERGENCY_PARSER to continue."
#endif
#if ENABLED(FAST_PWM_FAN)
#error "FAST_PWM_FAN is not yet implemented for this platform."
#endif

@ -27,3 +27,7 @@
#if ENABLED(EMERGENCY_PARSER)
#error "EMERGENCY_PARSER is not yet implemented for Teensy 3.1/3.2. Disable EMERGENCY_PARSER to continue."
#endif
#if ENABLED(FAST_PWM_FAN)
#error "FAST_PWM_FAN is not yet implemented for this platform."
#endif

@ -27,3 +27,7 @@
#if ENABLED(EMERGENCY_PARSER)
#error "EMERGENCY_PARSER is not yet implemented for Teensy 3.5/3.6. Disable EMERGENCY_PARSER to continue."
#endif
#if ENABLED(FAST_PWM_FAN)
#error "FAST_PWM_FAN is not yet implemented for this platform."
#endif

@ -2015,10 +2015,6 @@ static_assert( _ARR_TEST(3,0) && _ARR_TEST(3,1) && _ARR_TEST(3,2)
#error "POWER_LOSS_RECOVERY currently requires an LCD Controller."
#endif
#if ENABLED(FAST_PWM_FAN) && !(defined(ARDUINO) && !defined(ARDUINO_ARCH_SAM))
#error "FAST_PWM_FAN is only supported for ARDUINO and ARDUINO_ARCH_SAM."
#endif
#if ENABLED(Z_STEPPER_AUTO_ALIGN)
#if !Z_MULTI_STEPPER_DRIVERS
#error "Z_STEPPER_AUTO_ALIGN requires Z_DUAL_STEPPER_DRIVERS or Z_TRIPLE_STEPPER_DRIVERS."

@ -1278,13 +1278,13 @@ void Planner::check_axes_activity() {
#elif ENABLED(FAST_PWM_FAN)
#if HAS_FAN0
thermalManager.set_pwm_duty(FAN_PIN, CALC_FAN_SPEED(0));
set_pwm_duty(FAN_PIN, CALC_FAN_SPEED(0));
#endif
#if HAS_FAN1
thermalManager.set_pwm_duty(FAN1_PIN, CALC_FAN_SPEED(1));
set_pwm_duty(FAN1_PIN, CALC_FAN_SPEED(1));
#endif
#if HAS_FAN2
thermalManager.set_pwm_duty(FAN2_PIN, CALC_FAN_SPEED(2));
set_pwm_duty(FAN2_PIN, CALC_FAN_SPEED(2));
#endif
#else

