You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1454 lines
63 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#if ENABLED(AUTO_BED_LEVELING_UBL)
//#include "vector_3.h"
//#include "qr_solve.h"
#include "UBL.h"
#include "hex_print_routines.h"
#include "configuration_store.h"
#include "planner.h"
#include "ultralcd.h"
#include <avr/io.h>
void lcd_babystep_z();
void lcd_return_to_status();
bool lcd_clicked();
void lcd_implementation_clear();
void lcd_mesh_edit_setup(float inital);
float lcd_mesh_edit();
void lcd_z_offset_edit_setup(float);
float lcd_z_offset_edit();
extern float meshedit_done;
extern long babysteps_done;
extern float code_value_float();
extern bool code_value_bool();
extern bool code_has_value();
extern float probe_pt(float x, float y, bool, int);
extern float zprobe_zoffset;
extern bool set_probe_deployed(bool);
#define DEPLOY_PROBE() set_probe_deployed(true)
#define STOW_PROBE() set_probe_deployed(false)
bool ProbeStay = true;
float ubl_3_point_1_X = UBL_PROBE_PT_1_X;
float ubl_3_point_1_Y = UBL_PROBE_PT_1_Y;
float ubl_3_point_2_X = UBL_PROBE_PT_2_X;
float ubl_3_point_2_Y = UBL_PROBE_PT_2_Y;
float ubl_3_point_3_X = UBL_PROBE_PT_3_X;
float ubl_3_point_3_Y = UBL_PROBE_PT_3_Y;
#define SIZE_OF_LITTLE_RAISE 0
#define BIG_RAISE_NOT_NEEDED 0
extern void lcd_quick_feedback();
/**
* G29: Unified Bed Leveling by Roxy
*/
// Transform required to compensate for bed level
//extern matrix_3x3 plan_bed_level_matrix;
/**
* Get the position applying the bed level matrix
*/
//vector_3 plan_get_position();
// static void set_bed_level_equation_lsq(double* plane_equation_coefficients);
// static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3);
/**
* G29: Mesh Based Compensation System
*
* Parameters understood by this leveling system:
*
* A Activate Activate the Unified Bed Leveling system.
*
* B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as
* G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card
* as a shim that the nozzle will pinch as it is lowered. The idea is that you
* can easily feel the nozzle getting to the same height by the amount of resistance
* the business card exhibits to movement. You should try to achieve the same amount
* of resistance on each probed point to facilitate accurate and repeatable measurements.
* You should be very careful not to drive the nozzle into the bussiness card with a
* lot of force as it is very possible to cause damage to your printer if your are
* careless. If you use the B option with G29 P2 B you can leave the number parameter off
* on its first use to enable measurement of the business card thickness. Subsequent usage
* of the B parameter can have the number previously measured supplied to the command.
* Incidently, you are much better off using something like a Spark Gap feeler gauge than
* something that compresses like a Business Card.
*
* C Continue Continue, Constant, Current Location. This is not a primary command. C is used to
* further refine the behaviour of several other commands. Issuing a G29 P1 C will
* continue the generation of a partially constructed Mesh without invalidating what has
* been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current
* location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C
* it indicates to use the current location instead of defaulting to the center of the print bed.
*
* D Disable Disable the Unified Bed Leveling system.
*
* E Stow_probe Stow the probe after each sampled point.
*
* F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the specified height,
* no correction is applied and natural printer kenimatics take over. If no number is specified
* for the command, 10mm is assummed to be reasonable.
*
* G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on
* a side.
*
* H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The
* default is 5mm.
*
* I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless
* the X and Y parameter are used. If no number is specified, only the closest Mesh
* point to the location is invalidated. The M parameter is available as well to produce
* a map after the operation. This command is useful to invalidate a portion of the
* Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When
* attempting to invalidate an isolated bad point in the mesh, the M option will indicate
* where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on
* the bed and use this feature to select the center of the area (or cell) you want to
* invalidate.
*
* K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This
* command litterly performs a difference between two Mesh.
*
* L Load * Load Mesh from the previously activated location in the EEPROM.
*
* L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated
* for subsequent Load and Store operations.
*
* O Map * Display the Mesh Map Topology.
* The parameter can be specified alone (ie. G29 O) or in combination with many of the
* other commands. The Mesh Map option works with all of the Phase
* commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O)
*
* N No Home G29 normally insists that a G28 has been performed. You can over rule this with an
* N option. In general, you should not do this. This can only be done safely with
* commands that do not move the nozzle.
*
* The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will
* start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with
* each additional Phase that processes it.
*
* P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the
* 3D Printer to the same state it was in before the Unified Bed Leveling Compensation
* was turned on. Setting the entire Mesh to Zero is a special case that allows
* a subsequent G or T leveling operation for backward compatability.
*
* P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using
* the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and
* DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically
* generated. This will be handled in Phase 2. If the Phase 1 command is given the
* C (Continue) parameter it does not invalidate the Mesh prior to automatically
* probing needed locations. This allows you to invalidate portions of the Mesh but still
* use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y
* parameter can be given to prioritize where the command should be trying to measure points.
* If the X and Y parameters are not specified the current probe position is used. Phase 1
* allows you to specify the M (Map) parameter so you can watch the generation of the Mesh.
* Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state.
* It will suspend generation of the Mesh if it sees the user request that. (This check is
* only done between probe points. You will need to press and hold the switch until the
* Phase 1 command can detect it.)
*
* P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H
* parameter to control the height between Mesh points. The default height for movement
* between Mesh points is 5mm. A smaller number can be used to make this part of the
* calibration less time consuming. You will be running the nozzle down until it just barely
* touches the glass. You should have the nozzle clean with no plastic obstructing your view.
* Use caution and move slowly. It is possible to damage your printer if you are careless.
* Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the
* nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED.
*
* The H parameter can be set negative if your Mesh dips in a large area. You can press
* and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You
* can then re-issue the G29 P 2 command with an H parameter that is more suitable for the
* area you are manually probing. Note that the command tries to start you in a corner
* of the bed where movement will be predictable. You can force the location to be used in
* the distance calculations by using the X and Y parameters. You may find it is helpful to
* print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where
* the nozzle will need to move in order to complete the command. The C parameter is
* available on the Phase 2 command also and indicates the search for points to measure should
* be done based on the current location of the nozzle.
