You cannot select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

321 lines
12 KiB
C++

/**
* Marlin 3D Printer Firmware
* Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
*
* Based on Sprinter and grbl.
* Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
*/
/**
* servo.cpp - Interrupt driven Servo library for Arduino using 16 bit timers- Version 2
* Copyright (c) 2009 Michael Margolis. All right reserved.
*/
/**
* A servo is activated by creating an instance of the Servo class passing the desired pin to the attach() method.
* The servos are pulsed in the background using the value most recently written using the write() method
*
* Note that analogWrite of PWM on pins associated with the timer are disabled when the first servo is attached.
* Timers are seized as needed in groups of 12 servos - 24 servos use two timers, 48 servos will use four.
*
* The methods are:
*
* Servo - Class for manipulating servo motors connected to Arduino pins.
*
* attach(pin) - Attach a servo motor to an i/o pin.
* attach(pin, min, max) - Attach to a pin, setting min and max values in microseconds
* Default min is 544, max is 2400
*
* write() - Set the servo angle in degrees. (Invalid angles over MIN_PULSE_WIDTH are treated as µs.)
* writeMicroseconds() - Set the servo pulse width in microseconds.
* move(pin, angle) - Sequence of attach(pin), write(angle), delay(SERVO_DELAY).
* With DEACTIVATE_SERVOS_AFTER_MOVE it detaches after SERVO_DELAY.
* read() - Get the last-written servo pulse width as an angle between 0 and 180.
* readMicroseconds() - Get the last-written servo pulse width in microseconds.
* attached() - Return true if a servo is attached.
* detach() - Stop an attached servo from pulsing its i/o pin.
*
*/
#include "Configuration.h"
#if HAS_SERVOS
#include <avr/interrupt.h>
#include <Arduino.h>
#include "servo.h"
#define usToTicks(_us) (( clockCyclesPerMicrosecond()* _us) / 8) // converts microseconds to tick (assumes prescale of 8) // 12 Aug 2009
#define ticksToUs(_ticks) (( (unsigned)_ticks * 8)/ clockCyclesPerMicrosecond() ) // converts from ticks back to microseconds
#define TRIM_DURATION 2 // compensation ticks to trim adjust for digitalWrite delays // 12 August 2009
//#define NBR_TIMERS ((MAX_SERVOS) / (SERVOS_PER_TIMER))
static ServoInfo_t servo_info[MAX_SERVOS]; // static array of servo info structures
static volatile int8_t Channel[_Nbr_16timers ]; // counter for the servo being pulsed for each timer (or -1 if refresh interval)
uint8_t ServoCount = 0; // the total number of attached servos
// convenience macros
#define SERVO_INDEX_TO_TIMER(_servo_nbr) ((timer16_Sequence_t)(_servo_nbr / (SERVOS_PER_TIMER))) // returns the timer controlling this servo
#define SERVO_INDEX_TO_CHANNEL(_servo_nbr) (_servo_nbr % (SERVOS_PER_TIMER)) // returns the index of the servo on this timer
#define SERVO_INDEX(_timer,_channel) ((_timer*(SERVOS_PER_TIMER)) + _channel) // macro to access servo index by timer and channel
#define SERVO(_timer,_channel) (servo_info[SERVO_INDEX(_timer,_channel)]) // macro to access servo class by timer and channel
#define SERVO_MIN() (MIN_PULSE_WIDTH - this->min * 4) // minimum value in uS for this servo
#define SERVO_MAX() (MAX_PULSE_WIDTH - this->max * 4) // maximum value in uS for this servo
/************ static functions common to all instances ***********************/
static inline void handle_interrupts(timer16_Sequence_t timer, volatile uint16_t* TCNTn, volatile uint16_t* OCRnA) {
if (Channel[timer] < 0)
*TCNTn = 0; // channel set to -1 indicated that refresh interval completed so reset the timer
