/**
 * Marlin 3D Printer Firmware
 * Copyright (C) 2016, 2017 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

#ifndef UNIFIED_BED_LEVELING_H
#define UNIFIED_BED_LEVELING_H

#include "MarlinConfig.h"

#if ENABLED(AUTO_BED_LEVELING_UBL)
  #include "Marlin.h"
  #include "planner.h"
  #include "math.h"
  #include "vector_3.h"
  #include "configuration_store.h"

  #define UBL_VERSION "1.01"
  #define UBL_OK false
  #define UBL_ERR true

  #define USE_NOZZLE_AS_REFERENCE 0
  #define USE_PROBE_AS_REFERENCE 1

  typedef struct {
    int8_t x_index, y_index;
    float distance; // When populated, the distance from the search location
  } mesh_index_pair;

  // ubl.cpp

  void bit_clear(uint16_t bits[16], uint8_t x, uint8_t y);
  void bit_set(uint16_t bits[16], uint8_t x, uint8_t y);
  bool is_bit_set(uint16_t bits[16], uint8_t x, uint8_t y);

  // ubl_motion.cpp

  void debug_current_and_destination(const char * const title);

  // ubl_G29.cpp

  enum MeshPointType { INVALID, REAL, SET_IN_BITMAP };

  // External references

  char *ftostr43sign(const float&, char);
  bool ubl_lcd_clicked();
  void home_all_axes();

  extern uint8_t ubl_cnt;

  ///////////////////////////////////////////////////////////////////////////////////////////////////////

  #if ENABLED(ULTRA_LCD)
    extern char lcd_status_message[];
    void lcd_quick_feedback();
  #endif

  #define MESH_X_DIST (float(UBL_MESH_MAX_X - (UBL_MESH_MIN_X)) / float(GRID_MAX_POINTS_X - 1))
  #define MESH_Y_DIST (float(UBL_MESH_MAX_Y - (UBL_MESH_MIN_Y)) / float(GRID_MAX_POINTS_Y - 1))

  typedef struct {
    bool active = false;
    float z_offset = 0.0;
    int8_t storage_slot = -1;
  } ubl_state;

  class unified_bed_leveling {
    private:

      static float last_specified_z;

      static int    g29_verbose_level,
                    g29_phase_value,
                    g29_repetition_cnt,
                    g29_storage_slot,
                    g29_map_type,
                    g29_grid_size;
      static bool   g29_c_flag, g29_x_flag, g29_y_flag;
      static float  g29_x_pos, g29_y_pos,
                    g29_card_thickness,
                    g29_constant;

      #if ENABLED(UBL_G26_MESH_VALIDATION)
        static float   g26_extrusion_multiplier,
                       g26_retraction_multiplier,
                       g26_nozzle,
                       g26_filament_diameter,
                       g26_prime_length,
                       g26_x_pos, g26_y_pos,
                       g26_ooze_amount,
                       g26_layer_height;
        static int16_t g26_bed_temp,
                       g26_hotend_temp,
                       g26_repeats;
        static int8_t  g26_prime_flag;
        static bool    g26_continue_with_closest, g26_keep_heaters_on;
      #endif

      static float measure_point_with_encoder();
      static float measure_business_card_thickness(float&);
      static bool g29_parameter_parsing();
      static void find_mean_mesh_height();
      static void shift_mesh_height();
      static void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest);
      static void manually_probe_remaining_mesh(const float&, const float&, const float&, const float&, const bool);
      static void tilt_mesh_based_on_3pts(const float &z1, const float &z2, const float &z3);
      static void tilt_mesh_based_on_probed_grid(const bool do_ubl_mesh_map);
      static void g29_what_command();
      static void g29_eeprom_dump();
      static void g29_compare_current_mesh_to_stored_mesh();
      static void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map);
      static bool smart_fill_one(const uint8_t x, const uint8_t y, const int8_t xdir, const int8_t ydir);
      static void smart_fill_mesh();