*
* A B parameter is also available for this command and described up above. It places the
* manual probe subsystem into Business Card mode where the thickness of a business care is
* measured and then used to accurately set the nozzle height in all manual probing for the
* duration of the command. (S for Shim mode would be a better parameter name, but S is needed
* for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have
* better results if you use a flexible Shim that does not compress very much. That makes it
* easier for you to get the nozzle to press with similar amounts of force against the shim so you
* can get accurate measurements. As you are starting to touch the nozzle against the shim try
* to get it to grasp the shim with the same force as when you measured the thickness of the
* shim at the start of the command.
*
* Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression
* of the Mesh being built.
*
* P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is used to
* specify the Constant value to fill all invalid areas of the Mesh. If no C parameter is
* specified, a value of 0.0 is assumed. The R parameter can be given to specify the number
* of points to set. If the R parameter is specified the current nozzle position is used to
* find the closest points to alter unless the X and Y parameter are used to specify the fill
* location.
*
* P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of
* an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel.
* (More work and details on doing this later!)
* The System will search for the closest Mesh Point to the nozzle. It will move the
* nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle
* so it is just barely touching the bed. When the user clicks the control, the System
* will lock in that height for that point in the Mesh Compensation System.
*
* Phase 4 has several additional parameters that the user may find helpful. Phase 4
* can be started at a specific location by specifying an X and Y parameter. Phase 4
* can be requested to continue the adjustment of Mesh Points by using the R(epeat)
* parameter. If the Repetition count is not specified, it is assumed the user wishes
* to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited.
* The command can be terminated early (or after the area of interest has been edited) by
* pressing and holding the encoder wheel until the system recognizes the exit request.
* Phase 4's general form is G29 P4 [R # of points] [X position] [Y position]
*
* Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the
* information left on the printer's bed from the G26 command it is very straight forward
* and easy to fine tune the Mesh. One concept that is important to remember and that
* will make using the Phase 4 command easy to use is this: You are editing the Mesh Points.
* If you have too little clearance and not much plastic was extruded in an area, you want to
* LOWER the Mesh Point at the location. If you did not get good adheasion, you want to
* RAISE the Mesh Point at that location.
*
*
* P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and
* work with the Mesh if it is Mean Adjusted. You can specify a C parameter to
* Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically
* execute a G29 P6 C <mean height>.
*
* P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified
* with the C parameter. Being able to adjust the height of a Mesh is useful tool. It
* can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally,
* you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring
* 0.000 at the Z Home location.
*
* Q Test * Load specified Test Pattern to assist in checking correct operation of system. This
* command is not anticipated to be of much value to the typical user. It is intended
* for developers to help them verify correct operation of the Unified Bed Leveling System.
*
* S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the
* current state of the Unified Bed Leveling system in the EEPROM.
*
* S # Store Store the current Mesh at the specified location in EEPROM. Activate this location
* for subsequent Load and Store operations. It will also store the current state of
* the Unified Bed Leveling system in the EEPROM.
*
* S -1 Store Store the current Mesh as a print out that is suitable to be feed back into
* the system at a later date. The text generated can be saved and later sent by PronterFace or
* Repetier Host to reconstruct the current mesh on another machine.
*
* T 3-Point Perform a 3 Point Bed Leveling on the current Mesh
*
* W What? Display valuable data the Unified Bed Leveling System knows.
*
* X # * * Specify X Location for this line of commands
*
* Y # * * Specify Y Location for this line of commands
*
* Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered
* by just doing a G29 Z
*
* Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference.
* zprobe_zoffset is added to the calculation.
*
*
* Release Notes:
* You MUST do a M502 & M500 pair of commands to initialize the storage. Failure to do this
* will cause all kinds of problems. Enabling EEPROM Storage is highly recommended. With
* EEPROM Storage of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and
* G29 P0 G respectively.)
*
* Z-Probe Sleds are not currently fully supported. There were too many complications caused
* by them to support them in the Unified Bed Leveling code. Support for them will be handled
* better in the upcoming Z-Probe Object that will happen during the Code Clean Up phase. (That
* is what they really are: A special case of the Z-Probe.) When a Z-Probe Object appears, it
* should slip in under the Unified Bed Leveling code without major trauma.
*
* When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice
* the Unified Bed Leveling probes points further and further away from the starting location. (The
* starting location defaults to the center of the bed.) The original Grid and Mesh leveling used
* a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This
* allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to
* perform a small print and check out your settings quicker. You do not need to populate the
* entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize
* you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation
* gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair.
*
* The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort
* to get this Mesh data correct for a user's printer. We do not want this data destroyed as
* new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of
* the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the
* other data stored in the EEPROM. (For sure the developers are going to complain about this, but
* this is going to be helpful to the users!)
*
* The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big
* 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions
* we now have the functionality and features of all three systems combined.
*/
int Unified_Bed_Leveling_EEPROM_start = -1;
int UBL_has_control_of_LCD_Panel = 0;
volatile int G29_encoderDiff = 0; // This is volatile because it is getting changed at interrupt time.
// We keep the simple parameter flags and values as 'static' because we break out the
// parameter parsing into a support routine.
static int G29_Verbose_Level = 0, Test_Value = 0,
Phase_Value = -1, Repetition_Cnt = 1;
static bool Repeat_Flag = UBL_OK, C_Flag = false, X_Flag = UBL_OK, Y_Flag = UBL_OK, Statistics_Flag = UBL_OK, Business_Card_Mode = false;
static float X_Pos = 0.0, Y_Pos = 0.0, Height_Value = 5.0, measured_z, card_thickness = 0.0, Constant = 0.0;
static int Storage_Slot = 0, Test_Pattern = 0;
#if ENABLED(ULTRA_LCD)
void lcd_setstatus(const char* message, bool persist);
#endif
void gcode_G29() {
mesh_index_pair location;
int i, j, k;
float Z1, Z2, Z3;
G29_Verbose_Level = 0; // These may change, but let's get some reasonable values into them.
