|
|
|
/**
|
|
|
|
* Marlin 3D Printer Firmware
|
|
|
|
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
|
|
|
|
*
|
|
|
|
* Based on Sprinter and grbl.
|
|
|
|
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
|
|
|
|
*
|
|
|
|
* This program is free software: you can redistribute it and/or modify
|
|
|
|
* it under the terms of the GNU General Public License as published by
|
|
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
|
|
* (at your option) any later version.
|
|
|
|
*
|
|
|
|
* This program is distributed in the hope that it will be useful,
|
|
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
|
|
* GNU General Public License for more details.
|
|
|
|
*
|
|
|
|
* You should have received a copy of the GNU General Public License
|
|
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
|
|
*
|
|
|
|
*/
|
|
|
|
|
|
|
|
#include "../../inc/MarlinConfig.h"
|
|
|
|
|
|
|
|
#if ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST)
|
|
|
|
|
|
|
|
#include "../gcode.h"
|
|
|
|
#include "../../module/motion.h"
|
|
|
|
#include "../../module/probe.h"
|
|
|
|
|
|
|
|
|
|
|
|
#include "../../feature/bedlevel/bedlevel.h"
|
|
|
|
|
|
|
|
|
|
|
|
#if HAS_LEVELING
|
|
|
|
#include "../../module/planner.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
/**
|
|
|
|
* M48: Z probe repeatability measurement function.
|
|
|
|
*
|
|
|
|
* Usage:
|
|
|
|
* M48 <P#> <X#> <Y#> <V#> <E> <L#> <S>
|
|
|
|
* P = Number of sampled points (4-50, default 10)
|
|
|
|
* X = Sample X position
|
|
|
|
* Y = Sample Y position
|
|
|
|
* V = Verbose level (0-4, default=1)
|
|
|
|
* E = Engage Z probe for each reading
|
|
|
|
* L = Number of legs of movement before probe
|
|
|
|
* S = Schizoid (Or Star if you prefer)
|
|
|
|
*
|
|
|
|
* This function requires the machine to be homed before invocation.
|
|
|
|
*/
|
|
|
|
void GcodeSuite::M48() {
|
|
|
|
|
|
|
|
if (axis_unhomed_error()) return;
|
|
|
|
|
|
|
|
const int8_t verbose_level = parser.byteval('V', 1);
|
|
|
|
if (!WITHIN(verbose_level, 0, 4)) {
|
|
|
|
SERIAL_PROTOCOLLNPGM("?(V)erbose level is implausible (0-4).");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
if (verbose_level > 0)
|
|
|
|
SERIAL_PROTOCOLLNPGM("M48 Z-Probe Repeatability Test");
|
|
|
|
|
|
|
|
const int8_t n_samples = parser.byteval('P', 10);
|
|
|
|
if (!WITHIN(n_samples, 4, 50)) {
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Sample size not plausible (4-50).");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
const ProbePtRaise raise_after = parser.boolval('E') ? PROBE_PT_STOW : PROBE_PT_RAISE;
|
|
|
|
|
|
|
|
float X_current = current_position[X_AXIS],
|
|
|
|
Y_current = current_position[Y_AXIS];
|
|
|
|
|
|
|
|
const float X_probe_location = parser.linearval('X', X_current + X_PROBE_OFFSET_FROM_EXTRUDER),
|
|
|
|
Y_probe_location = parser.linearval('Y', Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER);
|
|
|
|
|
|
|
|
if (!position_is_reachable_by_probe(X_probe_location, Y_probe_location)) {
|
|
|
|
SERIAL_PROTOCOLLNPGM("? (X,Y) out of bounds.");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
bool seen_L = parser.seen('L');
|
|
|
|
uint8_t n_legs = seen_L ? parser.value_byte() : 0;
|
|
|
|
if (n_legs > 15) {
|
|
|
|
SERIAL_PROTOCOLLNPGM("?Number of legs in movement not plausible (0-15).");
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
if (n_legs == 1) n_legs = 2;
|
|
|
|
|
|
|
|
const bool schizoid_flag = parser.boolval('S');
|
|
|
|
if (schizoid_flag && !seen_L) n_legs = 7;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Now get everything to the specified probe point So we can safely do a
|
|
|
|
* probe to get us close to the bed. If the Z-Axis is far from the bed,
|
|
|
|
* we don't want to use that as a starting point for each probe.
