/**
 * Marlin 3D Printer Firmware
 * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin]
 *
 * Based on Sprinter and grbl.
 * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
 *
 */

/**
 * M100 Free Memory Watcher
 *
 * This code watches the free memory block between the bottom of the heap and the top of the stack.
 * This memory block is initialized and watched via the M100 command.
 *
 * M100 I   Initializes the free memory block and prints vitals statistics about the area
 *
 * M100 F   Identifies how much of the free memory block remains free and unused. It also
 *          detects and reports any corruption within the free memory block that may have
 *          happened due to errant firmware.
 *
 * M100 D   Does a hex display of the free memory block along with a flag for any errant
 *          data that does not match the expected value.
 *
 * M100 C x Corrupts x locations within the free memory block. This is useful to check the
 *          correctness of the M100 F and M100 D commands.
 *
 * Also, there are two support functions that can be called from a developer's C code.
 *
 *    uint16_t check_for_free_memory_corruption(const char * const ptr);
 *    void M100_dump_routine(const char * const title, const char *start, const char *end);
 *
 * Initial version by Roxy-3D
 */
#define M100_FREE_MEMORY_DUMPER     // Enable for the `M110 D` Dump sub-command
#define M100_FREE_MEMORY_CORRUPTOR  // Enable for the `M100 C` Corrupt sub-command

#include "MarlinConfig.h"

#if ENABLED(M100_FREE_MEMORY_WATCHER)

#define TEST_BYTE ((char) 0xE5)

extern char command_queue[BUFSIZE][MAX_CMD_SIZE];

extern char* __brkval;
extern size_t  __heap_start, __heap_end, __flp;
extern char __bss_end;

#include "Marlin.h"
#include "hex_print_routines.h"

//
// Utility functions
//

#define END_OF_HEAP() (__brkval ? __brkval : &__bss_end)
int check_for_free_memory_corruption(const char * const title);

// Location of a variable on its stack frame. Returns a value above
// the stack (once the function returns to the caller).
char* top_of_stack() {
  char x;
  return &x + 1; // x is pulled on return;
}

// Count the number of test bytes at the specified location.
int16_t count_test_bytes(const uint8_t * const ptr) {
  for (uint16_t i = 0; i < 32000; i++)
    if (((char) ptr[i]) != TEST_BYTE)
      return i - 1;

  return -1;
}

//
// M100 sub-commands
//

#if ENABLED(M100_FREE_MEMORY_DUMPER)
  /**
   * M100 D
   *  Dump the free memory block from __brkval to the stack pointer.
   *  malloc() eats memory from the start of the block and the stack grows
   *  up from the bottom of the block. Solid test bytes indicate nothing has
   *  used that memory yet. There should not be anything but test bytes within
   *  the block. If so, it may indicate memory corruption due to a bad pointer.
   *  Unexpected bytes are flagged in the right column.
   */
  void dump_free_memory(const uint8_t *ptr, const uint8_t *sp) {
    //
    // Start and end the dump on a nice 16 byte boundary
    // (even though the values are not 16-byte aligned).
    //
    ptr = (uint8_t *)((uint16_t)ptr & 0xFFF0); // Align to 16-byte boundary
    sp  = (uint8_t *)((uint16_t)sp  | 0x000F); // Align sp to the 15th byte (at or above sp)

    // Dump command main loop
    while (ptr < sp) {
      print_hex_word((uint16_t)ptr);      // Print the address
      SERIAL_CHAR(':');
      for (uint8_t i = 0; i < 16; i++) {  // and 16 data bytes
        if (i == 8) SERIAL_CHAR('-');
        print_hex_byte(ptr[i]);
        SERIAL_CHAR(' ');
      }
      safe_delay(25);
      SERIAL_CHAR('|');                   // Point out non test bytes
      for (uint8_t i = 0; i < 16; i++) {
        char ccc = (char)ptr[i]; // cast to char before automatically casting to char on assignment, in case the compiler is broken
        if (&ptr[i] >= command_queue && &ptr[i] < &command_queue[BUFSIZE][MAX_CMD_SIZE]) { // Print out ASCII in the command buffer area
          if (!WITHIN(ccc, ' ', 0x7E)) ccc = ' ';
        }
        else { // If not in the command buffer area, flag bytes that don't match the test byte
          ccc = (ccc == TEST_BYTE) ? ' ' : '?';
        }
        SERIAL_CHAR(ccc);
      }
      SERIAL_EOL;
      ptr += 16;
      safe_delay(25);
      idle();
    }
  }