Repeat_Flag = UBL_OK;
Repetition_Cnt = 1;
C_Flag = false;
SERIAL_PROTOCOLPGM("Unified_Bed_Leveling_EEPROM_start=");
SERIAL_PROTOCOLLN(Unified_Bed_Leveling_EEPROM_start);
if (Unified_Bed_Leveling_EEPROM_start < 0) {
SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it ");
SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n");
return;
}
if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first
gcode_G28();
if (G29_Parameter_Parsing()) return; // abort if parsing the simple parameters causes a problem,
// Invalidate Mesh Points. This command is a little bit asymetrical because
// it directly specifies the repetition count and does not use the 'R' parameter.
if (code_seen('I')) {
Repetition_Cnt = code_has_value() ? code_value_int() : 1;
while (Repetition_Cnt--) {
location = find_closest_mesh_point_of_type(REAL, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
if (location.x_index < 0) {
SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n");
break; // No more invalid Mesh Points to populate
}
z_values[location.x_index][location.y_index] = NAN;
}
SERIAL_PROTOCOLLNPGM("Locations invalidated.\n");
}
if (code_seen('Q')) {
if (code_has_value()) Test_Pattern = code_value_int();
if (Test_Pattern < 0 || Test_Pattern > 4) {
SERIAL_PROTOCOLLNPGM("Invalid Test_Pattern value. (0-4)\n");
return;
}
SERIAL_PROTOCOLLNPGM("Loading Test_Pattern values.\n");
switch (Test_Pattern) {
case 0:
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a bowl shape. This is
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { // similar to what a user would see with
Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - i; // a poorly calibrated Delta.
Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - j;
z_values[i][j] += 2.0 * HYPOT(Z1, Z2);
}
}
break;
case 1:
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { // Create a diagonal line several Mesh
z_values[i][i] += 9.999; // cells thick that is raised
if (i < UBL_MESH_NUM_Y_POINTS - 1)
z_values[i][i + 1] += 9.999; // We want the altered line several mesh points thick
if (i > 0)
z_values[i][i - 1] += 9.999; // We want the altered line several mesh points thick
}
break;
case 2:
// Allow the user to specify the height because 10mm is
// a little bit extreme in some cases.
for (i = (UBL_MESH_NUM_X_POINTS) / 3.0; i < 2 * ((UBL_MESH_NUM_X_POINTS) / 3.0); i++) // Create a rectangular raised area in
for (j = (UBL_MESH_NUM_Y_POINTS) / 3.0; j < 2 * ((UBL_MESH_NUM_Y_POINTS) / 3.0); j++) // the center of the bed
z_values[i][j] += code_seen('C') ? Constant : 9.99;
break;
case 3:
break;
}
}
if (code_seen('P')) {
Phase_Value = code_value_int();
if (Phase_Value < 0 || Phase_Value > 7) {
SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n");
return;
}
switch (Phase_Value) {
//
// Zero Mesh Data
//
case 0:
blm.reset();
SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n");
break;
//
// Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe
//
case 1:
if (!code_seen('C') ) {
blm.invalidate();
SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n");
}
if (G29_Verbose_Level > 1) {
SERIAL_ECHOPGM("Probing Mesh Points Closest to (");
SERIAL_ECHO(X_Pos);
SERIAL_ECHOPAIR(",", Y_Pos);
SERIAL_PROTOCOLLNPGM(")\n");
}
probe_entire_mesh( X_Pos+X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER,
code_seen('O') || code_seen('M'), code_seen('E'));
break;
//
// Manually Probe Mesh in areas that can not be reached by the probe
//
case 2:
SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n");
do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES);
if (!X_Flag && !Y_Flag) { // use a good default location for the path
X_Pos = X_MIN_POS;
Y_Pos = Y_MIN_POS;
if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is
X_Pos = X_MAX_POS; // intentional. It should cause the probed points to follow a
if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to
Y_Pos = Y_MAX_POS; // have Delta printers default to the center of the bed.
} // For now, until that is decided, it can be forced with the X
// and Y parameters.
if (code_seen('C')) {
X_Pos = current_position[X_AXIS];
Y_Pos = current_position[Y_AXIS];
}
Height_Value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES;
if ((Business_Card_Mode = code_seen('B'))) {
card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(Height_Value);
if (fabs(card_thickness) > 1.5) {
SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n");
return;
}
}
manually_probe_remaining_mesh( X_Pos, Y_Pos, Height_Value, card_thickness, code_seen('O') || code_seen('M'));
break;
//
// Populate invalid Mesh areas with a constant
//
case 3:
Height_Value = 0.0; // Assume 0.0 until proven otherwise
if (code_seen('C')) Height_Value = Constant;
// If no repetition is specified, do the whole Mesh
if (!Repeat_Flag) Repetition_Cnt = 9999;
while (Repetition_Cnt--) {
location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
if (location.x_index < 0) break; // No more invalid Mesh Points to populate
z_values[location.x_index][location.y_index] = Height_Value;
}
break;
//
// Fine Tune (Or Edit) the Mesh
//
case 4:
fine_tune_mesh(X_Pos, Y_Pos, Height_Value, code_seen('O') || code_seen('M'));
break;
case 5:
Find_Mean_Mesh_Height();
break;
case 6:
Shift_Mesh_Height();
break;
case 10:
8 years ago
UBL_has_control_of_LCD_Panel++; // Debug code... Pay no attention to this stuff
SERIAL_ECHO_START; // it can be removed soon.