      #if ENABLED(UBL_G26_MESH_VALIDATION)
        static bool exit_from_g26();
        static bool parse_G26_parameters();
        static void G26_line_to_destination(const float &feed_rate);
        static mesh_index_pair find_closest_circle_to_print(const float&, const float&);
        static bool look_for_lines_to_connect();
        static bool turn_on_heaters();
        static bool prime_nozzle();
        static void retract_filament(float where[XYZE]);
        static void recover_filament(float where[XYZE]);
        static void print_line_from_here_to_there(const float&, const float&, const float&, const float&, const float&, const float&);
        static void move_to(const float&, const float&, const float&, const float&);
      #endif

    public:

      static void echo_name();
      static void report_state();
      static void save_ubl_active_state_and_disable();
      static void restore_ubl_active_state_and_leave();
      static void display_map(const int);
      static mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType, const float&, const float&, const bool, unsigned int[16], bool);
      static void reset();
      static void invalidate();
      static void set_all_mesh_points_to_value(float);
      static bool sanity_check();

      static void G29() _O0;                          // O0 for no optimization
      static void smart_fill_wlsf(const float &) _O2; // O2 gives smaller code than Os on A2560

      #if ENABLED(UBL_G26_MESH_VALIDATION)
        static void G26();
      #endif

      static ubl_state state;

      static float z_values[GRID_MAX_POINTS_X][GRID_MAX_POINTS_Y];

      // 15 is the maximum nubmer of grid points supported + 1 safety margin for now,
      // until determinism prevails
      constexpr static float _mesh_index_to_xpos[16] PROGMEM = {
                                UBL_MESH_MIN_X +  0 * (MESH_X_DIST), UBL_MESH_MIN_X +  1 * (MESH_X_DIST),
                                UBL_MESH_MIN_X +  2 * (MESH_X_DIST), UBL_MESH_MIN_X +  3 * (MESH_X_DIST),
                                UBL_MESH_MIN_X +  4 * (MESH_X_DIST), UBL_MESH_MIN_X +  5 * (MESH_X_DIST),
                                UBL_MESH_MIN_X +  6 * (MESH_X_DIST), UBL_MESH_MIN_X +  7 * (MESH_X_DIST),
                                UBL_MESH_MIN_X +  8 * (MESH_X_DIST), UBL_MESH_MIN_X +  9 * (MESH_X_DIST),
                                UBL_MESH_MIN_X + 10 * (MESH_X_DIST), UBL_MESH_MIN_X + 11 * (MESH_X_DIST),
                                UBL_MESH_MIN_X + 12 * (MESH_X_DIST), UBL_MESH_MIN_X + 13 * (MESH_X_DIST),
                                UBL_MESH_MIN_X + 14 * (MESH_X_DIST), UBL_MESH_MIN_X + 15 * (MESH_X_DIST)
                              };

      constexpr static float _mesh_index_to_ypos[16] PROGMEM = {
                                UBL_MESH_MIN_Y +  0 * (MESH_Y_DIST), UBL_MESH_MIN_Y +  1 * (MESH_Y_DIST),
                                UBL_MESH_MIN_Y +  2 * (MESH_Y_DIST), UBL_MESH_MIN_Y +  3 * (MESH_Y_DIST),
                                UBL_MESH_MIN_Y +  4 * (MESH_Y_DIST), UBL_MESH_MIN_Y +  5 * (MESH_Y_DIST),
                                UBL_MESH_MIN_Y +  6 * (MESH_Y_DIST), UBL_MESH_MIN_Y +  7 * (MESH_Y_DIST),
                                UBL_MESH_MIN_Y +  8 * (MESH_Y_DIST), UBL_MESH_MIN_Y +  9 * (MESH_Y_DIST),
                                UBL_MESH_MIN_Y + 10 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 11 * (MESH_Y_DIST),
                                UBL_MESH_MIN_Y + 12 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 13 * (MESH_Y_DIST),
                                UBL_MESH_MIN_Y + 14 * (MESH_Y_DIST), UBL_MESH_MIN_Y + 15 * (MESH_Y_DIST)
                              };

      static bool g26_debug_flag, has_control_of_lcd_panel;

      static volatile int encoder_diff; // Volatile because it's changed at interrupt time.

      unified_bed_leveling();

      FORCE_INLINE static void set_z(const int8_t px, const int8_t py, const float &z) { z_values[px][py] = z; }

      static int8_t get_cell_index_x(const float &x) {
        const int8_t cx = (x - (UBL_MESH_MIN_X)) * (1.0 / (MESH_X_DIST));
        return constrain(cx, 0, (GRID_MAX_POINTS_X) - 1);   // -1 is appropriate if we want all movement to the X_MAX
      }                                                     // position. But with this defined this way, it is possible
                                                            // to extrapolate off of this point even further out. Probably
                                                            // that is OK because something else should be keeping that from
                                                            // happening and should not be worried about at this level.
      static int8_t get_cell_index_y(const float &y) {
        const int8_t cy = (y - (UBL_MESH_MIN_Y)) * (1.0 / (MESH_Y_DIST));
        return constrain(cy, 0, (GRID_MAX_POINTS_Y) - 1);   // -1 is appropriate if we want all movement to the Y_MAX
      }                                                     // position. But with this defined this way, it is possible
                                                            // to extrapolate off of this point even further out. Probably
                                                            // that is OK because something else should be keeping that from
                                                            // happening and should not be worried about at this level.

