scube/Marlin/UBL.h

346 lines
14 KiB
C

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
#include "Marlin.h"
#include "math.h"
#include "vector_3.h"
#ifndef UNIFIED_BED_LEVELING_H
#define UNIFIED_BED_LEVELING_H
#if ENABLED(AUTO_BED_LEVELING_UBL)
#define UBL_OK false
#define UBL_ERR true
typedef struct {
int8_t x_index, y_index;
float distance; // When populated, the distance from the search location
} mesh_index_pair;
enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };
void dump(char * const str, const float &f);
bool ubl_lcd_clicked();
void probe_entire_mesh(const float&, const float&, const bool, const bool, const bool);
void debug_current_and_destination(char *title);
void ubl_line_to_destination(const float&, uint8_t);
void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
vector_3 tilt_mesh_based_on_3pts(const float&, const float&, const float&);
float measure_business_card_thickness(const float&);
mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
void find_mean_mesh_height();
void shift_mesh_height();
bool g29_parameter_parsing();
void g29_what_command();
void g29_eeprom_dump();
void g29_compare_current_mesh_to_stored_mesh();
void fine_tune_mesh(const float&, const float&, const bool);
void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
char *ftostr43sign(const float&, char);
void gcode_G26();
void gcode_G28();
void gcode_G29();
extern char conv[9];
void save_ubl_active_state_and_disable();
void restore_ubl_active_state_and_leave();
///////////////////////////////////////////////////////////////////////////////////////////////////////
#if ENABLED(ULTRA_LCD)
extern char lcd_status_message[];
void lcd_quick_feedback();
#endif
enum MBLStatus { MBL_STATUS_NONE = 0, MBL_STATUS_HAS_MESH_BIT = 0, MBL_STATUS_ACTIVE_BIT = 1 };
#define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(UBL_MESH_NUM_X_POINTS - 1))
#define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(UBL_MESH_NUM_Y_POINTS - 1))
typedef struct {
bool active = false;
float z_offset = 0.0;
int8_t eeprom_storage_slot = -1,
n_x = UBL_MESH_NUM_X_POINTS,
n_y = UBL_MESH_NUM_Y_POINTS;
float mesh_x_min = UBL_MESH_MIN_X,
mesh_y_min = UBL_MESH_MIN_Y,
mesh_x_max = UBL_MESH_MAX_X,
mesh_y_max = UBL_MESH_MAX_Y,
mesh_x_dist = MESH_X_DIST,
mesh_y_dist = MESH_Y_DIST;
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
float g29_correction_fade_height = 10.0,
g29_fade_height_multiplier = 1.0 / 10.0; // It's cheaper to do a floating point multiply than divide,
// so keep this value and its reciprocal.
#else
const float g29_correction_fade_height = 10.0,
g29_fade_height_multiplier = 1.0 / 10.0;
#endif
// If you change this struct, adjust TOTAL_STRUCT_SIZE
#define TOTAL_STRUCT_SIZE 40 // Total size of the above fields
// padding provides space to add state variables without
// changing the location of data structures in the EEPROM.
// This is for compatibility with future versions to keep
// users from having to regenerate their mesh data.
unsigned char padding[64 - TOTAL_STRUCT_SIZE];
} ubl_state;
class unified_bed_leveling {
private:
static float last_specified_z,
fade_scaling_factor_for_current_height;
public:
static ubl_state state, pre_initialized;
static float z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS],
mesh_index_to_xpos[UBL_MESH_NUM_X_POINTS + 1], // +1 safety margin for now, until determinism prevails
mesh_index_to_ypos[UBL_MESH_NUM_Y_POINTS + 1];
static bool g26_debug_flag,
has_control_of_lcd_panel;
static int8_t eeprom_start;
static volatile int encoder_diff; // Volatile because it's changed at interrupt time.
unified_bed_leveling();
static void display_map(const int);
static void reset();
static void invalidate();
static void store_state();
static void load_state();
static void store_mesh(const int16_t);
static void load_mesh(const int16_t);
static bool sanity_check();
static FORCE_INLINE void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }
static int8_t get_cell_index_x(const float &x) {
const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
return constrain(cx, 0, (UBL_MESH_NUM_X_POINTS) - 1); // -1 is appropriate if we want all movement to the X_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
static int8_t get_cell_index_y(const float &y) {
const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
return constrain(cy, 0, (UBL_MESH_NUM_Y_POINTS) - 1); // -1 is appropriate if we want all movement to the Y_MAX
} // position. But with this defined this way, it is possible
// to extrapolate off of this point even further out. Probably
// that is OK because something else should be keeping that from
// happening and should not be worried about at this level.
static int8_t find_closest_x_index(const float &x) {
const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
return WITHIN(px, 0, UBL_MESH_NUM_X_POINTS - 1) ? px : -1;
}
static int8_t find_closest_y_index(const float &y) {
const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
return WITHIN(py, 0, UBL_MESH_NUM_Y_POINTS - 1) ? py : -1;
}
/**
* z2 --|
* z0 | |
* | | + (z2-z1)
* z1 | | |
* ---+-------------+--------+-- --|
* a1 a0 a2
* |<---delta_a---------->|
*
* calc_z0 is the basis for all the Mesh Based correction. It is used to
* find the expected Z Height at a position between two known Z-Height locations.