else {
if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && SERVO(timer, Channel[timer]).Pin.isActive)
digitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, LOW); // pulse this channel low if activated
}
Channel[timer]++; // increment to the next channel
if (SERVO_INDEX(timer, Channel[timer]) < ServoCount && Channel[timer] < SERVOS_PER_TIMER) {
*OCRnA = *TCNTn + SERVO(timer, Channel[timer]).ticks;
if (SERVO(timer, Channel[timer]).Pin.isActive) // check if activated
digitalWrite(SERVO(timer, Channel[timer]).Pin.nbr, HIGH); // its an active channel so pulse it high
}
else {
// finished all channels so wait for the refresh period to expire before starting over
if (((unsigned)*TCNTn) + 4 < usToTicks(REFRESH_INTERVAL)) // allow a few ticks to ensure the next OCR1A not missed
*OCRnA = (unsigned int)usToTicks(REFRESH_INTERVAL);
else
*OCRnA = *TCNTn + 4; // at least REFRESH_INTERVAL has elapsed
Channel[timer] = -1; // this will get incremented at the end of the refresh period to start again at the first channel
}
}
#ifndef WIRING // Wiring pre-defines signal handlers so don't define any if compiling for the Wiring platform
// Interrupt handlers for Arduino
#if ENABLED(_useTimer1)
SIGNAL (TIMER1_COMPA_vect) { handle_interrupts(_timer1, &TCNT1, &OCR1A); }
#endif
#if ENABLED(_useTimer3)
SIGNAL (TIMER3_COMPA_vect) { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
#endif
#if ENABLED(_useTimer4)
SIGNAL (TIMER4_COMPA_vect) { handle_interrupts(_timer4, &TCNT4, &OCR4A); }
#endif
#if ENABLED(_useTimer5)
SIGNAL (TIMER5_COMPA_vect) { handle_interrupts(_timer5, &TCNT5, &OCR5A); }
#endif
#else //!WIRING
// Interrupt handlers for Wiring
#if ENABLED(_useTimer1)
void Timer1Service() { handle_interrupts(_timer1, &TCNT1, &OCR1A); }
#endif
#if ENABLED(_useTimer3)
void Timer3Service() { handle_interrupts(_timer3, &TCNT3, &OCR3A); }
#endif
#endif //!WIRING
static void initISR(timer16_Sequence_t timer) {
#if ENABLED(_useTimer1)
if (timer == _timer1) {
TCCR1A = 0; // normal counting mode
TCCR1B = _BV(CS11); // set prescaler of 8
TCNT1 = 0; // clear the timer count
#if defined(__AVR_ATmega8__)|| defined(__AVR_ATmega128__)
SBI(TIFR, OCF1A); // clear any pending interrupts;
SBI(TIMSK, OCIE1A); // enable the output compare interrupt
#else
// here if not ATmega8 or ATmega128
SBI(TIFR1, OCF1A); // clear any pending interrupts;
SBI(TIMSK1, OCIE1A); // enable the output compare interrupt
#endif
#ifdef WIRING
timerAttach(TIMER1OUTCOMPAREA_INT, Timer1Service);
#endif
}
#endif
#if ENABLED(_useTimer3)
if (timer == _timer3) {
TCCR3A = 0; // normal counting mode
TCCR3B = _BV(CS31); // set prescaler of 8
TCNT3 = 0; // clear the timer count
#ifdef __AVR_ATmega128__
SBI(TIFR, OCF3A); // clear any pending interrupts;
SBI(ETIMSK, OCIE3A); // enable the output compare interrupt
#else
TIFR3 = _BV(OCF3A); // clear any pending interrupts;
TIMSK3 = _BV(OCIE3A) ; // enable the output compare interrupt
#endif
#ifdef WIRING
timerAttach(TIMER3OUTCOMPAREA_INT, Timer3Service); // for Wiring platform only
#endif
}
#endif
#if ENABLED(_useTimer4)
if (timer == _timer4) {
TCCR4A = 0; // normal counting mode
TCCR4B = _BV(CS41); // set prescaler of 8
TCNT4 = 0; // clear the timer count
TIFR4 = _BV(OCF4A); // clear any pending interrupts;
TIMSK4 = _BV(OCIE4A) ; // enable the output compare interrupt
}
#endif
#if ENABLED(_useTimer5)
if (timer == _timer5) {
TCCR5A = 0; // normal counting mode
TCCR5B = _BV(CS51); // set prescaler of 8
TCNT5 = 0; // clear the timer count
TIFR5 = _BV(OCF5A); // clear any pending interrupts;