@ -1544,237 +1544,6 @@ void Temperature::init() {
#endif
}
#if ENABLED(FAST_PWM_FAN)
Temperature::Timer Temperature::get_pwm_timer(pin_t pin) {
#if defined(ARDUINO) && !defined(ARDUINO_ARCH_SAM)
uint8_t q = 0;
switch (digitalPinToTimer(pin)) {
// Protect reserved timers (TIMER0 & TIMER1)
#ifdef TCCR0A
#if !AVR_AT90USB1286_FAMILY
case TIMER0A:
#endif
case TIMER0B:
#endif
#ifdef TCCR1A
case TIMER1A: case TIMER1B:
#endif
break;
#if defined(TCCR2) || defined(TCCR2A)
#ifdef TCCR2
case TIMER2: {
Temperature::Timer timer = {
/*TCCRnQ*/ { &TCCR2, NULL, NULL},
/*OCRnQ*/ { (uint16_t*)&OCR2, NULL, NULL},
/*ICRn*/ NULL,
/*n, q*/ 2, 0
};
}
#elif defined TCCR2A
#if ENABLED(USE_OCR2A_AS_TOP)
case TIMER2A: break; // protect TIMER2A
case TIMER2B: {
Temperature::Timer timer = {
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, NULL},
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, NULL},
/*ICRn*/ NULL,
/*n, q*/ 2, 1
};
return timer;
}
#else
case TIMER2B: q += 1;
case TIMER2A: {
Temperature::Timer timer = {
/*TCCRnQ*/ { &TCCR2A, &TCCR2B, NULL},
/*OCRnQ*/ { (uint16_t*)&OCR2A, (uint16_t*)&OCR2B, NULL},
/*ICRn*/ NULL,
2, q
};
return timer;
}
#endif
#endif
#endif
#ifdef TCCR3A
case TIMER3C: q += 1;
case TIMER3B: q += 1;
case TIMER3A: {
Temperature::Timer timer = {
/*TCCRnQ*/ { &TCCR3A, &TCCR3B, &TCCR3C},
/*OCRnQ*/ { &OCR3A, &OCR3B, &OCR3C},
/*ICRn*/ &ICR3,
/*n, q*/ 3, q
};
return timer;
}
#endif
#ifdef TCCR4A
case TIMER4C: q += 1;
case TIMER4B: q += 1;
case TIMER4A: {
Temperature::Timer timer = {
/*TCCRnQ*/ { &TCCR4A, &TCCR4B, &TCCR4C},
/*OCRnQ*/ { &OCR4A, &OCR4B, &OCR4C},
/*ICRn*/ &ICR4,
/*n, q*/ 4, q
};
return timer;
}
#endif
#ifdef TCCR5A
case TIMER5C: q += 1;
case TIMER5B: q += 1;
case TIMER5A: {
Temperature::Timer timer = {
/*TCCRnQ*/ { &TCCR5A, &TCCR5B, &TCCR5C},
/*OCRnQ*/ { &OCR5A, &OCR5B, &OCR5C },
/*ICRn*/ &ICR5,
/*n, q*/ 5, q
};
return timer;
}
#endif
}
Temperature::Timer timer = {
/*TCCRnQ*/ { NULL, NULL, NULL},
/*OCRnQ*/ { NULL, NULL, NULL},
/*ICRn*/ NULL,
0, 0
};
return timer;
#endif // ARDUINO && !ARDUINO_ARCH_SAM
}
void Temperature::set_pwm_frequency(const pin_t pin, int f_desired) {
#if defined(ARDUINO) && !defined(ARDUINO_ARCH_SAM)
Temperature::Timer timer = get_pwm_timer(pin);
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
uint16_t size;
if (timer.n == 2) size = 255; else size = 65535;
uint16_t res = 255; // resolution (TOP value)
uint8_t j = 0; // prescaler index
uint8_t wgm = 1; // waveform generation mode
// Calculating the prescaler and resolution to use to achieve closest frequency
if (f_desired != 0) {
int f = F_CPU/(2*1024*size) + 1; // Initialize frequency as lowest (non-zero) achievable
uint16_t prescaler[] = {0, 1, 8, /*TIMER2 ONLY*/32, 64, /*TIMER2 ONLY*/128, 256, 1024};
// loop over prescaler values
for (uint8_t i = 1; i < 8; i++) {
uint16_t res_temp_fast = 255, res_temp_phase_correct = 255;
if (timer.n == 2) {
// No resolution calculation for TIMER2 unless enabled USE_OCR2A_AS_TOP
#if ENABLED(USE_OCR2A_AS_TOP)
res_temp_fast = (F_CPU / (prescaler[i] * f_desired)) - 1;
res_temp_phase_correct = F_CPU / (2 * prescaler[i] * f_desired);
#endif
}
else {
// Skip TIMER2 specific prescalers when not TIMER2
if (i == 3 || i == 5) continue;
res_temp_fast = (F_CPU / (prescaler[i] * f_desired)) - 1;
res_temp_phase_correct = F_CPU / (2 * prescaler[i] * f_desired);
}
LIMIT(res_temp_fast, 1u, size);
LIMIT(res_temp_phase_correct, 1u, size);
// Calculate frequncies of test prescaler and resolution values
int f_temp_fast = F_CPU / (prescaler[i] * (1 + res_temp_fast));
int f_temp_phase_correct = F_CPU / (2 * prescaler[i] * res_temp_phase_correct);
// If FAST values are closest to desired f
if (ABS(f_temp_fast - f_desired) < ABS(f - f_desired)
&& ABS(f_temp_fast - f_desired) <= ABS(f_temp_phase_correct - f_desired)) {
// Remember this combination
f = f_temp_fast;
res = res_temp_fast;
j = i;
// Set the Wave Generation Mode to FAST PWM
if(timer.n == 2){
wgm =
#if ENABLED(USE_OCR2A_AS_TOP)
WGM2_FAST_PWM_OCR2A;
#else
WGM2_FAST_PWM;
#endif
}
else wgm = WGM_FAST_PWM_ICRn;
}
// If PHASE CORRECT values are closes to desired f
else if (ABS(f_temp_phase_correct - f_desired) < ABS(f - f_desired)) {
f = f_temp_phase_correct;
res = res_temp_phase_correct;
j = i;
// Set the Wave Generation Mode to PWM PHASE CORRECT
if (timer.n == 2) {
wgm =
#if ENABLED(USE_OCR2A_AS_TOP)
WGM2_PWM_PC_OCR2A;
#else
WGM2_PWM_PC;
#endif
}
else wgm = WGM_PWM_PC_ICRn;
}
}
}
_SET_WGMnQ(timer.TCCRnQ, wgm);
_SET_CSn(timer.TCCRnQ, j);
if (timer.n == 2) {
#if ENABLED(USE_OCR2A_AS_TOP)
_SET_OCRnQ(timer.OCRnQ, 0, res); // Set OCR2A value (TOP) = res
#endif
}
else {
_SET_ICRn(timer.ICRn, res); // Set ICRn value (TOP) = res
}
#endif // ARDUINO && !ARDUINO_ARCH_SAM
}
void Temperature::set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size/*=255*/, const bool invert/*=false*/) {
#if defined(ARDUINO) && !defined(ARDUINO_ARCH_SAM)
// If v is 0 or v_size (max), digitalWrite to LOW or HIGH.
// Note that digitalWrite also disables pwm output for us (sets COM bit to 0)
if (v == 0)
digitalWrite(pin, invert);
else if (v == v_size)
digitalWrite(pin, !invert);
else {
Temperature::Timer timer = get_pwm_timer(pin);
if (timer.n == 0) return; // Don't proceed if protected timer or not recognised
// Set compare output mode to CLEAR -> SET or SET -> CLEAR (if inverted)
_SET_COMnQ(timer.TCCRnQ, timer.q
#ifdef TCCR2
+ (timer.q == 2) // COM20 is on bit 4 of TCCR2, thus requires q + 1 in the macro
#endif
, COM_CLEAR_SET + invert
);
uint16_t top;
if (timer.n == 2) { // if TIMER2
top =
#if ENABLED(USE_OCR2A_AS_TOP)
*timer.OCRnQ[0] // top = OCR2A
#else
255 // top = 0xFF (max)
#endif
;
}
else
top = *timer.ICRn; // top = ICRn
_SET_OCRnQ(timer.OCRnQ, timer.q, v * float(top / v_size)); // Scale 8/16-bit v to top value
}
#endif // ARDUINO && !ARDUINO_ARCH_SAM
}
#endif // FAST_PWM_FAN
#if WATCH_HOTENDS
/**
* Start Heating Sanity Check for hotends that are below

