|
|
|
#ifndef CONFIGURATION_ADV_H
|
|
|
|
#define CONFIGURATION_ADV_H
|
|
|
|
|
|
|
|
//===========================================================================
|
|
|
|
//=============================Thermal Settings ============================
|
|
|
|
//===========================================================================
|
|
|
|
|
|
|
|
#ifdef BED_LIMIT_SWITCHING
|
|
|
|
#define BED_HYSTERESIS 2 //only disable heating if T>target+BED_HYSTERESIS and enable heating if T>target-BED_HYSTERESIS
|
|
|
|
#endif
|
|
|
|
#define BED_CHECK_INTERVAL 5000 //ms between checks in bang-bang control
|
|
|
|
|
|
|
|
//// Heating sanity check:
|
|
|
|
// This waits for the watchperiod in milliseconds whenever an M104 or M109 increases the target temperature
|
|
|
|
// If the temperature has not increased at the end of that period, the target temperature is set to zero.
|
|
|
|
// It can be reset with another M104/M109
|
|
|
|
//#define WATCHPERIOD 20000 //20 seconds
|
|
|
|
|
|
|
|
// Wait for Cooldown
|
|
|
|
// This defines if the M109 call should not block if it is cooling down.
|
|
|
|
// example: From a current temp of 220, you set M109 S200.
|
|
|
|
// if CooldownNoWait is defined M109 will not wait for the cooldown to finish
|
|
|
|
#define CooldownNoWait true
|
|
|
|
|
|
|
|
#ifdef PIDTEMP
|
|
|
|
// this adds an experimental additional term to the heatingpower, proportional to the extrusion speed.
|
|
|
|
// if Kc is choosen well, the additional required power due to increased melting should be compensated.
|
|
|
|
#define PID_ADD_EXTRUSION_RATE
|
|
|
|
#ifdef PID_ADD_EXTRUSION_RATE
|
|
|
|
#define DEFAULT_Kc (1) //heatingpower=Kc*(e_speed)
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
//automatic temperature: The hot end target temperature is calculated by all the buffered lines of gcode.
|
|
|
|
//The maximum buffered steps/sec of the extruder motor are called "se".
|
|
|
|
//You enter the autotemp mode by a M109 S<mintemp> T<maxtemp> F<factor>
|
|
|
|
// the target temperature is set to mintemp+factor*se[steps/sec] and limited by mintemp and maxtemp
|
|
|
|
// you exit the value by any M109 without F*
|
|
|
|
// Also, if the temperature is set to a value <mintemp, it is not changed by autotemp.
|
|
|
|
// on an ultimaker, some initial testing worked with M109 S215 B260 F1 in the start.gcode
|
|
|
|
#define AUTOTEMP
|
|
|
|
#ifdef AUTOTEMP
|
|
|
|
#define AUTOTEMP_OLDWEIGHT 0.98
|
|
|
|
#endif
|
|
|
|
|
|
|
|
// extruder run-out prevention.
|
|
|
|
//if the machine is idle, and the temperature over MINTEMP, every couple of SECONDS some filament is extruded
|
|
|
|
//#define EXTRUDER_RUNOUT_PREVENT
|
|
|
|
#define EXTRUDER_RUNOUT_MINTEMP 190
|
|
|
|
#define EXTRUDER_RUNOUT_SECONDS 30.
|
|
|
|
#define EXTRUDER_RUNOUT_ESTEPS 14. //mm filament
|
|
|
|
#define EXTRUDER_RUNOUT_SPEED 1500. //extrusion speed
|
|
|
|
#define EXTRUDER_RUNOUT_EXTRUDE 100
|
|
|
|
|
|
|
|
//These defines help to calibrate the AD595 sensor in case you get wrong temperature measurements.