SERIAL_ECHOPGM("Checking G29 has control of LCD Panel:\n");
while(!G29_lcd_clicked()) {
idle();
delay(250);
SERIAL_PROTOCOL(G29_encoderDiff);
G29_encoderDiff = 0;
SERIAL_EOL;
}
while (G29_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0;;
SERIAL_ECHOPGM("G29 giving back control of LCD Panel.\n");
break;
}
}
if (code_seen('T')) {
Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, G29_Verbose_Level) + zprobe_zoffset;
// We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean
// the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is)
Z1 -= blm.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y);
Z2 -= blm.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y);
Z3 -= blm.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y);
do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0);
tilt_mesh_based_on_3pts(Z1, Z2, Z3);
}
//
// Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
// good to have the extra information. Soon... we prune this to just a few items
//
if (code_seen('W')) G29_What_Command();
//
// When we are fully debugged, the EEPROM dump command will get deleted also. But
// right now, it is good to have the extra information. Soon... we prune this.
//
if (code_seen('J')) G29_EEPROM_Dump(); // EEPROM Dump
//
// When we are fully debugged, this may go away. But there are some valid
// use cases for the users. So we can wait and see what to do with it.
//
if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh
G29_Kompare_Current_Mesh_to_Stored_Mesh();
//
// Load a Mesh from the EEPROM
//
if (code_seen('L')) { // Load Current Mesh Data
Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot;
k = E2END - sizeof(blm.state);
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return;
}
blm.load_mesh(Storage_Slot);
blm.state.EEPROM_storage_slot = Storage_Slot;
if (Storage_Slot != blm.state.EEPROM_storage_slot)
blm.store_state();
SERIAL_PROTOCOLLNPGM("Done.\n");
}
//
// Store a Mesh in the EEPROM
//
if (code_seen('S')) { // Store (or Save) Current Mesh Data
Storage_Slot = code_has_value() ? code_value_int() : blm.state.EEPROM_storage_slot;
if (Storage_Slot == -1) { // Special case, we are going to 'Export' the mesh to the
SERIAL_ECHOPGM("G29 I 999\n"); // host in a form it can be reconstructed on a different machine
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (!isnan(z_values[i][j])) {
SERIAL_ECHOPAIR("M421 I ", i);
SERIAL_ECHOPAIR(" J ", j);
SERIAL_ECHOPGM(" Z ");
SERIAL_PROTOCOL_F(z_values[i][j], 6);
SERIAL_EOL;
}
}
}
return;
}
int k = E2END - sizeof(blm.state),
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(z_values);
if (Storage_Slot < 0 || Storage_Slot >= j || Unified_Bed_Leveling_EEPROM_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1);
goto LEAVE;
}
blm.store_mesh(Storage_Slot);
blm.state.EEPROM_storage_slot = Storage_Slot;
//
// if (Storage_Slot != blm.state.EEPROM_storage_slot)
blm.store_state(); // Always save an updated copy of the UBL State info
SERIAL_PROTOCOLLNPGM("Done.\n");
}
if (code_seen('O') || code_seen('M')) {
i = code_has_value() ? code_value_int() : 0;
blm.display_map(i);
}
if (code_seen('Z')) {
if (code_has_value()) {
blm.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value
}
else {
save_UBL_active_state_and_disable();
//measured_z = probe_pt(X_Pos + X_PROBE_OFFSET_FROM_EXTRUDER, Y_Pos+Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, G29_Verbose_Level);
measured_z = 1.5;
do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything
// The user is not going to be locking in a new Z-Offset very often so
// it won't be that painful to spin the Encoder Wheel for 1.5mm
lcd_implementation_clear();
lcd_z_offset_edit_setup(measured_z);
do {
measured_z = lcd_z_offset_edit();
idle();
do_blocking_move_to_z(measured_z);
} while (!G29_lcd_clicked());
UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( )
// or here. So, until we are done looking for a long Encoder Wheel Press,
// we need to take control of the panel
millis_t nxt = millis() + 1500UL;
lcd_return_to_status();
while (G29_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_setstatus("Z-Offset Stopped", true);
while (G29_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0;
restore_UBL_active_state_and_leave();
goto LEAVE;
}
}
UBL_has_control_of_LCD_Panel = 0;
delay(20); // We don't want any switch noise.
blm.state.z_offset = measured_z;
lcd_implementation_clear();
restore_UBL_active_state_and_leave();
}
}
LEAVE:
#if ENABLED(ULTRA_LCD)
lcd_setstatus(" ", true);
lcd_quick_feedback();
#endif
UBL_has_control_of_LCD_Panel = 0;
}
void Find_Mean_Mesh_Height() {
int i, j, n;
float sum, sum_of_diff_squared, sigma, difference, mean;
sum = sum_of_diff_squared = 0.0;
n = 0;
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (!isnan(z_values[i][j])) {
sum += z_values[i][j];
n++;
}
}
}
mean = sum / n;
//
// Now do the sumation of the squares of difference from mean
//
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if (!isnan(z_values[i][j])) {
difference = (z_values[i][j] - mean);
sum_of_diff_squared += difference * difference;
}
}
}
SERIAL_ECHOLNPAIR("# of samples: ", n);
SERIAL_ECHOPGM("Mean Mesh Height: ");
SERIAL_PROTOCOL_F(mean, 6);
SERIAL_EOL;
sigma = sqrt( sum_of_diff_squared / (n + 1));
SERIAL_ECHOPGM("Standard Deviation: ");
SERIAL_PROTOCOL_F(sigma, 6);
SERIAL_EOL;
if (C_Flag)
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
if (!isnan(z_values[i][j]))
z_values[i][j] -= mean + Constant;
}
void Shift_Mesh_Height( ) {
for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
for (uint8_t j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
if (!isnan(z_values[i][j]))
z_values[i][j] += Constant;
}
// probe_entire_mesh(X_Pos, Y_Pos) probes all invalidated locations of the mesh that can be reached
// by the probe. It attempts to fill in locations closest to the nozzle's start location first.