|
|
|
|
*/
|
|
|
|
if (verbose_level > 2)
|
|
|
|
SERIAL_PROTOCOLLNPGM("Positioning the probe...");
|
|
|
|
|
|
|
|
// Disable bed level correction in M48 because we want the raw data when we probe
|
|
|
|
|
|
|
|
#if HAS_LEVELING
|
|
|
|
const bool was_enabled = planner.leveling_active;
|
|
|
|
set_bed_leveling_enabled(false);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
setup_for_endstop_or_probe_move();
|
|
|
|
|
|
|
|
double mean = 0.0, sigma = 0.0, min = 99999.9, max = -99999.9, sample_set[n_samples];
|
|
|
|
|
|
|
|
// Move to the first point, deploy, and probe
|
|
|
|
const float t = probe_pt(X_probe_location, Y_probe_location, raise_after, verbose_level);
|
|
|
|
bool probing_good = !isnan(t);
|
|
|
|
|
|
|
|
if (probing_good) {
|
|
|
|
randomSeed(millis());
|
|
|
|
|
|
|
|
for (uint8_t n = 0; n < n_samples; n++) {
|
|
|
|
if (n_legs) {
|
|
|
|
const int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise
|
|
|
|
float angle = random(0, 360);
|
|
|
|
const float radius = random(
|
|
|
|
#if ENABLED(DELTA)
|
|
|
|
(int) (0.1250000000 * (DELTA_PRINTABLE_RADIUS)),
|
|
|
|
(int) (0.3333333333 * (DELTA_PRINTABLE_RADIUS))
|
|
|
|
#else
|
|
|
|
(int) 5.0, (int) (0.125 * MIN(X_BED_SIZE, Y_BED_SIZE))
|
|
|
|
#endif
|
|
|
|
);
|
|
|
|
|
|
|
|
if (verbose_level > 3) {
|
|
|
|
SERIAL_ECHOPAIR("Starting radius: ", radius);
|
|
|
|
SERIAL_ECHOPAIR(" angle: ", angle);
|
|
|
|
SERIAL_ECHOPGM(" Direction: ");
|
|
|
|
if (dir > 0) SERIAL_ECHOPGM("Counter-");
|
|
|
|
SERIAL_ECHOLNPGM("Clockwise");
|
|
|
|
}
|
|
|
|
|
|
|
|
for (uint8_t l = 0; l < n_legs - 1; l++) {
|
|
|
|
double delta_angle;
|
|
|
|
|
|
|
|
if (schizoid_flag)
|
|
|
|
// The points of a 5 point star are 72 degrees apart. We need to
|
|
|
|
// skip a point and go to the next one on the star.
|
|
|
|
delta_angle = dir * 2.0 * 72.0;
|
|
|
|
|
|
|
|
else
|
|
|
|
// If we do this line, we are just trying to move further
|
|
|
|
// around the circle.
|
|
|
|
delta_angle = dir * (float) random(25, 45);
|
|
|
|
|
|
|
|
angle += delta_angle;
|
|
|
|
|
|
|
|
while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the
|
|
|
|
angle -= 360.0; // Arduino documentation says the trig functions should not be given values
|
|
|
|
while (angle < 0.0) // outside of this range. It looks like they behave correctly with
|
|
|
|
angle += 360.0; // numbers outside of the range, but just to be safe we clamp them.
|
|
|
|
|
|
|
|
X_current = X_probe_location - (X_PROBE_OFFSET_FROM_EXTRUDER) + cos(RADIANS(angle)) * radius;
|
|
|
|
Y_current = Y_probe_location - (Y_PROBE_OFFSET_FROM_EXTRUDER) + sin(RADIANS(angle)) * radius;
|
|
|
|
|
|
|
|
#if DISABLED(DELTA)
|
|
|
|
X_current = constrain(X_current, X_MIN_POS, X_MAX_POS);
|
|
|
|
Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS);
|
|
|
|
#else
|
|
|
|
// If we have gone out too far, we can do a simple fix and scale the numbers
|
|
|
|
// back in closer to the origin.