|
|
|
|
//The measured temperature is defined as "actualTemp = (measuredTemp * TEMP_SENSOR_AD595_GAIN) + TEMP_SENSOR_AD595_OFFSET"
|
|
|
|
#define TEMP_SENSOR_AD595_OFFSET 0.0
|
|
|
|
#define TEMP_SENSOR_AD595_GAIN 1.0
|
|
|
|
|
|
|
|
//This is for controlling a fan to cool down the stepper drivers
|
|
|
|
//it will turn on when any driver is enabled
|
|
|
|
//and turn off after the set amount of seconds from last driver being disabled again
|
|
|
|
//#define CONTROLLERFAN_PIN 23 //Pin used for the fan to cool controller, comment out to disable this function
|
|
|
|
#define CONTROLLERFAN_SEC 60 //How many seconds, after all motors were disabled, the fan should run
|
|
|
|
|
|
|
|
//===========================================================================
|
|
|
|
//=============================Mechanical Settings===========================
|
|
|
|
//===========================================================================
|
|
|
|
|
|
|
|
// This defines the number of extruders
|
|
|
|
#define EXTRUDERS 1
|
|
|
|
|
|
|
|
#define ENDSTOPS_ONLY_FOR_HOMING // If defined the endstops will only be used for homing
|
|
|
|
|
|
|
|
//#define Z_LATE_ENABLE // Enable Z the last moment. Needed if your Z driver overheats.
|
|
|
|
|
|
|
|
// A single Z stepper driver is usually used to drive 2 stepper motors.
|
|
|
|
// Uncomment this define to utilize a separate stepper driver for each Z axis motor.
|
|
|
|
// Only a few motherboards support this, like RAMPS, which have dual extruder support (the 2nd, often unused, extruder driver is used
|
|
|
|
// to control the 2nd Z axis stepper motor). The pins are currently only defined for a RAMPS motherboards.
|
|
|
|
// On a RAMPS (or other 5 driver) motherboard, using this feature will limit you to using 1 extruder.
|
|
|
|
//#define Z_DUAL_STEPPER_DRIVERS
|
|
|
|
|
|
|
|
#ifdef Z_DUAL_STEPPER_DRIVERS
|
|
|
|
#undef EXTRUDERS
|
|
|
|
#define EXTRUDERS 1
|
|
|
|
#endif
|
|
|
|
|
|
|
|
//homing hits the endstop, then retracts by this distance, before it tries to slowly bump again:
|
|
|
|
#define X_HOME_RETRACT_MM 5
|
|
|
|
#define Y_HOME_RETRACT_MM 5
|
|
|
|
#define Z_HOME_RETRACT_MM 1
|
|
|
|
//#define QUICK_HOME //if this is defined, if both x and y are to be homed, a diagonal move will be performed initially.
|
|
|
|
|
|
|
|
#define AXIS_RELATIVE_MODES {false, false, false, false}
|
|
|
|
|
|
|
|
#define MAX_STEP_FREQUENCY 40000 // Max step frequency for Ultimaker (5000 pps / half step)
|
|
|
|
|
|
|
|
//By default pololu step drivers require an active high signal. However, some high power drivers require an active low signal as step.
|
|
|
|
#define INVERT_X_STEP_PIN false
|
|
|
|
#define INVERT_Y_STEP_PIN false
|
|
|
|
#define INVERT_Z_STEP_PIN false
|
|
|
|
#define INVERT_E_STEP_PIN false
|
|
|
|
|
|
|
|
//default stepper release if idle
|
|
|
|
#define DEFAULT_STEPPER_DEACTIVE_TIME 60
|
|
|
|
|
|
|
|
#define DEFAULT_MINIMUMFEEDRATE 0.0 // minimum feedrate
|
|
|
|
#define DEFAULT_MINTRAVELFEEDRATE 0.0
|
|
|
|
|
|
|
|
// minimum time in microseconds that a movement needs to take if the buffer is emptied.
