new endstop bits

2.0.x
wurstnase 10 years ago
parent d6c1285ab5
commit ff98b8632b

@ -33,6 +33,7 @@
#define BIT(b) (1<<(b))
#define TEST(n,b) (((n)&BIT(b))!=0)
#define SET_BIT(n,b,value) (n) ^= ((-value)^(n)) & (BIT(b))
#define RADIANS(d) ((d)*M_PI/180.0)
#define DEGREES(r) ((d)*180.0/M_PI)
#define NOLESS(v,n) do{ if (v < n) v = n; }while(0)
@ -198,7 +199,7 @@ void manage_inactivity(bool ignore_stepper_queue=false);
*/
enum AxisEnum {X_AXIS=0, Y_AXIS=1, A_AXIS=0, B_AXIS=1, Z_AXIS=2, E_AXIS=3, X_HEAD=4, Y_HEAD=5};
enum EndstopEnum {X_MIN=0, Y_MIN=1, Z_MIN=2, Z_PROBE=3, X_MAX=4, Y_MAX=5, Z_MAX=6};
enum EndstopEnum {X_MIN=0, Y_MIN=1, Z_MIN=2, Z_PROBE=3, X_MAX=4, Y_MAX=5, Z_MAX=6, Z2_MIN=7, Z2_MAX=8};
void enable_all_steppers();
void disable_all_steppers();

@ -76,6 +76,13 @@ volatile long endstops_trigsteps[3] = { 0 };
volatile long endstops_stepsTotal, endstops_stepsDone;
static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROBE as BIT value
#ifndef Z_DUAL_ENDSTOPS
static byte
#else
static uint16_t
#endif
old_endstop_bits = 0; // use X_MIN, X_MAX... Z_MAX, Z_PROBE, Z2_MIN, Z2_MAX
#ifdef ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED
bool abort_on_endstop_hit = false;
#endif
@ -84,31 +91,6 @@ static volatile char endstop_hit_bits = 0; // use X_MIN, Y_MIN, Z_MIN and Z_PROB
int motor_current_setting[3] = DEFAULT_PWM_MOTOR_CURRENT;
#endif
#if HAS_X_MIN
static bool old_x_min_endstop = false;
#endif
#if HAS_X_MAX
static bool old_x_max_endstop = false;
#endif
#if HAS_Y_MIN
static bool old_y_min_endstop = false;
#endif
#if HAS_Y_MAX
static bool old_y_max_endstop = false;
#endif
static bool old_z_min_endstop = false;
static bool old_z_max_endstop = false;
#ifdef Z_DUAL_ENDSTOPS
static bool old_z2_min_endstop = false;
static bool old_z2_max_endstop = false;
#endif
#ifdef Z_PROBE_ENDSTOP // No need to check for valid pin, SanityCheck.h already does this.
static bool old_z_probe_endstop = false;
#endif
static bool check_endstops = true;
volatile long count_position[NUM_AXIS] = { 0 };
@ -155,11 +137,11 @@ volatile signed char count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
#define Z_APPLY_STEP(v,Q) \
if (performing_homing) { \
if (Z_HOME_DIR > 0) {\
if (!(old_z_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
if (!(old_z2_max_endstop && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
if (!(TEST(old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
if (!(TEST(old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
} else {\
if (!(old_z_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
if (!(old_z2_min_endstop && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
if (!(TEST(old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \
if (!(TEST(old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \
} \
} else { \
Z_STEP_WRITE(v); \
@ -266,7 +248,7 @@ void endstops_hit_on_purpose() {
}
void checkHitEndstops() {
if (endstop_hit_bits) { // #ifdef || endstop_z_probe_hit to save space if needed.
if (endstop_hit_bits) {
SERIAL_ECHO_START;
SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT);
if (endstop_hit_bits & BIT(X_MIN)) {
@ -447,7 +429,7 @@ FORCE_INLINE void trapezoid_generator_reset() {
// It pops blocks from the block_buffer and executes them by pulsing the stepper pins appropriately.
