soft_pwm: avoid useless refetches of pwm_count

The compiler is not able to reuse the value of pwm_count, but reloads it
on every evaluation, if is stored in a static variable, as it cannot prove
it will be unchanged. A variable with local scope may not be modified from
the outside, so its value can be reused.
Doing so reduces text size and instruction count.

Signed-off-by: Stefan Brüns <stefan.bruens@rwth-aachen.de>
2.0.x
Stefan Brüns 8 years ago committed by Scott Lahteine
parent 35a55d5757
commit 0a74774af1

@ -1512,6 +1512,8 @@ void Temperature::isr() {
static uint8_t temp_count = 0; static uint8_t temp_count = 0;
static TempState temp_state = StartupDelay; static TempState temp_state = StartupDelay;
static uint8_t pwm_count = _BV(SOFT_PWM_SCALE); static uint8_t pwm_count = _BV(SOFT_PWM_SCALE);
// avoid multiple loads of pwm_count
uint8_t pwm_count_tmp = pwm_count;
// Static members for each heater // Static members for each heater
#if ENABLED(SLOW_PWM_HEATERS) #if ENABLED(SLOW_PWM_HEATERS)
@ -1555,8 +1557,8 @@ void Temperature::isr() {
/** /**
* Standard PWM modulation * Standard PWM modulation
*/ */
if (pwm_count >= 127) { if (pwm_count_tmp >= 127) {
pwm_count -= 127; pwm_count_tmp -= 127;
soft_pwm_0 = (soft_pwm_0 & pwm_mask) + soft_pwm[0]; soft_pwm_0 = (soft_pwm_0 & pwm_mask) + soft_pwm[0];
WRITE_HEATER_0(soft_pwm_0 > pwm_mask ? HIGH : LOW); WRITE_HEATER_0(soft_pwm_0 > pwm_mask ? HIGH : LOW);
#if HOTENDS > 1 #if HOTENDS > 1
@ -1593,30 +1595,30 @@ void Temperature::isr() {
#endif #endif
} }
if (soft_pwm_0 <= pwm_count) WRITE_HEATER_0(0); if (soft_pwm_0 <= pwm_count_tmp) WRITE_HEATER_0(0);
#if HOTENDS > 1 #if HOTENDS > 1
if (soft_pwm_1 <= pwm_count) WRITE_HEATER_1(0); if (soft_pwm_1 <= pwm_count_tmp) WRITE_HEATER_1(0);
#if HOTENDS > 2 #if HOTENDS > 2
if (soft_pwm_2 <= pwm_count) WRITE_HEATER_2(0); if (soft_pwm_2 <= pwm_count_tmp) WRITE_HEATER_2(0);
#if HOTENDS > 3 #if HOTENDS > 3
if (soft_pwm_3 <= pwm_count) WRITE_HEATER_3(0); if (soft_pwm_3 <= pwm_count_tmp) WRITE_HEATER_3(0);
#endif #endif
#endif #endif
#endif #endif
#if HAS_HEATER_BED #if HAS_HEATER_BED
if (soft_pwm_BED <= pwm_count) WRITE_HEATER_BED(0); if (soft_pwm_BED <= pwm_count_tmp) WRITE_HEATER_BED(0);
#endif #endif
#if ENABLED(FAN_SOFT_PWM) #if ENABLED(FAN_SOFT_PWM)
#if HAS_FAN0 #if HAS_FAN0
if (soft_pwm_fan[0] <= pwm_count) WRITE_FAN(0); if (soft_pwm_fan[0] <= pwm_count_tmp) WRITE_FAN(0);
#endif #endif
#if HAS_FAN1 #if HAS_FAN1
if (soft_pwm_fan[1] <= pwm_count) WRITE_FAN1(0); if (soft_pwm_fan[1] <= pwm_count_tmp) WRITE_FAN1(0);
#endif #endif
#if HAS_FAN2 #if HAS_FAN2
if (soft_pwm_fan[2] <= pwm_count) WRITE_FAN2(0); if (soft_pwm_fan[2] <= pwm_count_tmp) WRITE_FAN2(0);
#endif #endif
#endif #endif
@ -1628,7 +1630,7 @@ void Temperature::isr() {
// 3: / 16 = 61.0352 Hz // 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz // 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz // 5: / 4 = 244.1406 Hz
pwm_count += _BV(SOFT_PWM_SCALE); pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
#else // SLOW_PWM_HEATERS #else // SLOW_PWM_HEATERS
@ -1702,8 +1704,8 @@ void Temperature::isr() {
#endif #endif
#if ENABLED(FAN_SOFT_PWM) #if ENABLED(FAN_SOFT_PWM)
if (pwm_count >= 127) { if (pwm_count_tmp >= 127) {
pwm_count = 0; pwm_count_tmp = 0;
#if HAS_FAN0 #if HAS_FAN0
soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1; soft_pwm_fan[0] = fanSpeedSoftPwm[0] >> 1;
WRITE_FAN(soft_pwm_fan[0] > 0 ? HIGH : LOW); WRITE_FAN(soft_pwm_fan[0] > 0 ? HIGH : LOW);
@ -1718,13 +1720,13 @@ void Temperature::isr() {
#endif #endif
} }
#if HAS_FAN0 #if HAS_FAN0
if (soft_pwm_fan[0] <= pwm_count) WRITE_FAN(0); if (soft_pwm_fan[0] <= pwm_count_tmp) WRITE_FAN(0);
#endif #endif
#if HAS_FAN1 #if HAS_FAN1
if (soft_pwm_fan[1] <= pwm_count) WRITE_FAN1(0); if (soft_pwm_fan[1] <= pwm_count_tmp) WRITE_FAN1(0);
#endif #endif
#if HAS_FAN2 #if HAS_FAN2
if (soft_pwm_fan[2] <= pwm_count) WRITE_FAN2(0); if (soft_pwm_fan[2] <= pwm_count_tmp) WRITE_FAN2(0);
#endif #endif
#endif //FAN_SOFT_PWM #endif //FAN_SOFT_PWM
@ -1736,7 +1738,7 @@ void Temperature::isr() {
// 3: / 16 = 61.0352 Hz // 3: / 16 = 61.0352 Hz
// 4: / 8 = 122.0703 Hz // 4: / 8 = 122.0703 Hz
// 5: / 4 = 244.1406 Hz // 5: / 4 = 244.1406 Hz
pwm_count += _BV(SOFT_PWM_SCALE); pwm_count = pwm_count_tmp + _BV(SOFT_PWM_SCALE);
// increment slow_pwm_count only every 64th pwm_count, // increment slow_pwm_count only every 64th pwm_count,
// i.e. yielding a PWM frequency of 16/128 Hz (8s). // i.e. yielding a PWM frequency of 16/128 Hz (8s).

Loading…
Cancel
Save