|
|
|
|
while (!position_is_reachable_by_probe(X_current, Y_current)) {
|
|
|
|
X_current *= 0.8;
|
|
|
|
Y_current *= 0.8;
|
|
|
|
if (verbose_level > 3) {
|
|
|
|
SERIAL_ECHOPAIR("Pulling point towards center:", X_current);
|
|
|
|
SERIAL_ECHOLNPAIR(", ", Y_current);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
if (verbose_level > 3) {
|
|
|
|
SERIAL_PROTOCOLPGM("Going to:");
|
|
|
|
SERIAL_ECHOPAIR(" X", X_current);
|
|
|
|
SERIAL_ECHOPAIR(" Y", Y_current);
|
|
|
|
SERIAL_ECHOLNPAIR(" Z", current_position[Z_AXIS]);
|
|
|
|
}
|
|
|
|
do_blocking_move_to_xy(X_current, Y_current);
|
|
|
|
} // n_legs loop
|
|
|
|
} // n_legs
|
|
|
|
|
|
|
|
// Probe a single point
|
|
|
|
sample_set[n] = probe_pt(X_probe_location, Y_probe_location, raise_after, 0);
|
|
|
|
|
|
|
|
// Break the loop if the probe fails
|
|
|
|
probing_good = !isnan(sample_set[n]);
|
|
|
|
if (!probing_good) break;
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Get the current mean for the data points we have so far
|
|
|
|
*/
|
|
|
|
double sum = 0.0;
|
|
|
|
for (uint8_t j = 0; j <= n; j++) sum += sample_set[j];
|
|
|
|
mean = sum / (n + 1);
|
|
|
|
|
|
|
|
NOMORE(min, sample_set[n]);
|
|
|
|
NOLESS(max, sample_set[n]);
|
|
|
|
|
|
|
|
/**
|
|
|
|
* Now, use that mean to calculate the standard deviation for the
|
|
|
|
* data points we have so far
|
|
|
|
*/
|
|
|
|
sum = 0.0;
|
|
|
|
for (uint8_t j = 0; j <= n; j++)
|
|
|
|
sum += sq(sample_set[j] - mean);
|
|
|
|
|
|
|
|
sigma = SQRT(sum / (n + 1));
|
|
|
|
if (verbose_level > 0) {
|
|
|
|
if (verbose_level > 1) {
|
|
|
|
SERIAL_PROTOCOL(n + 1);
|
|
|
|
SERIAL_PROTOCOLPGM(" of ");
|
|
|
|
SERIAL_PROTOCOL((int)n_samples);
|
|
|
|
SERIAL_PROTOCOLPGM(": z: ");
|
|
|
|
SERIAL_PROTOCOL_F(sample_set[n], 3);
|
|
|
|
if (verbose_level > 2) {
|
|
|
|
SERIAL_PROTOCOLPGM(" mean: ");
|
|
|
|
SERIAL_PROTOCOL_F(mean, 4);
|
|
|
|
SERIAL_PROTOCOLPGM(" sigma: ");
|
|
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
|
|
SERIAL_PROTOCOLPGM(" min: ");
|
|
|
|
SERIAL_PROTOCOL_F(min, 3);
|
|
|
|
SERIAL_PROTOCOLPGM(" max: ");
|
|
|
|
SERIAL_PROTOCOL_F(max, 3);
|
|
|
|
SERIAL_PROTOCOLPGM(" range: ");
|
|
|
|
SERIAL_PROTOCOL_F(max-min, 3);
|
|
|
|
}
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
} // n_samples loop
|
|
|
|
}
|
|
|
|
|
|
|
|
STOW_PROBE();
|
|
|
|
|
|
|
|
if (probing_good) {
|
|
|
|
SERIAL_PROTOCOLLNPGM("Finished!");
|
|
|
|
|
|
|
|
if (verbose_level > 0) {
|
|
|
|
SERIAL_PROTOCOLPGM("Mean: ");
|
|
|
|
SERIAL_PROTOCOL_F(mean, 6);
|
|
|
|
SERIAL_PROTOCOLPGM(" Min: ");
|
|
|
|
SERIAL_PROTOCOL_F(min, 3);
|
|
|
|
SERIAL_PROTOCOLPGM(" Max: ");
|
|
|
|
SERIAL_PROTOCOL_F(max, 3);
|
|
|
|
SERIAL_PROTOCOLPGM(" Range: ");
|
|
|
|
SERIAL_PROTOCOL_F(max-min, 3);
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
|
|
|
|
SERIAL_PROTOCOLPGM("Standard Deviation: ");
|
|
|
|
SERIAL_PROTOCOL_F(sigma, 6);
|
|
|
|
SERIAL_EOL();
|
|
|
|
SERIAL_EOL();
|
|
|
|
}
|
|
|
|
|
|
|
|
clean_up_after_endstop_or_probe_move();
|
|
|
|
|
|
|
|
// Re-enable bed level correction if it had been on
|
|
|
|
#if HAS_LEVELING
|
|
|
|
set_bed_leveling_enabled(was_enabled);
|
|
|
|
#endif
|
|
|
|
|
|
|
|
report_current_position();
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif // Z_MIN_PROBE_REPEATABILITY_TEST
|