ISR(TIMER1_COMPA_vect) {
if(cleaning_buffer_counter)
if (cleaning_buffer_counter)
{
current_block = NULL;
plan_discard_current_block();
@ -492,22 +474,33 @@ ISR(TIMER1_COMPA_vect) {
// Check endstops
if (check_endstops) {
#define _ENDSTOP(axis, minmax) axis ##_## minmax ##_endstop
#ifdef Z_DUAL_ENDSTOPS
uint16_t
#else
byte
#endif
current_endstop_bits;
#define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN
#define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING
#define _OLD_ENDSTOP(axis, minmax) old_## axis ##_## minmax ##_endstop
#define _AXIS(AXIS) AXIS ##_AXIS
#define _HIT_BIT(AXIS) AXIS ##_MIN
#define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_HIT_BIT(AXIS))
#define UPDATE_ENDSTOP(axis,AXIS,minmax,MINMAX) \
bool _ENDSTOP(axis, minmax) = (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)); \
if (_ENDSTOP(axis, minmax) && _OLD_ENDSTOP(axis, minmax) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
#define _ENDSTOP_HIT(AXIS) endstop_hit_bits |= BIT(_ENDSTOP(AXIS, MIN))
#define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX
// SET_ENDSTOP_BIT: set the current endstop bits for an endstop to its status
#define SET_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX)))
// COPY_BIT: copy the value of COPY_BIT to BIT in bits
#define COPY_BIT(bits, COPY_BIT, BIT) SET_BIT(bits, BIT, TEST(bits, COPY_BIT))
// TEST_ENDSTOP: test the old and the current status of an endstop
#define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits, ENDSTOP) && TEST(old_endstop_bits, ENDSTOP))
#define UPDATE_ENDSTOP(AXIS,MINMAX) \
SET_ENDSTOP_BIT(AXIS, MINMAX); \
if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && (current_block->steps[_AXIS(AXIS)] > 0)) { \
endstops_trigsteps[_AXIS(AXIS)] = count_position[_AXIS(AXIS)]; \
_ENDSTOP_HIT(AXIS); \
step_events_completed = current_block->step_event_count; \
} \
_OLD_ENDSTOP(axis, minmax) = _ENDSTOP(axis, minmax);
}
#ifdef COREXY
// Head direction in -X axis for CoreXY bots.
@ -524,7 +517,7 @@ ISR(TIMER1_COMPA_vect) {
#endif
{
#if HAS_X_MIN
UPDATE_ENDSTOP(x, X, min, MIN);
UPDATE_ENDSTOP(X, MIN);
#endif
}
}
@ -535,7 +528,7 @@ ISR(TIMER1_COMPA_vect) {
#endif
{
#if HAS_X_MAX
UPDATE_ENDSTOP(x, X, max, MAX);
UPDATE_ENDSTOP(X, MAX);
#endif
}
}
@ -550,12 +543,12 @@ ISR(TIMER1_COMPA_vect) {
#endif
{ // -direction
#if HAS_Y_MIN
UPDATE_ENDSTOP(y, Y, min, MIN);
UPDATE_ENDSTOP(Y, MIN);
#endif
}
else { // +direction
#if HAS_Y_MAX
UPDATE_ENDSTOP(y, Y, max, MAX);
UPDATE_ENDSTOP(Y, MAX);
#endif
}
#ifdef COREXY
@ -565,45 +558,36 @@ ISR(TIMER1_COMPA_vect) {
#if HAS_Z_MIN
#ifdef Z_DUAL_ENDSTOPS
SET_ENDSTOP_BIT(Z, MIN);
#if HAS_Z2_MIN
SET_ENDSTOP_BIT(Z2, MIN);
#else
COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN)
#endif
byte z_test = TEST_ENDSTOP(Z_MIN) << 0 + TEST_ENDSTOP(Z2_MIN) << 1; // bit 0 for Z, bit 1 for Z2
bool z_min_endstop = READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING,
z2_min_endstop =
#if HAS_Z2_MIN
READ(Z2_MIN_PIN) != Z2_MIN_ENDSTOP_INVERTING
#else
z_min_endstop
#endif
;
bool z_min_both = z_min_endstop && old_z_min_endstop,
z2_min_both = z2_min_endstop && old_z2_min_endstop;
if ((z_min_both || z2_min_both) && current_block->steps[Z_AXIS] > 0) {
if (z_test && current_block->steps[Z_AXIS] > 0) { // z_test = Z_MIN || Z2_MIN
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_hit_bits |= BIT(Z_MIN);