void M100_dump_routine(const char * const title, const char *start, const char *end) {
  SERIAL_ECHOLN(title);
  //
  // Round the start and end locations to produce full lines of output
  //
  start = (char*)((uint16_t) start & 0xFFF0);
  end   = (char*)((uint16_t) end   | 0x000F);
  dump_free_memory(start, end);
}

#endif // M100_FREE_MEMORY_DUMPER

/**
 * M100 F
 *  Return the number of free bytes in the memory pool,
 *  with other vital statistics defining the pool.
 */
void free_memory_pool_report(const char * const ptr, const uint16_t size) {
  int16_t max_cnt = -1;
  uint16_t block_cnt = 0;
  char *max_addr = NULL;
  // Find the longest block of test bytes in the buffer
  for (uint16_t i = 0; i < size; i++) {
    char * const addr = ptr + i;
    if (*addr == TEST_BYTE) {
      const uint16_t j = count_test_bytes(addr);
      if (j > 8) {
        SERIAL_ECHOPAIR("Found ", j);
        SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(addr));
        if (j > max_cnt) {
          max_cnt  = j;
          max_addr = addr;
        }
        i += j;
        block_cnt++;
      }
    }
  }
  if (block_cnt > 1) {
    SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");
    SERIAL_ECHOPAIR("\nLargest free block is ", max_cnt);
    SERIAL_ECHOLNPAIR(" bytes at ", hex_address(max_addr));
  }
  SERIAL_ECHOLNPAIR("check_for_free_memory_corruption() = ", check_for_free_memory_corruption("M100 F "));
}

#if ENABLED(M100_FREE_MEMORY_CORRUPTOR)
  /**
   * M100 C<num>
   *  Corrupt <num> locations in the free memory pool and report the corrupt addresses.
   *  This is useful to check the correctness of the M100 D and the M100 F commands.
   */
  void corrupt_free_memory(char *ptr, const uint16_t size) {
    if (code_seen('C')) {
      ptr += 8;
      const uint16_t near_top = top_of_stack() - ptr - 250, // -250 to avoid interrupt activity that's altered the stack.
                     j = near_top / (size + 1);

      SERIAL_ECHOLNPGM("Corrupting free memory block.\n");
      for (uint16_t i = 1; i <= size; i++) {
        char * const addr = ptr + i * j;
        *addr = i;
        SERIAL_ECHOPAIR("\nCorrupting address: ", hex_address(addr));
      }
      SERIAL_EOL;
    }
  }
#endif // M100_FREE_MEMORY_CORRUPTOR

/**
 * M100 I
 *  Init memory for the M100 tests. (Automatically applied on the first M100.)
 */
void init_free_memory(uint8_t *ptr, int16_t size) {
  SERIAL_ECHOLNPGM("Initializing free memory block.\n\n");

  size -= 250;    // -250 to avoid interrupt activity that's altered the stack.
  if (size < 0) {
    SERIAL_ECHOLNPGM("Unable to initialize.\n");
    return;
  }

  ptr += 8;       // move a few bytes away from the heap just because we don't want
                  // to be altering memory that close to it.
  memset(ptr, TEST_BYTE, size);

  SERIAL_ECHO(size);
  SERIAL_ECHOLNPGM(" bytes of memory initialized.\n");

  for (uint16_t i = 0; i < size; i++) {
    if ((char)ptr[i] != TEST_BYTE) {
      SERIAL_ECHOPAIR("? address : ", hex_address(ptr + i));
      SERIAL_ECHOLNPAIR("=", hex_byte(ptr[i]));
      SERIAL_EOL;
    }
  }
}

