Merge pull request from AnHardt/PID_dt

Move definition of PIDdT back to temperature.h
2.0.x
Scott Lahteine
commit ad05a726c1

@ -390,16 +390,5 @@
#define WRITE_FAN(v) WRITE(FAN_PIN, v) #define WRITE_FAN(v) WRITE(FAN_PIN, v)
#endif #endif
/**
* Sampling period of the temperature routine
* This override comes originally from temperature.cpp
* The Configuration.h option is basically ignored.
*/
#ifdef PID_dT
#undef PID_dT
#endif
#define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
#endif //CONFIGURATION_LCD #endif //CONFIGURATION_LCD
#endif //CONDITIONALS_H #endif //CONDITIONALS_H

@ -184,7 +184,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker // Ultimaker
@ -209,7 +208,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -193,7 +193,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker // Ultimaker
@ -218,7 +217,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -184,7 +184,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// Felix 2.0+ electronics with v4 Hotend // Felix 2.0+ electronics with v4 Hotend
#define DEFAULT_Kp 12 #define DEFAULT_Kp 12
@ -199,7 +198,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -184,7 +184,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// Felix 2.0+ electronics with v4 Hotend // Felix 2.0+ electronics with v4 Hotend
#define DEFAULT_Kp 12 #define DEFAULT_Kp 12
@ -199,7 +198,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -184,7 +184,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker // Ultimaker
@ -215,7 +214,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -184,7 +184,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker // Ultimaker
@ -214,7 +213,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -202,7 +202,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker // Ultimaker
@ -238,7 +237,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -184,7 +184,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker // Ultimaker
@ -214,7 +213,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -217,7 +217,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker // Ultimaker
@ -242,7 +241,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -218,7 +218,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker // Ultimaker
@ -243,7 +242,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -184,7 +184,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// Ultimaker // Ultimaker
@ -209,7 +208,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -184,7 +184,6 @@ Here are some standard links for getting your machine calibrated:
// is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max. // is more then PID_FUNCTIONAL_RANGE then the PID will be shut off and the heater will be set to min/max.
#define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term #define PID_INTEGRAL_DRIVE_MAX PID_MAX //limit for the integral term
#define K1 0.95 //smoothing factor within the PID #define K1 0.95 //smoothing factor within the PID
#define PID_dT ((OVERSAMPLENR * 10.0)/(F_CPU / 64.0 / 256.0)) //sampling period of the temperature routine
// If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it // If you are using a pre-configured hotend then you can use one of the value sets by uncommenting it
// J-Head Mk V-B // J-Head Mk V-B
@ -214,7 +213,7 @@ Here are some standard links for getting your machine calibrated:
// Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis // Select PID or bang-bang with PIDTEMPBED. If bang-bang, BED_LIMIT_SWITCHING will enable hysteresis
// //
// Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder. // Uncomment this to enable PID on the bed. It uses the same frequency PWM as the extruder.
// If your PID_dT above is the default, and correct for your hardware/configuration, that means 7.689Hz, // If your PID_dT is the default, and correct for your hardware/configuration, that means 7.689Hz,
// which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating. // which is fine for driving a square wave into a resistive load and does not significantly impact you FET heating.
// This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater. // This also works fine on a Fotek SSR-10DA Solid State Relay into a 250W heater.
// If your configuration is significantly different than this and you don't understand the issues involved, you probably // If your configuration is significantly different than this and you don't understand the issues involved, you probably

@ -45,6 +45,10 @@
#define K2 (1.0-K1) #define K2 (1.0-K1)
#endif #endif
#if defined(PIDTEMPBED) || defined(PIDTEMP)
#define PID_dT ((OVERSAMPLENR * 12.0)/(F_CPU / 64.0 / 256.0))
#endif
//=========================================================================== //===========================================================================
//============================= public variables ============================ //============================= public variables ============================
//=========================================================================== //===========================================================================

Loading…
Cancel
Save