|
|
|
@ -7038,151 +7038,155 @@ inline void gcode_M42() {
|
|
|
|
|
|
|
|
|
|
// Move to the first point, deploy, and probe
|
|
|
|
|
const float t = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, verbose_level);
|
|
|
|
|
if (nan_error(t)) goto FAIL;
|
|
|
|
|
|
|
|
|
|
randomSeed(millis());
|
|
|
|
|
|
|
|
|
|
for (uint8_t n = 0; n < n_samples; n++) {
|
|
|
|
|
if (n_legs) {
|
|
|
|
|
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
|
|
|
|
float angle = random(0.0, 360.0);
|
|
|
|
|
const float radius = random(
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
0.1250000000 * (DELTA_PROBEABLE_RADIUS),
|
|
|
|
|
0.3333333333 * (DELTA_PROBEABLE_RADIUS)
|
|
|
|
|
#else
|
|
|
|
|
5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
|
|
|
|
|
#endif
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
if (verbose_level > 3) {
|
|
|
|
|
SERIAL_ECHOPAIR("Starting radius: ", radius);
|
|
|
|
|
SERIAL_ECHOPAIR(" angle: ", angle);
|
|
|
|
|
SERIAL_ECHOPGM(" Direction: ");
|
|
|
|
|
if (dir > 0) SERIAL_ECHOPGM("Counter-");
|
|
|
|
|
SERIAL_ECHOLNPGM("Clockwise");
|
|
|
|
|
}
|
|
|
|
|
bool probing_good = !isnan(t);
|
|
|
|
|
|
|
|
|
|
if (probing_good) {
|
|
|
|
|
randomSeed(millis());
|
|
|
|
|
|
|
|
|
|
for (uint8_t n = 0; n < n_samples; n++) {
|
|
|
|
|
if (n_legs) {
|
|
|
|
|
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
|
|
|
|
float angle = random(0.0, 360.0);
|
|
|
|
|
const float radius = random(
|
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
|
0.1250000000 * (DELTA_PROBEABLE_RADIUS),
|
|
|
|
|
0.3333333333 * (DELTA_PROBEABLE_RADIUS)
|
|
|
|
|
#else
|
|
|
|
|
5.0, 0.125 * min(X_BED_SIZE, Y_BED_SIZE)
|
|
|
|
|
#endif
|
|
|
|
|
);
|
|
|
|
|
|
|
|
|
|
for (uint8_t l = 0; l < n_legs - 1; l++) {
|
|
|
|
|
double delta_angle;
|
|
|
|
|
if (verbose_level > 3) {
|
|
|
|
|
SERIAL_ECHOPAIR("Starting radius: ", radius);
|
|
|
|
|
SERIAL_ECHOPAIR(" angle: ", angle);
|
|
|
|
|
SERIAL_ECHOPGM(" Direction: ");
|
|
|
|
|
if (dir > 0) SERIAL_ECHOPGM("Counter-");
|
|
|
|
|
SERIAL_ECHOLNPGM("Clockwise");
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (schizoid_flag)
|
|
|
|
|
// The points of a 5 point star are 72 degrees apart. We need to
|
|
|
|
|
// skip a point and go to the next one on the star.
|
|
|
|
|
delta_angle = dir * 2.0 * 72.0;
|
|
|
|
|
for (uint8_t l = 0; l < n_legs - 1; l++) {
|
|
|
|
|
double delta_angle;
|
|
|
|
|
|
|
|
|
|
else
|
|
|
|
|
// If we do this line, we are just trying to move further
|
|
|
|
|
// around the circle.
|
|
|
|
|
delta_angle = dir * (float) random(25, 45);
|
|
|
|
|
if (schizoid_flag)
|
|
|
|
|
// The points of a 5 point star are 72 degrees apart. We need to
|
|
|
|
|
// skip a point and go to the next one on the star.
|
|
|
|
|
delta_angle = dir * 2.0 * 72.0;
|
|
|
|
|
|
|
|
|
|
angle += delta_angle;
|
|
|
|
|
else
|
|
|
|
|
// If we do this line, we are just trying to move further
|
|
|
|
|
// around the circle.
|
|
|
|
|
delta_angle = dir * (float) random(25, 45);
|
|
|
|
|
|
|
|
|
|
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
|
|
|
|
|
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
|
|
|
|
|
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
|
|
|
|
|
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
|
|
|
|
|
angle += delta_angle;
|
|
|
|
|
|
|
|
|
|
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
|
|
|
|
|
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
|
|
|
|
|
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
|
|
|
|
|
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
|
|
|
|
|
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
|
|
|
|
|
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
|
|
|
|
|
|
|
|
|
|
#if DISABLED(DELTA)
|
|
|
|
|
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
|
|
|
|
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
|
|
|
|
#else
|
|
|
|
|
// If we have gone out too far, we can do a simple fix and scale the numbers
|
|
|
|
|
// back in closer to the origin.
|
|
|
|
|
while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
|
|
|
|
|
X_current *= 0.8;
|
|
|
|
|
Y_current *= 0.8;
|
|
|
|
|
if (verbose_level > 3) {
|
|
|
|
|
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
|
|
|
|
|
SERIAL_ECHOLNPAIR(", ", Y_current);
|
|
|
|
|
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
|
|
|
|
|
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
|
|
|
|
|
|
|
|
|
|
#if DISABLED(DELTA)
|
|
|
|
|
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
|
|
|
|
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
|
|
|
|
#else
|
|
|
|
|
// If we have gone out too far, we can do a simple fix and scale the numbers
|
|
|
|
|
// back in closer to the origin.