TIMSK5 = _BV(OCIE5A) ; // enable the output compare interrupt
}
#endif
}
static void finISR(timer16_Sequence_t timer) {
// Disable use of the given timer
#ifdef WIRING
if (timer == _timer1) {
CBI(
#if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
TIMSK1
#else
TIMSK
#endif
, OCIE1A); // disable timer 1 output compare interrupt
timerDetach(TIMER1OUTCOMPAREA_INT);
}
else if (timer == _timer3) {
CBI(
#if defined(__AVR_ATmega1281__) || defined(__AVR_ATmega2561__)
TIMSK3
#else
ETIMSK
#endif
, OCIE3A); // disable the timer3 output compare A interrupt
timerDetach(TIMER3OUTCOMPAREA_INT);
}
#else //!WIRING
// For arduino - in future: call here to a currently undefined function to reset the timer
9 years ago
UNUSED(timer);
#endif
}
static boolean isTimerActive(timer16_Sequence_t timer) {
// returns true if any servo is active on this timer
for (uint8_t channel = 0; channel < SERVOS_PER_TIMER; channel++) {
if (SERVO(timer, channel).Pin.isActive)
return true;
}
return false;
}
/****************** end of static functions ******************************/
Servo::Servo() {
if (ServoCount < MAX_SERVOS) {
this->servoIndex = ServoCount++; // assign a servo index to this instance
servo_info[this->servoIndex].ticks = usToTicks(DEFAULT_PULSE_WIDTH); // store default values - 12 Aug 2009
}
else
this->servoIndex = INVALID_SERVO; // too many servos
}
int8_t Servo::attach(int pin) {
return this->attach(pin, MIN_PULSE_WIDTH, MAX_PULSE_WIDTH);
}
int8_t Servo::attach(int pin, int min, int max) {
if (this->servoIndex >= MAX_SERVOS) return -1;
if (pin > 0) servo_info[this->servoIndex].Pin.nbr = pin;
pinMode(servo_info[this->servoIndex].Pin.nbr, OUTPUT); // set servo pin to output
// todo min/max check: abs(min - MIN_PULSE_WIDTH) /4 < 128
this->min = (MIN_PULSE_WIDTH - min) / 4; //resolution of min/max is 4 uS
this->max = (MAX_PULSE_WIDTH - max) / 4;
// initialize the timer if it has not already been initialized
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (!isTimerActive(timer)) initISR(timer);
servo_info[this->servoIndex].Pin.isActive = true; // this must be set after the check for isTimerActive
return this->servoIndex;
}
void Servo::detach() {
servo_info[this->servoIndex].Pin.isActive = false;
timer16_Sequence_t timer = SERVO_INDEX_TO_TIMER(servoIndex);
if (!isTimerActive(timer)) finISR(timer);
}
void Servo::write(int value) {
if (value < MIN_PULSE_WIDTH) { // treat values less than 544 as angles in degrees (valid values in microseconds are handled as microseconds)
value = map(constrain(value, 0, 180), 0, 180, SERVO_MIN(), SERVO_MAX());
}
this->writeMicroseconds(value);
}
void Servo::writeMicroseconds(int value) {
// calculate and store the values for the given channel
byte channel = this->servoIndex;
if (channel < MAX_SERVOS) { // ensure channel is valid
// ensure pulse width is valid
value = constrain(value, SERVO_MIN(), SERVO_MAX()) - (TRIM_DURATION);
value = usToTicks(value); // convert to ticks after compensating for interrupt overhead - 12 Aug 2009
CRITICAL_SECTION_START;
servo_info[channel].ticks = value;
CRITICAL_SECTION_END;
}
}
// return the value as degrees
int Servo::read() { return map(this->readMicroseconds() + 1, SERVO_MIN(), SERVO_MAX(), 0, 180); }
int Servo::readMicroseconds() {
return (this->servoIndex == INVALID_SERVO) ? 0 : ticksToUs(servo_info[this->servoIndex].ticks) + TRIM_DURATION;
}
bool Servo::attached() { return servo_info[this->servoIndex].Pin.isActive; }
void Servo::move(int value) {
if (this->attach(0) >= 0) {
this->write(value);
delay(SERVO_DELAY);
#if ENABLED(DEACTIVATE_SERVOS_AFTER_MOVE)
this->detach();
#endif
}
}
#endif