void probe_entire_mesh(float X_Pos, float Y_Pos, bool do_UBL_MESH_Map, bool stow_probe) {
mesh_index_pair location;
float xProbe, yProbe, measured_z;
UBL_has_control_of_LCD_Panel++;
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
DEPLOY_PROBE();
do {
if (G29_lcd_clicked()) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
lcd_quick_feedback();
while (G29_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0;
STOW_PROBE();
restore_UBL_active_state_and_leave();
return;
}
location = find_closest_mesh_point_of_type( INVALID, X_Pos, Y_Pos, 1, NULL); // the '1' says we want the location to be relative to the probe
if (location.x_index>=0 && location.y_index>=0) {
xProbe = blm.map_x_index_to_bed_location(location.x_index);
yProbe = blm.map_y_index_to_bed_location(location.y_index);
if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
UBL_has_control_of_LCD_Panel = 0;
goto LEAVE;
}
measured_z = probe_pt(xProbe, yProbe, stow_probe, G29_Verbose_Level);
z_values[location.x_index][location.y_index] = measured_z + Z_PROBE_OFFSET_FROM_EXTRUDER;
}
if (do_UBL_MESH_Map) blm.display_map(1);
} while (location.x_index >= 0 && location.y_index >= 0);
LEAVE:
STOW_PROBE();
restore_UBL_active_state_and_leave();
X_Pos = constrain( X_Pos-X_PROBE_OFFSET_FROM_EXTRUDER, X_MIN_POS, X_MAX_POS);
Y_Pos = constrain( Y_Pos-Y_PROBE_OFFSET_FROM_EXTRUDER, Y_MIN_POS, Y_MAX_POS);
do_blocking_move_to_xy(X_Pos, Y_Pos);
}
struct vector tilt_mesh_based_on_3pts(float pt1, float pt2, float pt3) {
struct vector v1, v2, normal;
float c, d, t;
int i, j;
v1.dx = (ubl_3_point_1_X - ubl_3_point_2_X);
v1.dy = (ubl_3_point_1_Y - ubl_3_point_2_Y);
v1.dz = (pt1 - pt2);
v2.dx = (ubl_3_point_3_X - ubl_3_point_2_X);
v2.dy = (ubl_3_point_3_Y - ubl_3_point_2_Y);
v2.dz = (pt3 - pt2);
// do cross product
normal.dx = v1.dy * v2.dz - v1.dz * v2.dy;
normal.dy = v1.dz * v2.dx - v1.dx * v2.dz;
normal.dz = v1.dx * v2.dy - v1.dy * v2.dx;
// printf("[%f,%f,%f] ", normal.dx, normal.dy, normal.dz);
normal.dx /= normal.dz; // This code does two things. This vector is normal to the tilted plane.
normal.dy /= normal.dz; // However, we don't know its direction. We need it to point up. So if
normal.dz /= normal.dz; // Z is negative, we need to invert the sign of all components of the vector
// We also need Z to be unity because we are going to be treating this triangle
// as the sin() and cos() of the bed's tilt
//
// All of 3 of these points should give us the same d constant
//
t = normal.dx * ubl_3_point_1_X + normal.dy * ubl_3_point_1_Y;
d = t + normal.dz * pt1;
c = d - t;
SERIAL_ECHOPGM("d from 1st point: ");
SERIAL_PROTOCOL_F(d, 6);
SERIAL_ECHOPGM(" c: ");
SERIAL_PROTOCOL_F(c, 6);
SERIAL_EOL;
t = normal.dx * ubl_3_point_2_X + normal.dy * ubl_3_point_2_Y;
d = t + normal.dz * pt2;
c = d - t;
SERIAL_ECHOPGM("d from 2nd point: ");
SERIAL_PROTOCOL_F(d, 6);
SERIAL_ECHOPGM(" c: ");
SERIAL_PROTOCOL_F(c, 6);
SERIAL_EOL;
t = normal.dx * ubl_3_point_3_X + normal.dy * ubl_3_point_3_Y;
d = t + normal.dz * pt3;
c = d - t;
SERIAL_ECHOPGM("d from 3rd point: ");
SERIAL_PROTOCOL_F(d, 6);
SERIAL_ECHOPGM(" c: ");
SERIAL_PROTOCOL_F(c, 6);
SERIAL_EOL;
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
c = -((normal.dx * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.dy * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d);
z_values[i][j] += c;
}
}
return normal;
}
float use_encoder_wheel_to_measure_point() {
UBL_has_control_of_LCD_Panel++;
while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (G29_encoderDiff != 0) {
float new_z;
// We define a new variable so we can know ahead of time where we are trying to go.
// The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move
// is complete. (So the dial feels responsive to user)
new_z = current_position[Z_AXIS] + 0.01 * float(G29_encoderDiff);
G29_encoderDiff = 0;
do_blocking_move_to_z(new_z);
}
}
while (G29_lcd_clicked()) idle(); // debounce and wait
UBL_has_control_of_LCD_Panel--;
return current_position[Z_AXIS];
}
float measure_business_card_thickness(float Height_Value) {
float Z1, Z2;
UBL_has_control_of_LCD_Panel++;
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement.");
do_blocking_move_to_z(Height_Value);
do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0);
//, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0);
Z1 = use_encoder_wheel_to_measure_point();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
UBL_has_control_of_LCD_Panel = 0;
SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height.");
Z2 = use_encoder_wheel_to_measure_point();
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
if (G29_Verbose_Level > 1) {
SERIAL_ECHOPGM("Business Card is: ");
SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6);
SERIAL_PROTOCOLLNPGM("mm thick.");
}
restore_UBL_active_state_and_leave();
return abs(Z1 - Z2);
}
void manually_probe_remaining_mesh(float X_Pos, float Y_Pos, float z_clearance, float card_thickness, bool do_UBL_MESH_Map) {
mesh_index_pair location;
float last_x, last_y, dx, dy,
xProbe, yProbe;
unsigned long cnt;
UBL_has_control_of_LCD_Panel++;
last_x = last_y = -9999.99;
save_UBL_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe
do_blocking_move_to_z(z_clearance);
do_blocking_move_to_xy(X_Pos, Y_Pos);
do {
if (do_UBL_MESH_Map) blm.display_map(1);
location = find_closest_mesh_point_of_type(INVALID, X_Pos, Y_Pos, 0, NULL); // The '0' says we want to use the nozzle's position
// It doesn't matter if the probe can not reach the
// NAN location. This is a manual probe.
if (location.x_index < 0 && location.y_index < 0) continue;
xProbe = blm.map_x_index_to_bed_location(location.x_index);
yProbe = blm.map_y_index_to_bed_location(location.y_index);
if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) {
SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed.");
UBL_has_control_of_LCD_Panel = 0;
goto LEAVE;
}
dx = xProbe - last_x;
dy = yProbe - last_y;
if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED)
do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE);
else
do_blocking_move_to_z(z_clearance);
last_x = xProbe;
last_y = yProbe;
do_blocking_move_to_xy(xProbe, yProbe);
while (!G29_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here!
idle();
if (G29_encoderDiff) {
float new_z;
// We define a new variable so we can know ahead of time where we are trying to go.