|
|
|
|
|
while (!position_is_reachable_by_probe_xy(X_current, Y_current)) {
|
|
|
|
|
X_current *= 0.8;
|
|
|
|
|
Y_current *= 0.8;
|
|
|
|
|
if (verbose_level > 3) {
|
|
|
|
|
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
|
|
|
|
|
SERIAL_ECHOLNPAIR(", ", Y_current);
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
if (verbose_level > 3) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Going to:");
|
|
|
|
|
SERIAL_ECHOPAIR(" X", X_current);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", Y_current);
|
|
|
|
|
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
#endif
|
|
|
|
|
if (verbose_level > 3) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Going to:");
|
|
|
|
|
SERIAL_ECHOPAIR(" X", X_current);
|
|
|
|
|
SERIAL_ECHOPAIR(" Y", Y_current);
|
|
|
|
|
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
|
|
|
|
|
}
|
|
|
|
|
do_blocking_move_to_xy(X_current, Y_current);
|
|
|
|
|
} // n_legs loop
|
|
|
|
|
} // n_legs
|
|
|
|
|
do_blocking_move_to_xy(X_current, Y_current);
|
|
|
|
|
} // n_legs loop
|
|
|
|
|
} // n_legs
|
|
|
|
|
|
|
|
|
|
// Probe a single point
|
|
|
|
|
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
|
|
|
|
|
if (nan_error(sample_set[n])) goto FAIL;
|
|
|
|
|
// Probe a single point
|
|
|
|
|
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, stow_probe_after_each, 0);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Get the current mean for the data points we have so far
|
|
|
|
|
*/
|
|
|
|
|
double sum = 0.0;
|
|
|
|
|
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
|
|
|
|
|
mean = sum / (n + 1);
|
|
|
|
|
// Break the loop if the probe fails
|
|
|
|
|
probing_good = !isnan(sample_set[n]);
|
|
|
|
|
if (!probing_good) break;
|
|
|
|
|
|
|
|
|
|
NOMORE(min, sample_set[n]);
|
|
|
|
|
NOLESS(max, sample_set[n]);
|
|
|
|
|
/**
|
|
|
|
|
* Get the current mean for the data points we have so far
|
|
|
|
|
*/
|
|
|
|
|
double sum = 0.0;
|
|
|
|
|
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
|
|
|
|
|
mean = sum / (n + 1);
|
|
|
|
|
|
|
|
|
|
/**
|
|
|
|
|
* Now, use that mean to calculate the standard deviation for the
|
|
|
|
|
* data points we have so far
|
|
|
|
|
*/
|
|
|
|
|
sum = 0.0;
|
|
|
|
|
for (uint8_t j = 0; j <= n; j++)
|
|
|
|
|
sum += sq(sample_set[j] - mean);
|
|
|
|
|
NOMORE(min, sample_set[n]);
|
|
|
|
|
NOLESS(max, sample_set[n]);
|
|
|
|
|
|
|
|
|
|
sigma = SQRT(sum / (n + 1));
|
|
|
|
|
if (verbose_level > 0) {
|
|
|
|
|
if (verbose_level > 1) {
|
|
|
|
|
SERIAL_PROTOCOL(n + 1);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" of ");
|
|
|
|
|
SERIAL_PROTOCOL((int)n_samples);
|
|
|
|
|
SERIAL_PROTOCOLPGM(": z: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(sample_set[n], 3);
|
|
|
|
|
if (verbose_level > 2) {
|
|
|
|
|
SERIAL_PROTOCOLPGM(" mean: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(mean, 4);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" sigma: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" min: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(min, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" max: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(max, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" range: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(max-min, 3);
|
|
|
|
|
/**
|
|
|
|
|
* Now, use that mean to calculate the standard deviation for the
|
|
|
|
|
* data points we have so far
|
|
|
|
|
*/
|
|
|
|
|
sum = 0.0;
|
|
|
|
|
for (uint8_t j = 0; j <= n; j++)
|
|
|
|
|
sum += sq(sample_set[j] - mean);
|
|
|
|
|
|
|
|
|
|
sigma = SQRT(sum / (n + 1));
|
|
|
|
|
if (verbose_level > 0) {
|
|
|
|
|
if (verbose_level > 1) {
|
|
|
|
|
SERIAL_PROTOCOL(n + 1);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" of ");
|
|
|
|
|
SERIAL_PROTOCOL((int)n_samples);
|
|
|
|
|
SERIAL_PROTOCOLPGM(": z: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(sample_set[n], 3);
|
|
|
|
|
if (verbose_level > 2) {
|
|
|
|
|
SERIAL_PROTOCOLPGM(" mean: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(mean, 4);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" sigma: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" min: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(min, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" max: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(max, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" range: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(max-min, 3);
|
|
|
|
|
}
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
}
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
} // End of probe loop
|
|
|
|
|
} // n_samples loop
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (STOW_PROBE()) goto FAIL;
|
|
|
|
|
STOW_PROBE();
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Finished!");
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
if (probing_good) {
|
|
|
|
|
SERIAL_PROTOCOLLNPGM("Finished!");
|
|
|
|
|
|
|
|
|
|
if (verbose_level > 0) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Mean: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" Min: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(min, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" Max: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(max, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" Range: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(max-min, 3);
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if (verbose_level > 0) {
|
|
|
|
|
SERIAL_PROTOCOLPGM("Mean: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" Min: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(min, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" Max: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(max, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM(" Range: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(max-min, 3);
|
|
|
|
|
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
|
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
SERIAL_EOL();
|
|
|
|
|
|
|
|
|
|
FAIL:
|
|
|
|
|
|
|
|
|
|
clean_up_after_endstop_or_probe_move();
|
|
|
|
|
|
|
|
|
|
// Re-enable bed level correction if it had been on
|
|
|
|
|