@ -266,16 +266,6 @@ class Temperature {
soft_pwm_count_fan[FAN_COUNT];
#endif
/**
* set_pwm_duty (8-bit AVRs only)
* Sets the PWM duty cycle of the provided pin to the provided value
* Optionally allows inverting the duty cycle [default = false]
* Optionally allows changing the maximum size of the provided value to enable finer PWM duty control [default = 255]
*/
#if ENABLED(FAST_PWM_FAN)
static void set_pwm_duty(const pin_t pin, const uint16_t v, const uint16_t v_size=255, const bool invert=false);
#endif
#if ENABLED(BABYSTEPPING)
static volatile int16_t babystepsTodo[3];
#endif
@ -744,38 +734,7 @@ class Temperature {
#endif
private:
/**
* (8-bit AVRs only)
*
* get_pwm_timer
* Grabs timer information and registers of the provided pin
* returns Timer struct containing this information
* Used by set_pwm_frequency, set_pwm_duty
*
* set_pwm_frequency
* Sets the frequency of the timer corresponding to the provided pin
* as close as possible to the provided desired frequency. Internally
* calculates the required waveform generation mode, prescaler and
* resolution values required and sets the timer registers accordingly.
* NOTE that the frequency is applied to all pins on the timer (Ex OC3A, OC3B and OC3B)
* NOTE that there are limitations, particularly if using TIMER2. (see Configuration_adv.h -> FAST FAN PWM Settings)
*/
#if ENABLED(FAST_PWM_FAN)
typedef struct Timer {
volatile uint8_t* TCCRnQ[3]; // max 3 TCCR registers per timer
volatile uint16_t* OCRnQ[3]; // max 3 OCR registers per timer
volatile uint16_t* ICRn; // max 1 ICR register per timer
uint8_t n; // the timer number [0->5]
uint8_t q; // the timer output [0->2] (A->C)
} Timer;
static Timer get_pwm_timer(const pin_t pin);
static void set_pwm_frequency(const pin_t pin, int f_desired);
#endif
static void set_current_temp_raw();
static void updateTemperaturesFromRawValues();
#define HAS_MAX6675 EITHER(HEATER_0_USES_MAX6675, HEATER_1_USES_MAX6675)

Loading…
Cancel
Save