|
|
|
|
#define DEFAULT_MINSEGMENTTIME 20000
|
|
|
|
|
|
|
|
// If defined the movements slow down when the look ahead buffer is only half full
|
|
|
|
#define SLOWDOWN
|
|
|
|
|
|
|
|
// Frequency limit
|
|
|
|
// See nophead's blog for more info
|
|
|
|
// Not working O
|
|
|
|
//#define XY_FREQUENCY_LIMIT 15
|
|
|
|
|
|
|
|
// Minimum planner junction speed. Sets the default minimum speed the planner plans for at the end
|
|
|
|
// of the buffer and all stops. This should not be much greater than zero and should only be changed
|
|
|
|
// if unwanted behavior is observed on a user's machine when running at very slow speeds.
|
|
|
|
#define MINIMUM_PLANNER_SPEED 0.05// (mm/sec)
|
|
|
|
|
|
|
|
//===========================================================================
|
|
|
|
//=============================Additional Features===========================
|
|
|
|
//===========================================================================
|
|
|
|
|
|
|
|
|
|
|
|
#define SD_FINISHED_STEPPERRELEASE true //if sd support and the file is finished: disable steppers?
|
|
|
|
#define SD_FINISHED_RELEASECOMMAND "M84 X Y Z E" // no z because of layer shift.
|
|
|
|
|
|
|
|
// The hardware watchdog should halt the Microcontroller, in case the firmware gets stuck somewhere. However:
|
|
|
|
// the Watchdog is not working well, so please only enable this for testing
|
|
|
|
// this enables the watchdog interrupt.
|
|
|
|
//#define USE_WATCHDOG
|
|
|
|
//#ifdef USE_WATCHDOG
|
|
|
|
// you cannot reboot on a mega2560 due to a bug in he bootloader. Hence, you have to reset manually, and this is done hereby:
|
|
|
|
//#define RESET_MANUAL
|
|
|
|
//#define WATCHDOG_TIMEOUT 4 //seconds
|
|
|
|
//#endif
|
|
|
|
|
|
|
|
// extruder advance constant (s2/mm3)
|
|
|
|
//
|
|
|
|
// advance (steps) = STEPS_PER_CUBIC_MM_E * EXTUDER_ADVANCE_K * cubic mm per second ^ 2
|
|
|
|
//
|
|
|
|
// hooke's law says: force = k * distance
|
|
|
|
// bernoulli's priniciple says: v ^ 2 / 2 + g . h + pressure / density = constant
|
|
|
|
// so: v ^ 2 is proportional to number of steps we advance the extruder
|
|
|
|
//#define ADVANCE
|
|
|
|
|
|
|
|
#ifdef ADVANCE
|
|
|
|
#define EXTRUDER_ADVANCE_K .0
|
|
|
|
|
|
|
|
#define D_FILAMENT 2.85
|
|
|
|
#define STEPS_MM_E 836
|
|
|
|
#define EXTRUTION_AREA (0.25 * D_FILAMENT * D_FILAMENT * 3.14159)
|
|
|
|
#define STEPS_PER_CUBIC_MM_E (axis_steps_per_unit[E_AXIS]/ EXTRUTION_AREA)
|
|
|
|
|
|
|
|
#endif // ADVANCE
|
|
|
|
|
|
|
|
// Arc interpretation settings:
|
|
|
|
#define MM_PER_ARC_SEGMENT 1
|
|
|
|
#define N_ARC_CORRECTION 25
|
|
|
|
|
|
|
|
const int dropsegments=5; //everything with less than this number of steps will be ignored as move and joined with the next movement
|
|
|
|
|
|
|
|
// If you are using a RAMPS board or cheap E-bay purchased boards that do not detect when an SD card is inserted
|
|
|
|
// You can get round this by connecting a push button or single throw switch to the pin defined as SDCARDCARDDETECT
|
|
|
|
// in the pins.h file. When using a push button pulling the pin to ground this will need inverted. This setting should
|
|
|
|
// be commented out otherwise
|
|
|
|
#define SDCARDDETECTINVERTED
|
|
|
|
|
|
|
|
#ifdef ULTIPANEL
|
|
|
|
#undef SDCARDDETECTINVERTED
|
|
|
|
#endif
|
|
|
|
//===========================================================================
|
|
|
|
//=============================Buffers ============================
|
|
|
|
//===========================================================================
|
|
|
|
|
|
|
|
// The number of linear motions that can be in the plan at any give time.
