|
|
|
@ -113,9 +113,9 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
|
|
|
|
|
float second1 = target[Y_AXIS] + offset[3];
|
|
|
|
|
float t = 0.0;
|
|
|
|
|
|
|
|
|
|
float tmp[4];
|
|
|
|
|
tmp[X_AXIS] = position[X_AXIS];
|
|
|
|
|
tmp[Y_AXIS] = position[Y_AXIS];
|
|
|
|
|
float bez_target[4];
|
|
|
|
|
bez_target[X_AXIS] = position[X_AXIS];
|
|
|
|
|
bez_target[Y_AXIS] = position[Y_AXIS];
|
|
|
|
|
float step = MAX_STEP;
|
|
|
|
|
|
|
|
|
|
uint8_t idle_counter = 0;
|
|
|
|
@ -141,8 +141,8 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
|
|
|
|
|
float candidate_t = 0.5 * (t + new_t);
|
|
|
|
|
float candidate_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], candidate_t);
|
|
|
|
|
float candidate_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], candidate_t);
|
|
|
|
|
float interp_pos0 = 0.5 * (tmp[X_AXIS] + new_pos0);
|
|
|
|
|
float interp_pos1 = 0.5 * (tmp[Y_AXIS] + new_pos1);
|
|
|
|
|
float interp_pos0 = 0.5 * (bez_target[X_AXIS] + new_pos0);
|
|
|
|
|
float interp_pos1 = 0.5 * (bez_target[Y_AXIS] + new_pos1);
|
|
|
|
|
if (dist1(candidate_pos0, candidate_pos1, interp_pos0, interp_pos1) <= (SIGMA)) break;
|
|
|
|
|
new_t = candidate_t;
|
|
|
|
|
new_pos0 = candidate_pos0;
|
|
|
|
@ -157,8 +157,8 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
|
|
|
|
|
if (candidate_t >= 1.0) break;
|
|
|
|
|
float candidate_pos0 = eval_bezier(position[X_AXIS], first0, second0, target[X_AXIS], candidate_t);
|
|
|
|
|
float candidate_pos1 = eval_bezier(position[Y_AXIS], first1, second1, target[Y_AXIS], candidate_t);
|
|
|
|
|
float interp_pos0 = 0.5 * (tmp[X_AXIS] + candidate_pos0);
|
|
|
|
|
float interp_pos1 = 0.5 * (tmp[Y_AXIS] + candidate_pos1);
|
|
|
|
|
float interp_pos0 = 0.5 * (bez_target[X_AXIS] + candidate_pos0);
|
|
|
|
|
float interp_pos1 = 0.5 * (bez_target[Y_AXIS] + candidate_pos1);
|
|
|
|
|
if (dist1(new_pos0, new_pos1, interp_pos0, interp_pos1) > (SIGMA)) break;
|
|
|
|
|
new_t = candidate_t;
|
|
|
|
|
new_pos0 = candidate_pos0;
|
|
|
|
@ -180,14 +180,23 @@ void cubic_b_spline(const float position[NUM_AXIS], const float target[NUM_AXIS]
|
|
|
|
|
t = new_t;
|
|
|
|
|
|
|
|
|
|
// Compute and send new position
|
|
|
|
|
tmp[X_AXIS] = new_pos0;
|
|
|
|
|
tmp[Y_AXIS] = new_pos1;
|
|
|
|
|
bez_target[X_AXIS] = new_pos0;
|
|
|
|
|
bez_target[Y_AXIS] = new_pos1;
|
|
|
|
|
// FIXME. The following two are wrong, since the parameter t is
|
|
|
|
|
// not linear in the distance.
|
|
|
|
|
tmp[Z_AXIS] = interp(position[Z_AXIS], target[Z_AXIS], t);
|
|
|
|
|
tmp[E_AXIS] = interp(position[E_AXIS], target[E_AXIS], t);
|
|
|
|
|
clamp_to_software_endstops(tmp);
|
|
|
|
|
planner.buffer_line(tmp[X_AXIS], tmp[Y_AXIS], tmp[Z_AXIS], tmp[E_AXIS], feed_rate, extruder);
|
|
|
|
|
bez_target[Z_AXIS] = interp(position[Z_AXIS], target[Z_AXIS], t);
|
|
|
|
|
bez_target[E_AXIS] = interp(position[E_AXIS], target[E_AXIS], t);
|
|
|
|
|
clamp_to_software_endstops(bez_target);
|
|
|
|
|
|
|
|
|
|
#if ENABLED(DELTA) || ENABLED(SCARA)
|
|
|
|
|
calculate_delta(bez_target);
|
|
|
|
|
#if ENABLED(AUTO_BED_LEVELING_FEATURE)
|
|
|
|
|
adjust_delta(bez_target);
|
|
|
|
|
#endif
|
|
|
|
|
planner.buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], bez_target[E_AXIS], feed_rate, extruder);
|
|
|
|
|
#else
|
|
|
|
|
planner.buffer_line(bez_target[X_AXIS], bez_target[Y_AXIS], bez_target[Z_AXIS], bez_target[E_AXIS], feed_rate, extruder);
|
|
|
|
|
#endif
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|