      static int8_t find_closest_x_index(const float &x) {
        const int8_t px = (x - (UBL_MESH_MIN_X) + (MESH_X_DIST) * 0.5) * (1.0 / (MESH_X_DIST));
        return WITHIN(px, 0, GRID_MAX_POINTS_X - 1) ? px : -1;
      }

      static int8_t find_closest_y_index(const float &y) {
        const int8_t py = (y - (UBL_MESH_MIN_Y) + (MESH_Y_DIST) * 0.5) * (1.0 / (MESH_Y_DIST));
        return WITHIN(py, 0, GRID_MAX_POINTS_Y - 1) ? py : -1;
      }

      /**
       *                           z2   --|
       *                 z0        |      |
       *                  |        |      + (z2-z1)
       *   z1             |        |      |
       * ---+-------------+--------+--  --|
       *   a1            a0        a2
       *    |<---delta_a---------->|
       *
       *  calc_z0 is the basis for all the Mesh Based correction. It is used to
       *  find the expected Z Height at a position between two known Z-Height locations.
       *
       *  It is fairly expensive with its 4 floating point additions and 2 floating point
       *  multiplications.
       */
      FORCE_INLINE static float calc_z0(const float &a0, const float &a1, const float &z1, const float &a2, const float &z2) {
        return z1 + (z2 - z1) * (a0 - a1) / (a2 - a1);
      }

      /**
       * z_correction_for_x_on_horizontal_mesh_line is an optimization for
       * the rare occasion when a point lies exactly on a Mesh line (denoted by index yi).
       */
      inline static float z_correction_for_x_on_horizontal_mesh_line(const float &lx0, const int x1_i, const int yi) {
        if (!WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(yi, 0, GRID_MAX_POINTS_Y - 1)) {
          serialprintPGM( !WITHIN(x1_i, 0, GRID_MAX_POINTS_X - 1) ? PSTR("x1l_i") : PSTR("yi") );
          SERIAL_ECHOPAIR(" out of bounds in z_correction_for_x_on_horizontal_mesh_line(lx0=", lx0);
          SERIAL_ECHOPAIR(",x1_i=", x1_i);
          SERIAL_ECHOPAIR(",yi=", yi);
          SERIAL_CHAR(')');
          SERIAL_EOL;
          return NAN;
        }

        const float xratio = (RAW_X_POSITION(lx0) - mesh_index_to_xpos(x1_i)) * (1.0 / (MESH_X_DIST)),
                    z1 = z_values[x1_i][yi];

        return z1 + xratio * (z_values[x1_i + 1][yi] - z1);
      }

      //
      // See comments above for z_correction_for_x_on_horizontal_mesh_line
      //
      inline static float z_correction_for_y_on_vertical_mesh_line(const float &ly0, const int xi, const int y1_i) {
        if (!WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(y1_i, 0, GRID_MAX_POINTS_Y - 1)) {
          serialprintPGM( !WITHIN(xi, 0, GRID_MAX_POINTS_X - 1) ? PSTR("xi") : PSTR("yl_i") );
          SERIAL_ECHOPAIR(" out of bounds in z_correction_for_y_on_vertical_mesh_line(ly0=", ly0);
          SERIAL_ECHOPAIR(", xi=", xi);
          SERIAL_ECHOPAIR(", y1_i=", y1_i);
          SERIAL_CHAR(')');
          SERIAL_EOL;
          return NAN;
        }

        const float yratio = (RAW_Y_POSITION(ly0) - mesh_index_to_ypos(y1_i)) * (1.0 / (MESH_Y_DIST)),
                    z1 = z_values[xi][y1_i];

        return z1 + yratio * (z_values[xi][y1_i + 1] - z1);
      }

      /**
       * This is the generic Z-Correction. It works anywhere within a Mesh Cell. It first
       * does a linear interpolation along both of the bounding X-Mesh-Lines to find the
       * Z-Height at both ends. Then it does a linear interpolation of these heights based
       * on the Y position within the cell.
       */
      static float get_z_correction(const float &lx0, const float &ly0) {
        const int8_t cx = get_cell_index_x(RAW_X_POSITION(lx0)),
                     cy = get_cell_index_y(RAW_Y_POSITION(ly0));

        if (!WITHIN(cx, 0, GRID_MAX_POINTS_X - 1) || !WITHIN(cy, 0, GRID_MAX_POINTS_Y - 1)) {

          SERIAL_ECHOPAIR("? in get_z_correction(lx0=", lx0);
          SERIAL_ECHOPAIR(", ly0=", ly0);
          SERIAL_CHAR(')');
          SERIAL_EOL;