// The reason is we want G29_encoderDiff cleared so an interrupt can update it even before the move
// is complete. (So the dial feels responsive to user)
new_z = current_position[Z_AXIS] + float(G29_encoderDiff) / 100.0;
G29_encoderDiff = 0;
do_blocking_move_to_z(new_z);
}
}
cnt = millis();
while (G29_lcd_clicked()) { // debounce and watch for abort
idle();
if (millis() - cnt > 1500L) {
SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_quick_feedback();
while (G29_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0;
restore_UBL_active_state_and_leave();
return;
}
}
z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness;
if (G29_Verbose_Level > 2) {
SERIAL_PROTOCOL("Mesh Point Measured at: ");
SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6);
SERIAL_EOL;
}
} while (location.x_index >= 0 && location.y_index >= 0);
if (do_UBL_MESH_Map) blm.display_map(1);
LEAVE:
restore_UBL_active_state_and_leave();
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(X_Pos, Y_Pos);
}
bool G29_Parameter_Parsing() {
#if ENABLED(ULTRA_LCD)
lcd_setstatus("Doing G29 UBL !", true);
lcd_quick_feedback();
#endif
X_Pos = current_position[X_AXIS];
Y_Pos = current_position[Y_AXIS];
X_Flag = Y_Flag = Repeat_Flag = UBL_OK;
Constant = 0.0;
Repetition_Cnt = 1;
if ((X_Flag = code_seen('X'))) {
X_Pos = code_value_float();
if (X_Pos < X_MIN_POS || X_Pos > X_MAX_POS) {
SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n");
return UBL_ERR;
}
}
if ((Y_Flag = code_seen('Y'))) {
Y_Pos = code_value_float();
if (Y_Pos < Y_MIN_POS || Y_Pos > Y_MAX_POS) {
SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n");
return UBL_ERR;
}
}
if (X_Flag != Y_Flag) {
SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n");
return UBL_ERR;
}
G29_Verbose_Level = 0;
if (code_seen('V')) {
G29_Verbose_Level = code_value_int();
if (G29_Verbose_Level < 0 || G29_Verbose_Level > 4) {
SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n");
return UBL_ERR;
}
}
if (code_seen('A')) { // Activate the Unified Bed Leveling System
blm.state.active = 1;
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n");
blm.store_state();
}
if ((C_Flag = code_seen('C')) && code_has_value())
Constant = code_value_float();
if (code_seen('D')) { // Disable the Unified Bed Leveling System
blm.state.active = 0;
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n");
blm.store_state();
}
if (code_seen('F')) {
blm.state.G29_Correction_Fade_Height = 10.00;
if (code_has_value()) {
blm.state.G29_Correction_Fade_Height = code_value_float();
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height;
}
if (blm.state.G29_Correction_Fade_Height<0.0 || blm.state.G29_Correction_Fade_Height>100.0) {
SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausable.\n");
blm.state.G29_Correction_Fade_Height = 10.00;
blm.state.G29_Fade_Height_Multiplier = 1.0 / blm.state.G29_Correction_Fade_Height;
return UBL_ERR;
}
}
if ((Repeat_Flag = code_seen('R'))) {
Repetition_Cnt = code_has_value() ? code_value_int() : 9999;
if (Repetition_Cnt < 1) {
SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n");
return UBL_ERR;
}
}
return UBL_OK;
}
/**
* This function goes away after G29 debug is complete. But for right now, it is a handy
* routine to dump binary data structures.
*/
void dump(char *str, float f) {
char *ptr;
SERIAL_PROTOCOL(str);
SERIAL_PROTOCOL_F(f, 8);
SERIAL_PROTOCOL(" ");
ptr = (char *)&f;
for (uint8_t i = 0; i < 4; i++) {
SERIAL_PROTOCOL(" ");
prt_hex_byte(*ptr++);
}
SERIAL_PROTOCOL(" isnan()=");
SERIAL_PROTOCOL(isnan(f));
SERIAL_PROTOCOL(" isinf()=");
SERIAL_PROTOCOL(isinf(f));
constexpr float g = INFINITY;
if (f == -g)
SERIAL_PROTOCOL(" Minus Infinity detected.");
SERIAL_EOL;
}
static int UBL_state_at_invokation = 0,
UBL_state_recursion_chk = 0;
void save_UBL_active_state_and_disable() {
UBL_state_recursion_chk++;
if (UBL_state_recursion_chk != 1) {
SERIAL_ECHOLNPGM("save_UBL_active_state_and_disabled() called multiple times in a row.");
lcd_setstatus("save_UBL_active() error", true);
lcd_quick_feedback();
return;
}
UBL_state_at_invokation = blm.state.active;
blm.state.active = 0;
return;
}
void restore_UBL_active_state_and_leave() {
if (--UBL_state_recursion_chk) {
SERIAL_ECHOLNPGM("restore_UBL_active_state_and_leave() called too many times.");
lcd_setstatus("restore_UBL_active() error", true);
lcd_quick_feedback();
return;
}
blm.state.active = UBL_state_at_invokation;
}
/**
* Much of the 'What?' command can be eliminated. But until we are fully debugged, it is
* good to have the extra information. Soon... we prune this to just a few items
*/
void G29_What_Command() {
int k, i;
k = E2END - Unified_Bed_Leveling_EEPROM_start;
Statistics_Flag++;
SERIAL_PROTOCOLPGM("Version #4: 10/30/2016 branch \n");