if (!performing_homing || (performing_homing && z_min_both && z2_min_both)) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block->step_event_count;
if (!performing_homing || (performing_homing && !((~z_test) & 0x3))) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block->step_event_count; //!((~z_test) & 0x3) = Z_MIN && Z2_MIN
}
old_z_min_endstop = z_min_endstop;
old_z2_min_endstop = z2_min_endstop;
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP(z, Z, min, MIN);
UPDATE_ENDSTOP(Z, MIN);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MIN_PIN
#ifdef Z_PROBE_ENDSTOP
UPDATE_ENDSTOP(z, Z, probe, PROBE);
z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
if(z_probe_endstop && old_z_probe_endstop)
UPDATE_ENDSTOP(Z, PROBE);
SET_ENDSTOP_BIT(Z, PROBE);
if (TEST_ENDSTOP(Z_PROBE))
{
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_hit_bits |= BIT(Z_PROBE);
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
}
old_z_probe_endstop = z_probe_endstop;
#endif
}
else { // z +direction
@ -611,55 +595,43 @@ ISR(TIMER1_COMPA_vect) {
#ifdef Z_DUAL_ENDSTOPS
bool z_max_endstop = READ(Z_MAX_PIN) != Z_MAX_ENDSTOP_INVERTING,
z2_max_endstop =
#if HAS_Z2_MAX
READ(Z2_MAX_PIN) != Z2_MAX_ENDSTOP_INVERTING
#else
z_max_endstop
#endif
;
bool z_max_both = z_max_endstop && old_z_max_endstop,
z2_max_both = z2_max_endstop && old_z2_max_endstop;
if ((z_max_both || z2_max_both) && current_block->steps[Z_AXIS] > 0) {
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_hit_bits |= BIT(Z_MIN);
SET_ENDSTOP_BIT(Z, MAX);
#if HAS_Z2_MAX
SET_ENDSTOP_BIT(Z2, MAX);
#else
COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX)
#endif
// if (z_max_both) SERIAL_ECHOLN("z_max_endstop = true");
// if (z2_max_both) SERIAL_ECHOLN("z2_max_endstop = true");
byte z_test = TEST_ENDSTOP(Z_MAX) << 0 + TEST_ENDSTOP(Z2_MAX) << 1; // bit 0 for Z, bit 1 for Z2
if (!performing_homing || (performing_homing && z_max_both && z2_max_both)) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block->step_event_count;
if (z_test && current_block->steps[Z_AXIS] > 0) { // t_test = Z_MAX || Z2_MAX
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_hit_bits |= BIT(Z_MIN);
if (!performing_homing || (performing_homing && !((~z_test) & 0x3))) //if not performing home or if both endstops were trigged during homing...
step_events_completed = current_block->step_event_count; //!((~z_test) & 0x3) = Z_MAX && Z2_MAX
}
old_z_max_endstop = z_max_endstop;
old_z2_max_endstop = z2_max_endstop;
#else // !Z_DUAL_ENDSTOPS
UPDATE_ENDSTOP(z, Z, max, MAX);
UPDATE_ENDSTOP(Z, MAX);
#endif // !Z_DUAL_ENDSTOPS
#endif // Z_MAX_PIN
#ifdef Z_PROBE_ENDSTOP
UPDATE_ENDSTOP(z, Z, probe, PROBE);
z_probe_endstop=(READ(Z_PROBE_PIN) != Z_PROBE_ENDSTOP_INVERTING);
if(z_probe_endstop && old_z_probe_endstop)
UPDATE_ENDSTOP(Z, PROBE);
SET_ENDSTOP_BIT(Z, PROBE);
if (TEST_ENDSTOP(Z_PROBE))
{
endstops_trigsteps[Z_AXIS] = count_position[Z_AXIS];
endstop_hit_bits |= BIT(Z_PROBE);
// if (z_probe_endstop && old_z_probe_endstop) SERIAL_ECHOLN("z_probe_endstop = true");
}
old_z_probe_endstop = z_probe_endstop;
#endif
}
old_endstop_bits = current_endstop_bits;
}
// Take multiple steps per interrupt (For high speed moves)
for (int8_t i = 0; i < step_loops; i++) {
#ifndef AT90USB

Loading…
Cancel
Save