*
* It is fairly expensive with its 4 floating point additions and 2 floating point
* multiplications.
*/
static FORCE_INLINE float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
}
/**
* z_correction_for_x_on_horizontal_mesh_line is an optimization for
* the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
*/
static inline float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
if (!WITHIN(x1_i, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(yi, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
SERIAL_ECHOPAIR("? in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
SERIAL_ECHOPAIR(",x1_i=", x1_i);
SERIAL_ECHOPAIR(",yi=", yi);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
}
const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos[x1_i]) * (1.0 / (MESH_X_DIST)),
z1 = z_values[x1_i][yi];
return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
}
//
// See comments above for z_correction_for_x_on_horizontal_mesh_line
//
static inline float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
if (!WITHIN(xi, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(y1_i, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
SERIAL_ECHOPAIR("? in get_z_correction_along_vertical_mesh_line_at_specific_x(ly0=", ly0);
SERIAL_ECHOPAIR(", x1_i=", xi);
SERIAL_ECHOPAIR(", yi=", y1_i);
SERIAL_CHAR(')');
SERIAL_EOL;
return NAN;
}
const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos[y1_i]) * (1.0 / (MESH_Y_DIST)),
z1 = z_values[xi][y1_i];
return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
}
/**
* This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
* does a linear interpolation along both of the bounding X-Mesh-Lines to find the
* Z-Height at both ends. Then it does a linear interpolation of these heights based
* on the Y position within the cell.
*/
static float get_z_correction(const float &lx0, const float &ly0) {
const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
cy = get_cell_index_y(RAW_Y_POSITION(ly0));
if (!WITHIN(cx, 0, UBL_MESH_NUM_X_POINTS - 1) || !WITHIN(cy, 0, UBL_MESH_NUM_Y_POINTS - 1)) {
SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
SERIAL_ECHOPAIR(", ly0=", ly0);
SERIAL_CHAR(')');
SERIAL_EOL;
#if ENABLED(ULTRA_LCD)
strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
lcd_quick_feedback();
#endif
return 0.0; // this used to return state.z_offset
}
const float z1 = calc_z0(RAW_X_POSITION(lx0),
mesh_index_to_xpos[cx], z_values[cx][cy],
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy]),
z2 = calc_z0(RAW_X_POSITION(lx0),
mesh_index_to_xpos[cx], z_values[cx][cy + 1],
mesh_index_to_xpos[cx + 1], z_values[cx + 1][cy + 1]);
float z0 = calc_z0(RAW_Y_POSITION(ly0),
mesh_index_to_ypos[cy], z1,
mesh_index_to_ypos[cy + 1], z2);
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
SERIAL_CHAR(',')
SERIAL_ECHO(ly0);
SERIAL_ECHOPGM(") = ");
SERIAL_ECHO_F(z0, 6);
}
#endif
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPGM(" >>>---> ");
SERIAL_ECHO_F(z0, 6);
SERIAL_EOL;
}
#endif
if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
z0 = 0.0; // in ubl.z_values[][] and propagate through the
// calculations. If our correction is NAN, we throw it out
// because part of the Mesh is undefined and we don't have the
// information we need to complete the height correction.
#if ENABLED(DEBUG_LEVELING_FEATURE)
if (DEBUGGING(MESH_ADJUST)) {
SERIAL_ECHOPAIR("??? Yikes! NAN in get_z_correction(", lx0);
SERIAL_CHAR(',');
SERIAL_ECHO(ly0);
SERIAL_CHAR(')');
SERIAL_EOL;
}
#endif
}
return z0; // there used to be a +state.z_offset on this line
}
/**
* This routine is used to scale the Z correction depending upon the current nozzle height. It is
* optimized for speed. It avoids floating point operations by checking if the requested scaling
* factor is going to be the same as the last time the function calculated a value. If so, it just
* returns it.
*
* It returns a scaling factor of 1.0 if UBL is inactive.
* It returns a scaling factor of 0.0 if Z is past the specified 'Fade Height'
*/
#if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
static FORCE_INLINE float fade_scaling_factor_for_z(const float &lz) {
const float rz = RAW_Z_POSITION(lz);
if (last_specified_z != rz) {
last_specified_z = rz;
fade_scaling_factor_for_current_height =
state.active && rz < state.g29_correction_fade_height
? 1.0 - (rz * state.g29_fade_height_multiplier)
: 0.0;
}
return fade_scaling_factor_for_current_height;
}
#else
static constexpr float fade_scaling_factor_for_z(const float &lz) { UNUSED(lz); return 1.0; }
#endif
}; // class unified_bed_leveling
extern unified_bed_leveling ubl;
#define UBL_LAST_EEPROM_INDEX (E2END - sizeof(unified_bed_leveling::state))
#endif // AUTO_BED_LEVELING_UBL
#endif // UNIFIED_BED_LEVELING_H