SERIAL_PROTOCOLPGM("Unified Bed Leveling System ");
if (blm.state.active)
SERIAL_PROTOCOLPGM("Active.");
else
SERIAL_PROTOCOLPGM("Inactive.");
SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me
if (blm.state.EEPROM_storage_slot == 0xFFFF) {
SERIAL_PROTOCOLPGM("No Mesh Loaded.");
SERIAL_PROTOCOLLNPGM(" ------------------------------------- <----<<<"); // These arrows are just to help me
// find this info buried in the clutter
}
else {
SERIAL_PROTOCOLPGM("Mesh: ");
prt_hex_word(blm.state.EEPROM_storage_slot);
SERIAL_PROTOCOLPGM(" Loaded. ");
SERIAL_PROTOCOLLNPGM(" -------------------------------------------------------- <----<<<"); // These arrows are just to help me
// find this info buried in the clutter
}
SERIAL_ECHOPAIR("\nG29_Correction_Fade_Height : ", blm.state.G29_Correction_Fade_Height );
SERIAL_PROTOCOLPGM(" ------------------------------------- <----<<< \n"); // These arrows are just to help me
// find this info buried in the clutter
idle();
SERIAL_ECHOPGM("z_offset: ");
SERIAL_PROTOCOL_F(blm.state.z_offset, 6);
SERIAL_PROTOCOLLNPGM(" ------------------------------------------------------------ <----<<<");
SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: ");
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
SERIAL_PROTOCOL_F( blm.map_x_index_to_bed_location(i), 1);
SERIAL_PROTOCOLPGM(" ");
}
SERIAL_EOL;
SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: ");
for (i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) {
SERIAL_PROTOCOL_F( blm.map_y_index_to_bed_location(i), 1);
SERIAL_PROTOCOLPGM(" ");
}
SERIAL_EOL;
#if HAS_KILL
SERIAL_ECHOPAIR("Kill pin on :", KILL_PIN);
SERIAL_ECHOLNPAIR(" state:", READ(KILL_PIN));
#endif
SERIAL_ECHOLNPAIR("UBL_state_at_invokation :", UBL_state_at_invokation);
SERIAL_ECHOLNPAIR("UBL_state_recursion_chk :", UBL_state_recursion_chk);
SERIAL_EOL;
SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x");
prt_hex_word(Unified_Bed_Leveling_EEPROM_start);
SERIAL_EOL;
idle();
SERIAL_PROTOCOLPGM("end of EEPROM : ");
prt_hex_word(E2END);
SERIAL_EOL;
idle();
SERIAL_PROTOCOLLNPAIR("sizeof(blm) : ", (int)sizeof(blm));
SERIAL_EOL;
SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values));
SERIAL_EOL;
SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x");
prt_hex_word(k);
SERIAL_EOL;
idle();
SERIAL_PROTOCOLPGM("EEPROM can hold 0x");
prt_hex_word(k / sizeof(z_values));
SERIAL_PROTOCOLPGM(" meshes. \n");
SERIAL_PROTOCOLPGM("sizeof(stat) :");
prt_hex_word(sizeof(blm.state));
SERIAL_EOL;
idle();
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS);
SERIAL_ECHOPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS);
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X);
SERIAL_ECHOPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y);
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X);
SERIAL_ECHOPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y);
SERIAL_ECHOPGM("\nMESH_X_DIST ");
SERIAL_PROTOCOL_F(MESH_X_DIST, 6);
SERIAL_ECHOPGM("\nMESH_Y_DIST ");
SERIAL_PROTOCOL_F(MESH_Y_DIST, 6);
SERIAL_EOL;
idle();
SERIAL_ECHOPAIR("\nsizeof(block_t): ", (int)sizeof(block_t));
SERIAL_ECHOPAIR("\nsizeof(planner.block_buffer): ", (int)sizeof(planner.block_buffer));
SERIAL_ECHOPAIR("\nsizeof(char): ", (int)sizeof(char));
SERIAL_ECHOPAIR(" sizeof(unsigned char): ", (int)sizeof(unsigned char));
SERIAL_ECHOPAIR("\nsizeof(int): ", (int)sizeof(int));
SERIAL_ECHOPAIR(" sizeof(unsigned int): ", (int)sizeof(unsigned int));
SERIAL_ECHOPAIR("\nsizeof(long): ", (int)sizeof(long));
SERIAL_ECHOPAIR(" sizeof(unsigned long int): ", (int)sizeof(unsigned long int));
SERIAL_ECHOPAIR("\nsizeof(float): ", (int)sizeof(float));
SERIAL_ECHOPAIR(" sizeof(double): ", (int)sizeof(double));
SERIAL_ECHOPAIR("\nsizeof(void *): ", (int)sizeof(void *));
struct pf { void *p_f(); } ptr_func;
SERIAL_ECHOPAIR(" sizeof(struct pf): ", (int)sizeof(pf));
SERIAL_ECHOPAIR(" sizeof(void *()): ", (int)sizeof(ptr_func));
SERIAL_EOL;
idle();
if (!blm.sanity_check())
SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed.");
}
/**
* When we are fully debugged, the EEPROM dump command will get deleted also. But
* right now, it is good to have the extra information. Soon... we prune this.
*/
void G29_EEPROM_Dump() {
unsigned char cccc;
int i, j, kkkk;
SERIAL_ECHO_START;
SERIAL_ECHOPGM("EEPROM Dump:\n");
for (i = 0; i < E2END + 1; i += 16) {
if (i & 0x3 == 0) idle();
prt_hex_word(i);
SERIAL_ECHOPGM(": ");
for (j = 0; j < 16; j++) {
kkkk = i + j;
eeprom_read_block(&cccc, (void *)kkkk, 1);
prt_hex_byte(cccc);
SERIAL_ECHO(' ');
}
SERIAL_EOL;
}
SERIAL_EOL;
return;
}
/**
* When we are fully debugged, this may go away. But there are some valid
* use cases for the users. So we can wait and see what to do with it.