          #if ENABLED(ULTRA_LCD)
            strcpy(lcd_status_message, "get_z_correction() indexes out of range.");
            lcd_quick_feedback();
          #endif
          return 0.0; // this used to return state.z_offset
        }

        const float z1 = calc_z0(RAW_X_POSITION(lx0),
                                 mesh_index_to_xpos(cx), z_values[cx][cy],
                                 mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy]);

        const float z2 = calc_z0(RAW_X_POSITION(lx0),
                                 mesh_index_to_xpos(cx), z_values[cx][cy + 1],
                                 mesh_index_to_xpos(cx + 1), z_values[cx + 1][cy + 1]);

        float z0 = calc_z0(RAW_Y_POSITION(ly0),
                           mesh_index_to_ypos(cy), z1,
                           mesh_index_to_ypos(cy + 1), z2);

        #if ENABLED(DEBUG_LEVELING_FEATURE)
          if (DEBUGGING(MESH_ADJUST)) {
            SERIAL_ECHOPAIR(" raw get_z_correction(", lx0);
            SERIAL_CHAR(',');
            SERIAL_ECHO(ly0);
            SERIAL_ECHOPGM(") = ");
            SERIAL_ECHO_F(z0, 6);
          }
        #endif

        #if ENABLED(DEBUG_LEVELING_FEATURE)
          if (DEBUGGING(MESH_ADJUST)) {
            SERIAL_ECHOPGM(" >>>---> ");
            SERIAL_ECHO_F(z0, 6);
            SERIAL_EOL;
          }
        #endif

        if (isnan(z0)) { // if part of the Mesh is undefined, it will show up as NAN
          z0 = 0.0;      // in ubl.z_values[][] and propagate through the
                         // calculations. If our correction is NAN, we throw it out
                         // because part of the Mesh is undefined and we don't have the
                         // information we need to complete the height correction.

          #if ENABLED(DEBUG_LEVELING_FEATURE)
            if (DEBUGGING(MESH_ADJUST)) {
              SERIAL_ECHOPAIR("??? Yikes!  NAN in get_z_correction(", lx0);
              SERIAL_CHAR(',');
              SERIAL_ECHO(ly0);
              SERIAL_CHAR(')');
              SERIAL_EOL;
            }
          #endif
        }
        return z0; // there used to be a +state.z_offset on this line
      }

      /**
       * This function sets the Z leveling fade factor based on the given Z height,
       * only re-calculating when necessary.
       *
       *  Returns 1.0 if planner.z_fade_height is 0.0.
       *  Returns 0.0 if Z is past the specified 'Fade Height'.
       */
      #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT)
        static inline float fade_scaling_factor_for_z(const float &lz) {
          if (planner.z_fade_height == 0.0) return 1.0;
          static float fade_scaling_factor = 1.0;
          const float rz = RAW_Z_POSITION(lz);
          if (last_specified_z != rz) {
            last_specified_z = rz;
            fade_scaling_factor =
              rz < planner.z_fade_height
                ? 1.0 - (rz * planner.inverse_z_fade_height)
                : 0.0;
          }
          return fade_scaling_factor;
        }
      #else
        FORCE_INLINE static float fade_scaling_factor_for_z(const float &lz) { return 1.0; }
      #endif

      FORCE_INLINE static float mesh_index_to_xpos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_xpos[i]); }
      FORCE_INLINE static float mesh_index_to_ypos(const uint8_t i) { return pgm_read_float(&_mesh_index_to_ypos[i]); }

      static bool prepare_segmented_line_to(const float ltarget[XYZE], const float &feedrate);
      static void line_to_destination_cartesian(const float &fr, uint8_t e);

  }; // class unified_bed_leveling

  extern unified_bed_leveling ubl;

  #if ENABLED(UBL_G26_MESH_VALIDATION)
    FORCE_INLINE void gcode_G26() { ubl.G26(); }
  #endif

  FORCE_INLINE void gcode_G29() { ubl.G29(); }

#endif // AUTO_BED_LEVELING_UBL
#endif // UNIFIED_BED_LEVELING_H