/**
 * M100: Free Memory Check
 */
void gcode_M100() {
  SERIAL_ECHOPAIR("\n__brkval : ", hex_address(__brkval));
  SERIAL_ECHOPAIR("\n__bss_end : ", hex_address(&__bss_end));

  char *ptr = END_OF_HEAP(), *sp = top_of_stack();

  SERIAL_ECHOPAIR("\nstart of free space : ", hex_address(ptr));
  SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_address(sp));

  // Always init on the first invocation of M100
  static bool m100_not_initialized = true;
  if (m100_not_initialized || code_seen('I')) {
    m100_not_initialized = false;
    init_free_memory(ptr, sp - ptr);
  }

  #if ENABLED(M100_FREE_MEMORY_DUMPER)
    if (code_seen('D'))
      return dump_free_memory(ptr, sp);
  #endif

  if (code_seen('F'))
    return free_memory_pool_report(ptr, sp - ptr);

  #if ENABLED(M100_FREE_MEMORY_CORRUPTOR)

    if (code_seen('C'))
      return corrupt_free_memory(ptr, code_value_int());

  #endif
}

int check_for_free_memory_corruption(const char * const title) {
  SERIAL_ECHO(title);

  char *ptr = END_OF_HEAP(), *sp = top_of_stack();
  int n = sp - ptr;

  SERIAL_ECHOPAIR("\nfmc() n=", n);
  SERIAL_ECHOPAIR("\n&__brkval: ", hex_address(&__brkval));
  SERIAL_ECHOPAIR("=",             hex_address(__brkval));
  SERIAL_ECHOPAIR("\n__bss_end: ", hex_address(&__bss_end));
  SERIAL_ECHOPAIR(" sp=",          hex_address(sp));

  if (sp < ptr)  {
    SERIAL_ECHOPGM(" sp < Heap ");
    // SET_INPUT_PULLUP(63);           // if the developer has a switch wired up to their controller board
    // safe_delay(5);                  // this code can be enabled to pause the display as soon as the
    // while ( READ(63))               // malfunction is detected.   It is currently defaulting to a switch
    //   idle();                       // being on pin-63 which is unassigend and available on most controller
    // safe_delay(20);                 // boards.
    // while ( !READ(63))
    //   idle();
    safe_delay(20);
    #ifdef M100_FREE_MEMORY_DUMPER
      M100_dump_routine("   Memory corruption detected with sp<Heap\n", (char*)0x1B80, 0x21FF);
    #endif
  }

  // Scan through the range looking for the biggest block of 0xE5's we can find
  int block_cnt = 0;
  for (int i = 0; i < n; i++) {
    if (ptr[i] == TEST_BYTE) {
      int16_t j = count_test_bytes(ptr + i);
      if (j > 8) {
        // SERIAL_ECHOPAIR("Found ", j);
        // SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(ptr + i));
        i += j;
        block_cnt++;
        SERIAL_ECHOPAIR(" (", block_cnt);
        SERIAL_ECHOPAIR(") found=", j);
        SERIAL_ECHOPGM("   ");
      }
    }
  }
  SERIAL_ECHOPAIR("  block_found=", block_cnt);

  if (block_cnt != 1 || __brkval != 0x0000)
    SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area.");

  if (block_cnt == 0)       // Make sure the special case of no free blocks shows up as an
    block_cnt = -1;         // error to the calling code!

  SERIAL_ECHOPGM(" return=");
  if (block_cnt == 1) {
    SERIAL_CHAR('0');       // if the block_cnt is 1, nothing has broken up the free memory
    SERIAL_EOL;             // area and it is appropriate to say 'no corruption'.
    return 0;
  }
  SERIAL_ECHOLNPGM("true");
  return block_cnt;
}

#endif // M100_FREE_MEMORY_WATCHER