/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ /** * M100 Free Memory Watcher * * This code watches the free memory block between the bottom of the heap and the top of the stack. * This memory block is initialized and watched via the M100 command. * * M100 I Initializes the free memory block and prints vitals statistics about the area * * M100 F Identifies how much of the free memory block remains free and unused. It also * detects and reports any corruption within the free memory block that may have * happened due to errant firmware. * * M100 D Does a hex display of the free memory block along with a flag for any errant * data that does not match the expected value. * * M100 C x Corrupts x locations within the free memory block. This is useful to check the * correctness of the M100 F and M100 D commands. * * Also, there are two support functions that can be called from a developer's C code. * * uint16_t check_for_free_memory_corruption(const char * const ptr); * void M100_dump_routine(const char * const title, const char *start, const char *end); * * Initial version by Roxy-3D */ #define M100_FREE_MEMORY_DUMPER // Enable for the `M110 D` Dump sub-command #define M100_FREE_MEMORY_CORRUPTOR // Enable for the `M100 C` Corrupt sub-command #include "MarlinConfig.h" #if ENABLED(M100_FREE_MEMORY_WATCHER) #define TEST_BYTE ((char) 0xE5) extern char command_queue[BUFSIZE][MAX_CMD_SIZE]; extern char* __brkval; extern size_t __heap_start, __heap_end, __flp; extern char __bss_end; #include "Marlin.h" #include "hex_print_routines.h" // // Utility functions // #define END_OF_HEAP() (__brkval ? __brkval : &__bss_end) int check_for_free_memory_corruption(const char * const title); // Location of a variable on its stack frame. Returns a value above // the stack (once the function returns to the caller). char* top_of_stack() { char x; return &x + 1; // x is pulled on return; } // Count the number of test bytes at the specified location. int16_t count_test_bytes(const uint8_t * const ptr) { for (uint16_t i = 0; i < 32000; i++) if (((char) ptr[i]) != TEST_BYTE) return i - 1; return -1; } // // M100 sub-commands // #if ENABLED(M100_FREE_MEMORY_DUMPER) /** * M100 D * Dump the free memory block from __brkval to the stack pointer. * malloc() eats memory from the start of the block and the stack grows * up from the bottom of the block. Solid test bytes indicate nothing has * used that memory yet. There should not be anything but test bytes within * the block. If so, it may indicate memory corruption due to a bad pointer. * Unexpected bytes are flagged in the right column. */ void dump_free_memory(const uint8_t *ptr, const uint8_t *sp) { // // Start and end the dump on a nice 16 byte boundary // (even though the values are not 16-byte aligned). // ptr = (uint8_t *)((uint16_t)ptr & 0xFFF0); // Align to 16-byte boundary sp = (uint8_t *)((uint16_t)sp | 0x000F); // Align sp to the 15th byte (at or above sp) // Dump command main loop while (ptr < sp) { print_hex_word((uint16_t)ptr); // Print the address SERIAL_CHAR(':'); for (uint8_t i = 0; i < 16; i++) { // and 16 data bytes if (i == 8) SERIAL_CHAR('-'); print_hex_byte(ptr[i]); SERIAL_CHAR(' '); } safe_delay(25); SERIAL_CHAR('|'); // Point out non test bytes for (uint8_t i = 0; i < 16; i++) { char ccc = (char)ptr[i]; // cast to char before automatically casting to char on assignment, in case the compiler is broken if (&ptr[i] >= command_queue && &ptr[i] < &command_queue[BUFSIZE][MAX_CMD_SIZE]) { // Print out ASCII in the command buffer area if (!WITHIN(ccc, ' ', 0x7E)) ccc = ' '; } else { // If not in the command buffer area, flag bytes that don't match the test byte ccc = (ccc == TEST_BYTE) ? ' ' : '?'; } SERIAL_CHAR(ccc); } SERIAL_EOL; ptr += 16; safe_delay(25); idle(); } } void M100_dump_routine(const char * const title, const char *start, const char *end) { SERIAL_ECHOLN(title); // // Round the start and end locations to produce full lines of output // start = (char*)((uint16_t) start & 0xFFF0); end = (char*)((uint16_t) end | 0x000F); dump_free_memory(start, end); } #endif // M100_FREE_MEMORY_DUMPER /** * M100 F * Return the number of free bytes in the memory pool, * with other vital statistics defining the pool. */ void free_memory_pool_report(const char * const ptr, const uint16_t size) { int16_t max_cnt = -1; uint16_t block_cnt = 0; char *max_addr = NULL; // Find the longest block of test bytes in the buffer for (uint16_t i = 0; i < size; i++) { char * const addr = ptr + i; if (*addr == TEST_BYTE) { const uint16_t j = count_test_bytes(addr); if (j > 8) { SERIAL_ECHOPAIR("Found ", j); SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(addr)); if (j > max_cnt) { max_cnt = j; max_addr = addr; } i += j; block_cnt++; } } } if (block_cnt > 1) { SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area."); SERIAL_ECHOPAIR("\nLargest free block is ", max_cnt); SERIAL_ECHOLNPAIR(" bytes at ", hex_address(max_addr)); } SERIAL_ECHOLNPAIR("check_for_free_memory_corruption() = ", check_for_free_memory_corruption("M100 F ")); } #if ENABLED(M100_FREE_MEMORY_CORRUPTOR) /** * M100 C<num> * Corrupt <num> locations in the free memory pool and report the corrupt addresses. * This is useful to check the correctness of the M100 D and the M100 F commands. */ void corrupt_free_memory(char *ptr, const uint16_t size) { if (code_seen('C')) { ptr += 8; const uint16_t near_top = top_of_stack() - ptr - 250, // -250 to avoid interrupt activity that's altered the stack. j = near_top / (size + 1); SERIAL_ECHOLNPGM("Corrupting free memory block.\n"); for (uint16_t i = 1; i <= size; i++) { char * const addr = ptr + i * j; *addr = i; SERIAL_ECHOPAIR("\nCorrupting address: ", hex_address(addr)); } SERIAL_EOL; } } #endif // M100_FREE_MEMORY_CORRUPTOR /** * M100 I * Init memory for the M100 tests. (Automatically applied on the first M100.) */ void init_free_memory(uint8_t *ptr, int16_t size) { SERIAL_ECHOLNPGM("Initializing free memory block.\n\n"); size -= 250; // -250 to avoid interrupt activity that's altered the stack. if (size < 0) { SERIAL_ECHOLNPGM("Unable to initialize.\n"); return; } ptr += 8; // move a few bytes away from the heap just because we don't want // to be altering memory that close to it. memset(ptr, TEST_BYTE, size); SERIAL_ECHO(size); SERIAL_ECHOLNPGM(" bytes of memory initialized.\n"); for (uint16_t i = 0; i < size; i++) { if ((char)ptr[i] != TEST_BYTE) { SERIAL_ECHOPAIR("? address : ", hex_address(ptr + i)); SERIAL_ECHOLNPAIR("=", hex_byte(ptr[i])); SERIAL_EOL; } } } /** * M100: Free Memory Check */ void gcode_M100() { SERIAL_ECHOPAIR("\n__brkval : ", hex_address(__brkval)); SERIAL_ECHOPAIR("\n__bss_end : ", hex_address(&__bss_end)); char *ptr = END_OF_HEAP(), *sp = top_of_stack(); SERIAL_ECHOPAIR("\nstart of free space : ", hex_address(ptr)); SERIAL_ECHOLNPAIR("\nStack Pointer : ", hex_address(sp)); // Always init on the first invocation of M100 static bool m100_not_initialized = true; if (m100_not_initialized || code_seen('I')) { m100_not_initialized = false; init_free_memory(ptr, sp - ptr); } #if ENABLED(M100_FREE_MEMORY_DUMPER) if (code_seen('D')) return dump_free_memory(ptr, sp); #endif if (code_seen('F')) return free_memory_pool_report(ptr, sp - ptr); #if ENABLED(M100_FREE_MEMORY_CORRUPTOR) if (code_seen('C')) return corrupt_free_memory(ptr, code_value_int()); #endif } int check_for_free_memory_corruption(const char * const title) { SERIAL_ECHO(title); char *ptr = END_OF_HEAP(), *sp = top_of_stack(); int n = sp - ptr; SERIAL_ECHOPAIR("\nfmc() n=", n); SERIAL_ECHOPAIR("\n&__brkval: ", hex_address(&__brkval)); SERIAL_ECHOPAIR("=", hex_address(__brkval)); SERIAL_ECHOPAIR("\n__bss_end: ", hex_address(&__bss_end)); SERIAL_ECHOPAIR(" sp=", hex_address(sp)); if (sp < ptr) { SERIAL_ECHOPGM(" sp < Heap "); // SET_INPUT_PULLUP(63); // if the developer has a switch wired up to their controller board // safe_delay(5); // this code can be enabled to pause the display as soon as the // while ( READ(63)) // malfunction is detected. It is currently defaulting to a switch // idle(); // being on pin-63 which is unassigend and available on most controller // safe_delay(20); // boards. // while ( !READ(63)) // idle(); safe_delay(20); #ifdef M100_FREE_MEMORY_DUMPER M100_dump_routine(" Memory corruption detected with sp<Heap\n", (char*)0x1B80, 0x21FF); #endif } // Scan through the range looking for the biggest block of 0xE5's we can find int block_cnt = 0; for (int i = 0; i < n; i++) { if (ptr[i] == TEST_BYTE) { int16_t j = count_test_bytes(ptr + i); if (j > 8) { // SERIAL_ECHOPAIR("Found ", j); // SERIAL_ECHOLNPAIR(" bytes free at ", hex_address(ptr + i)); i += j; block_cnt++; SERIAL_ECHOPAIR(" (", block_cnt); SERIAL_ECHOPAIR(") found=", j); SERIAL_ECHOPGM(" "); } } } SERIAL_ECHOPAIR(" block_found=", block_cnt); if (block_cnt != 1 || __brkval != 0x0000) SERIAL_ECHOLNPGM("\nMemory Corruption detected in free memory area."); if (block_cnt == 0) // Make sure the special case of no free blocks shows up as an block_cnt = -1; // error to the calling code! SERIAL_ECHOPGM(" return="); if (block_cnt == 1) { SERIAL_CHAR('0'); // if the block_cnt is 1, nothing has broken up the free memory SERIAL_EOL; // area and it is appropriate to say 'no corruption'. return 0; } SERIAL_ECHOLNPGM("true"); return block_cnt; } #endif // M100_FREE_MEMORY_WATCHER