Merge pull request #8725 from thinkyhead/bf2_hal_timer_for_advance

[2.0.x] TCNT0 => HAL_timer_get_current_count
2.0.x
Scott Lahteine 7 years ago committed by GitHub
commit a2ac452ef9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -118,8 +118,8 @@ volatile uint32_t Stepper::step_events_completed = 0; // The number of step even
constexpr hal_timer_t ADV_NEVER = HAL_TIMER_TYPE_MAX;
hal_timer_t Stepper::nextMainISR = 0,
Stepper::nextAdvanceISR = ADV_NEVER,
Stepper::eISR_Rate = ADV_NEVER;
Stepper::nextAdvanceISR = ADV_NEVER,
Stepper::eISR_Rate = ADV_NEVER;
volatile int Stepper::e_steps[E_STEPPERS];
int Stepper::final_estep_rate,
@ -152,9 +152,10 @@ volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 };
long Stepper::counter_m[MIXING_STEPPERS];
#endif
hal_timer_t Stepper::acc_step_rate; // needed for deceleration start point
uint8_t Stepper::step_loops, Stepper::step_loops_nominal;
hal_timer_t Stepper::OCR1A_nominal;
hal_timer_t Stepper::OCR1A_nominal,
Stepper::acc_step_rate; // needed for deceleration start point
volatile long Stepper::endstops_trigsteps[XYZ];
@ -557,13 +558,13 @@ void Stepper::isr() {
/**
* If a minimum pulse time was specified get the timer 0 value.
*
* TCNT0 has an 8x prescaler, so it increments every 8 cycles.
* On AVR the TCNT0 timer has an 8x prescaler, so it increments every 8 cycles.
* That's every 0.5µs on 16MHz and every 0.4µs on 20MHz.
* 20 counts of TCNT0 -by itself- is a good pulse delay.
* 10µs = 160 or 200 cycles.
*/
#if EXTRA_CYCLES_XYZE > 20
uint32_t pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM);
hal_timer_t pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM);
#endif
#if HAS_X_STEP
@ -676,12 +677,12 @@ void Stepper::isr() {
NOMORE(acc_step_rate, current_block->nominal_rate);
// step_rate to timer interval
const hal_timer_t timer = calc_timer(acc_step_rate);
const hal_timer_t interval = calc_timer_interval(acc_step_rate);
SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
_NEXT_ISR(ocr_val);
acceleration_time += timer;
acceleration_time += interval;
#if ENABLED(LIN_ADVANCE)
@ -693,7 +694,7 @@ void Stepper::isr() {
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif
}
eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], interval, step_loops);
#endif // LIN_ADVANCE
}
@ -713,11 +714,11 @@ void Stepper::isr() {
step_rate = current_block->final_rate;
// step_rate to timer interval
const hal_timer_t timer = calc_timer(step_rate);
const hal_timer_t interval = calc_timer_interval(step_rate);
SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
SPLIT(interval); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL
_NEXT_ISR(ocr_val);
deceleration_time += timer;
deceleration_time += interval;
#if ENABLED(LIN_ADVANCE)
@ -729,7 +730,7 @@ void Stepper::isr() {
current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17;
#endif
}
eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops);
eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], interval, step_loops);
#endif // LIN_ADVANCE
}
@ -754,7 +755,7 @@ void Stepper::isr() {
#ifdef CPU_32_BIT
// Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room
hal_timer_t stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM),
stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US;
stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US;
HAL_timer_set_count(STEP_TIMER_NUM, max(stepper_timer_count, stepper_timer_current_count));
#else
NOLESS(OCR1A, TCNT1 + 16);
@ -817,7 +818,7 @@ void Stepper::isr() {
for (uint8_t i = step_loops; i--;) {
#if EXTRA_CYCLES_E > 20
uint32_t pulse_start = TCNT0;
hal_timer_t pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM);
#endif
START_E_PULSE(0);
@ -836,8 +837,8 @@ void Stepper::isr() {
// For minimum pulse time wait before stopping pulses
#if EXTRA_CYCLES_E > 20
while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
pulse_start = TCNT0;
while (EXTRA_CYCLES_E > (hal_timer_t)(HAL_timer_get_current_count(STEP_TIMER_NUM) - pulse_start) * (STEPPER_TIMER_PRESCALE)) { /* nada */ }
pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM);
#elif EXTRA_CYCLES_E > 0
DELAY_NOPS(EXTRA_CYCLES_E);
#endif
@ -858,7 +859,7 @@ void Stepper::isr() {
// For minimum pulse time wait before looping
#if EXTRA_CYCLES_E > 20
if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
if (i) while (EXTRA_CYCLES_E > (hal_timer_t)(HAL_timer_get_current_count(STEP_TIMER_NUM) - pulse_start) * (STEPPER_TIMER_PRESCALE)) { /* nada */ }
#elif EXTRA_CYCLES_E > 0
if (i) DELAY_NOPS(EXTRA_CYCLES_E);
#endif
@ -1297,8 +1298,8 @@ void Stepper::report_positions() {
#define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true)
#if EXTRA_CYCLES_BABYSTEP > 20
#define _SAVE_START const uint32_t pulse_start = TCNT0
#define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ }
#define _SAVE_START const hal_timer_t pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM)
#define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(HAL_timer_get_current_count(STEP_TIMER_NUM) - pulse_start) * (STEPPER_TIMER_PRESCALE)) { /* nada */ }
#else
#define _SAVE_START NOOP
#if EXTRA_CYCLES_BABYSTEP > 0

@ -278,7 +278,7 @@ class Stepper {
private:
FORCE_INLINE static hal_timer_t calc_timer(hal_timer_t step_rate) {
FORCE_INLINE static hal_timer_t calc_timer_interval(hal_timer_t step_rate) {
hal_timer_t timer;
NOMORE(step_rate, MAX_STEP_FREQUENCY);
@ -359,11 +359,11 @@ class Stepper {
deceleration_time = 0;
// step_rate to timer interval
OCR1A_nominal = calc_timer(current_block->nominal_rate);
OCR1A_nominal = calc_timer_interval(current_block->nominal_rate);
// make a note of the number of step loops required at nominal speed
step_loops_nominal = step_loops;
acc_step_rate = current_block->initial_rate;
acceleration_time = calc_timer(acc_step_rate);
acceleration_time = calc_timer_interval(acc_step_rate);
_NEXT_ISR(acceleration_time);
#if ENABLED(LIN_ADVANCE)

@ -1588,7 +1588,7 @@ void Temperature::set_current_temp_raw() {
/**
* Timer 0 is shared with millies so don't change the prescaler.
*
* This ISR uses the compare method so it runs at the base
* On AVR this ISR uses the compare method so it runs at the base
* frequency (16 MHz / 64 / 256 = 976.5625 Hz), but at the TCNT0 set
* in OCR0B above (128 or halfway between OVFs).
*

Loading…
Cancel
Save