|
|
|
|
// THE BLOCK_BUFFER_SIZE NEEDS TO BE A POWER OF 2, i.g. 8,16,32 because shifts and ors are used to do the ringbuffering.
|
|
|
|
#if defined SDSUPPORT
|
|
|
|
#define BLOCK_BUFFER_SIZE 16 // SD,LCD,Buttons take more memory, block buffer needs to be smaller
|
|
|
|
#else
|
|
|
|
#define BLOCK_BUFFER_SIZE 16 // maximize block buffer
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
//The ASCII buffer for recieving from the serial:
|
|
|
|
#define MAX_CMD_SIZE 96
|
|
|
|
#define BUFSIZE 4
|
|
|
|
|
|
|
|
|
|
|
|
// Firmware based and LCD controled retract
|
|
|
|
// M207 and M208 can be used to define parameters for the retraction.
|
|
|
|
// The retraction can be called by the slicer using G10 and G11
|
|
|
|
// until then, intended retractions can be detected by moves that only extrude and the direction.
|
|
|
|
// the moves are than replaced by the firmware controlled ones.
|
|
|
|
|
|
|
|
// #define FWRETRACT //ONLY PARTIALLY TESTED
|
|
|
|
#define MIN_RETRACT 0.1 //minimum extruded mm to accept a automatic gcode retraction attempt
|
|
|
|
|
|
|
|
//===========================================================================
|
|
|
|
//============================= Define Defines ============================
|
|
|
|
//===========================================================================
|
|
|
|
|
|
|
|
#if TEMP_SENSOR_0 > 0
|
|
|
|
#define THERMISTORHEATER_0 TEMP_SENSOR_0
|
|
|
|
#define HEATER_0_USES_THERMISTOR
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_1 > 0
|
|
|
|
#define THERMISTORHEATER_1 TEMP_SENSOR_1
|
|
|
|
#define HEATER_1_USES_THERMISTOR
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_2 > 0
|
|
|
|
#define THERMISTORHEATER_2 TEMP_SENSOR_2
|
|
|
|
#define HEATER_2_USES_THERMISTOR
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_BED > 0
|
|
|
|
#define THERMISTORBED TEMP_SENSOR_BED
|
|
|
|
#define BED_USES_THERMISTOR
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_0 == -1
|
|
|
|
#define HEATER_0_USES_AD595
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_1 == -1
|
|
|
|
#define HEATER_1_USES_AD595
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_2 == -1
|
|
|
|
#define HEATER_2_USES_AD595
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_BED == -1
|
|
|
|
#define BED_USES_AD595
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_0 == -2
|
|
|
|
#define HEATER_0_USES_MAX6675
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_0 == 0
|
|
|
|
#undef HEATER_0_MINTEMP
|
|
|
|
#undef HEATER_0_MAXTEMP
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_1 == 0
|
|
|
|
#undef HEATER_1_MINTEMP
|
|
|
|
#undef HEATER_1_MAXTEMP
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_2 == 0
|
|
|
|
#undef HEATER_2_MINTEMP
|
|
|
|
#undef HEATER_2_MAXTEMP
|
|
|
|
#endif
|
|
|
|
#if TEMP_SENSOR_BED == 0
|
|
|
|
#undef BED_MINTEMP
|
|
|
|
#undef BED_MAXTEMP
|
|
|
|
#endif
|
|
|
|
|
|
|
|
|
|
|
|
#endif //__CONFIGURATION_ADV_H
|