*/
void G29_Kompare_Current_Mesh_to_Stored_Mesh() {
float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS];
int i, j, k;
if (!code_has_value()) {
SERIAL_PROTOCOLLNPGM("?Mesh # required.\n");
return;
}
Storage_Slot = code_value_int();
k = E2END - sizeof(blm.state);
j = (k - Unified_Bed_Leveling_EEPROM_start) / sizeof(tmp_z_values);
if (Storage_Slot < 0 || Storage_Slot > j || Unified_Bed_Leveling_EEPROM_start <= 0) {
SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n");
return;
}
j = k - (Storage_Slot + 1) * sizeof(tmp_z_values);
eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values));
SERIAL_ECHOPAIR("Subtracting Mesh ", Storage_Slot);
SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing
prt_hex_word(j); // the address in the EEPROM where the Mesh is stored.
SERIAL_EOL;
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++)
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++)
z_values[i][j] = z_values[i][j] - tmp_z_values[i][j];
}
mesh_index_pair find_closest_mesh_point_of_type(Mesh_Point_Type type, float X, float Y, bool probe_as_reference, unsigned int bits[16]) {
int i, j;
float f, px, py, mx, my, dx, dy, closest = 99999.99;
float current_x, current_y, distance;
mesh_index_pair return_val;
return_val.x_index = return_val.y_index = -1;
current_x = current_position[X_AXIS];
current_y = current_position[Y_AXIS];
px = X; // Get our reference position. Either the nozzle or
py = Y; // the probe location.
if (probe_as_reference) {
px -= X_PROBE_OFFSET_FROM_EXTRUDER;
py -= Y_PROBE_OFFSET_FROM_EXTRUDER;
}
for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) {
for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) {
if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing
|| (type == REAL && !isnan(z_values[i][j]))
|| (type == SET_IN_BITMAP && is_bit_set(bits, i, j))
) {
// We only get here if we found a Mesh Point of the specified type
mx = blm.map_x_index_to_bed_location(i); // Check if we can probe this mesh location
my = blm.map_y_index_to_bed_location(j);
// If we are using the probe as the reference there are some locations we can't get to.
// We prune these out of the list and ignore them until the next Phase where we do the
// manual nozzle probing.
if (probe_as_reference &&
( mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X) || my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y) )
) continue;
dx = px - mx; // We can get to it. Let's see if it is the
dy = py - my; // closest location to the nozzle.
distance = HYPOT(dx, dy);
dx = current_x - mx; // We are going to add in a weighting factor that considers
dy = current_y - my; // the current location of the nozzle. If two locations are equal
distance += HYPOT(dx, dy) * 0.01; // distance from the measurement location, we are going to give
if (distance < closest) {
closest = distance; // We found a closer location with
return_val.x_index = i; // the specified type of mesh value.
return_val.y_index = j;
return_val.distance = closest;
}
}
}
}
return return_val;
}
void fine_tune_mesh(float X_Pos, float Y_Pos, float Height_Value, bool do_UBL_MESH_Map) {
mesh_index_pair location;
float xProbe, yProbe, new_z;
uint16_t i, not_done[16];
long round_off;
save_UBL_active_state_and_disable();
memset(not_done, 0xFF, sizeof(not_done));
#if ENABLED(ULTRA_LCD)
lcd_setstatus("Fine Tuning Mesh.", true);
#endif
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(X_Pos, Y_Pos);
do {
if (do_UBL_MESH_Map) blm.display_map(1);
location = find_closest_mesh_point_of_type( SET_IN_BITMAP, X_Pos, Y_Pos, 0, not_done); // The '0' says we want to use the nozzle's position
// It doesn't matter if the probe can not reach this
// location. This is a manual edit of the Mesh Point.
if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points.
bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a
// different location the next time through the loop
xProbe = blm.map_x_index_to_bed_location(location.x_index);
yProbe = blm.map_y_index_to_bed_location(location.y_index);
if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check.
SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now,
UBL_has_control_of_LCD_Panel = 0; // Let's do the check.
goto FINE_TUNE_EXIT;
}
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit
do_blocking_move_to_xy(xProbe, yProbe);
new_z = z_values[location.x_index][location.y_index] + 0.001;
round_off = (int32_t)(new_z * 1000.0 + 2.5); // we chop off the last digits just to be clean. We are rounding to the
round_off -= (round_off % 5L); // closest 0 or 5 at the 3rd decimal place.
new_z = ((float)(round_off)) / 1000.0;
//SERIAL_ECHOPGM("Mesh Point Currently At: ");
//SERIAL_PROTOCOL_F(new_z, 6);
//SERIAL_EOL;
lcd_implementation_clear();
lcd_mesh_edit_setup(new_z);
UBL_has_control_of_LCD_Panel++;
do {
new_z = lcd_mesh_edit();
idle();
} while (!G29_lcd_clicked());
UBL_has_control_of_LCD_Panel = 1; // There is a race condition for the Encoder Wheel getting clicked.
// It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune( )
// or here.
millis_t nxt = millis() + 1500UL;
lcd_return_to_status();
while (G29_lcd_clicked()) { // debounce and watch for abort
idle();
if (ELAPSED(millis(), nxt)) {
lcd_return_to_status();
SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped.");
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
lcd_setstatus("Mesh Editing Stopped", true);
while (G29_lcd_clicked()) idle();
UBL_has_control_of_LCD_Panel = 0;
goto FINE_TUNE_EXIT;
}
}
//UBL_has_control_of_LCD_Panel = 0;
delay(20); // We don't want any switch noise.
z_values[location.x_index][location.y_index] = new_z;
lcd_implementation_clear();
} while (location.x_index >= 0 && location.y_index >= 0 && --Repetition_Cnt);
FINE_TUNE_EXIT:
if (do_UBL_MESH_Map) blm.display_map(1);
restore_UBL_active_state_and_leave();
do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE);
do_blocking_move_to_xy(X_Pos, Y_Pos);
UBL_has_control_of_LCD_Panel = 0;
#if ENABLED(ULTRA_LCD)
lcd_setstatus("Done Editing Mesh", true);
#endif
SERIAL_ECHOLNPGM("Done Editing Mesh.");
}
#endif // AUTO_BED_LEVELING_UBL