/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ #include "MarlinConfig.h" #if ENABLED(AUTO_BED_LEVELING_UBL) //#include "vector_3.h" //#include "qr_solve.h" #include "UBL.h" #include "Marlin.h" #include "hex_print_routines.h" #include "configuration_store.h" #include "planner.h" #include "ultralcd.h" #include <math.h> void lcd_babystep_z(); void lcd_return_to_status(); bool lcd_clicked(); void lcd_implementation_clear(); extern float meshedit_done; extern long babysteps_done; extern float code_value_float(); extern bool code_value_bool(); extern bool code_has_value(); extern float probe_pt(float x, float y, bool, int); extern float zprobe_zoffset; extern bool set_probe_deployed(bool); #define DEPLOY_PROBE() set_probe_deployed(true) #define STOW_PROBE() set_probe_deployed(false) bool ProbeStay = true; constexpr float ubl_3_point_1_X = UBL_PROBE_PT_1_X, ubl_3_point_1_Y = UBL_PROBE_PT_1_Y, ubl_3_point_2_X = UBL_PROBE_PT_2_X, ubl_3_point_2_Y = UBL_PROBE_PT_2_Y, ubl_3_point_3_X = UBL_PROBE_PT_3_X, ubl_3_point_3_Y = UBL_PROBE_PT_3_Y; #define SIZE_OF_LITTLE_RAISE 0 #define BIG_RAISE_NOT_NEEDED 0 extern void lcd_quick_feedback(); /** * G29: Unified Bed Leveling by Roxy * * Parameters understood by this leveling system: * * A Activate Activate the Unified Bed Leveling system. * * B # Business Use the 'Business Card' mode of the Manual Probe subsystem. This is invoked as * G29 P2 B The mode of G29 P2 allows you to use a bussiness card or recipe card * as a shim that the nozzle will pinch as it is lowered. The idea is that you * can easily feel the nozzle getting to the same height by the amount of resistance * the business card exhibits to movement. You should try to achieve the same amount * of resistance on each probed point to facilitate accurate and repeatable measurements. * You should be very careful not to drive the nozzle into the bussiness card with a * lot of force as it is very possible to cause damage to your printer if your are * careless. If you use the B option with G29 P2 B you can leave the number parameter off * on its first use to enable measurement of the business card thickness. Subsequent usage * of the B parameter can have the number previously measured supplied to the command. * Incidently, you are much better off using something like a Spark Gap feeler gauge than * something that compresses like a Business Card. * * C Continue Continue, Constant, Current Location. This is not a primary command. C is used to * further refine the behaviour of several other commands. Issuing a G29 P1 C will * continue the generation of a partially constructed Mesh without invalidating what has * been done. Issuing a G29 P2 C will tell the Manual Probe subsystem to use the current * location in its search for the closest unmeasured Mesh Point. When used with a G29 Z C * it indicates to use the current location instead of defaulting to the center of the print bed. * * D Disable Disable the Unified Bed Leveling system. * * E Stow_probe Stow the probe after each sampled point. * * F # Fade * Fade the amount of Mesh Based Compensation over a specified height. At the * specified height, no correction is applied and natural printer kenimatics take over. If no * number is specified for the command, 10mm is assumed to be reasonable. * * G # Grid * Perform a Grid Based Leveling of the current Mesh using a grid with n points on a side. * * H # Height Specify the Height to raise the nozzle after each manual probe of the bed. The * default is 5mm. * * I # Invalidate Invalidate specified number of Mesh Points. The nozzle location is used unless * the X and Y parameter are used. If no number is specified, only the closest Mesh * point to the location is invalidated. The M parameter is available as well to produce * a map after the operation. This command is useful to invalidate a portion of the * Mesh so it can be adjusted using other tools in the Unified Bed Leveling System. When * attempting to invalidate an isolated bad point in the mesh, the M option will indicate * where the nozzle is positioned in the Mesh with (#). You can move the nozzle around on * the bed and use this feature to select the center of the area (or cell) you want to * invalidate. * * K # Kompare Kompare current Mesh with stored Mesh # replacing current Mesh with the result. This * command literally performs a diff between two Meshes. * * L Load * Load Mesh from the previously activated location in the EEPROM. * * L # Load * Load Mesh from the specified location in the EEPROM. Set this location as activated * for subsequent Load and Store operations. * * O Map * Display the Mesh Map Topology. * The parameter can be specified alone (ie. G29 O) or in combination with many of the * other commands. The Mesh Map option works with all of the Phase * commands (ie. G29 P4 R 5 X 50 Y100 C -.1 O) The Map parameter can also of a Map Type * specified. A map type of 0 is the default is user readable. A map type of 1 can * be specified and is suitable to Cut & Paste into Excel to allow graphing of the user's * mesh. * * N No Home G29 normally insists that a G28 has been performed. You can over rule this with an * N option. In general, you should not do this. This can only be done safely with * commands that do not move the nozzle. * * The P or Phase commands are used for the bulk of the work to setup a Mesh. In general, your Mesh will * start off being initialized with a G29 P0 or a G29 P1. Further refinement of the Mesh happens with * each additional Phase that processes it. * * P0 Phase 0 Zero Mesh Data and turn off the Mesh Compensation System. This reverts the * 3D Printer to the same state it was in before the Unified Bed Leveling Compensation * was turned on. Setting the entire Mesh to Zero is a special case that allows * a subsequent G or T leveling operation for backward compatability. * * P1 Phase 1 Invalidate entire Mesh and continue with automatic generation of the Mesh data using * the Z-Probe. Depending upon the values of DELTA_PROBEABLE_RADIUS and * DELTA_PRINTABLE_RADIUS some area of the bed will not have Mesh Data automatically * generated. This will be handled in Phase 2. If the Phase 1 command is given the * C (Continue) parameter it does not invalidate the Mesh prior to automatically * probing needed locations. This allows you to invalidate portions of the Mesh but still * use the automatic probing capabilities of the Unified Bed Leveling System. An X and Y * parameter can be given to prioritize where the command should be trying to measure points. * If the X and Y parameters are not specified the current probe position is used. Phase 1 * allows you to specify the M (Map) parameter so you can watch the generation of the Mesh. * Phase 1 also watches for the LCD Panel's Encoder Switch being held in a depressed state. * It will suspend generation of the Mesh if it sees the user request that. (This check is * only done between probe points. You will need to press and hold the switch until the * Phase 1 command can detect it.) * * P2 Phase 2 Probe areas of the Mesh that can not be automatically handled. Phase 2 respects an H * parameter to control the height between Mesh points. The default height for movement * between Mesh points is 5mm. A smaller number can be used to make this part of the * calibration less time consuming. You will be running the nozzle down until it just barely * touches the glass. You should have the nozzle clean with no plastic obstructing your view. * Use caution and move slowly. It is possible to damage your printer if you are careless. * Note that this command will use the configuration #define SIZE_OF_LITTLE_RAISE if the * nozzle is moving a distance of less than BIG_RAISE_NOT_NEEDED. * * The H parameter can be set negative if your Mesh dips in a large area. You can press * and hold the LCD Panel's encoder wheel to terminate the current Phase 2 command. You * can then re-issue the G29 P 2 command with an H parameter that is more suitable for the * area you are manually probing. Note that the command tries to start you in a corner * of the bed where movement will be predictable. You can force the location to be used in * the distance calculations by using the X and Y parameters. You may find it is helpful to * print out a Mesh Map (G29 O ) to understand where the mesh is invalidated and where * the nozzle will need to move in order to complete the command. The C parameter is * available on the Phase 2 command also and indicates the search for points to measure should * be done based on the current location of the nozzle. * * A B parameter is also available for this command and described up above. It places the * manual probe subsystem into Business Card mode where the thickness of a business care is * measured and then used to accurately set the nozzle height in all manual probing for the * duration of the command. (S for Shim mode would be a better parameter name, but S is needed * for Save or Store of the Mesh to EEPROM) A Business card can be used, but you will have * better results if you use a flexible Shim that does not compress very much. That makes it * easier for you to get the nozzle to press with similar amounts of force against the shim so you * can get accurate measurements. As you are starting to touch the nozzle against the shim try * to get it to grasp the shim with the same force as when you measured the thickness of the * shim at the start of the command. * * Phase 2 allows the O (Map) parameter to be specified. This helps the user see the progression * of the Mesh being built. * * P3 Phase 3 Fill the unpopulated regions of the Mesh with a fixed value. The C parameter is * used to specify the 'constant' value to fill all invalid areas of the Mesh. If no C parameter * is specified, a value of 0.0 is assumed. The R parameter can be given to specify the number * of points to set. If the R parameter is specified the current nozzle position is used to * find the closest points to alter unless the X and Y parameter are used to specify the fill * location. * * P4 Phase 4 Fine tune the Mesh. The Delta Mesh Compensation System assume the existance of * an LCD Panel. It is possible to fine tune the mesh without the use of an LCD Panel. * (More work and details on doing this later!) * The System will search for the closest Mesh Point to the nozzle. It will move the * nozzle to this location. The user can use the LCD Panel to carefully adjust the nozzle * so it is just barely touching the bed. When the user clicks the control, the System * will lock in that height for that point in the Mesh Compensation System. * * Phase 4 has several additional parameters that the user may find helpful. Phase 4 * can be started at a specific location by specifying an X and Y parameter. Phase 4 * can be requested to continue the adjustment of Mesh Points by using the R(epeat) * parameter. If the Repetition count is not specified, it is assumed the user wishes * to adjust the entire matrix. The nozzle is moved to the Mesh Point being edited. * The command can be terminated early (or after the area of interest has been edited) by * pressing and holding the encoder wheel until the system recognizes the exit request. * Phase 4's general form is G29 P4 [R # of points] [X position] [Y position] * * Phase 4 is intended to be used with the G26 Mesh Validation Command. Using the * information left on the printer's bed from the G26 command it is very straight forward * and easy to fine tune the Mesh. One concept that is important to remember and that * will make using the Phase 4 command easy to use is this: You are editing the Mesh Points. * If you have too little clearance and not much plastic was extruded in an area, you want to * LOWER the Mesh Point at the location. If you did not get good adheasion, you want to * RAISE the Mesh Point at that location. * * * P5 Phase 5 Find Mean Mesh Height and Standard Deviation. Typically, it is easier to use and * work with the Mesh if it is Mean Adjusted. You can specify a C parameter to * Correct the Mesh to a 0.00 Mean Height. Adding a C parameter will automatically * execute a G29 P6 C <mean height>. * * P6 Phase 6 Shift Mesh height. The entire Mesh's height is adjusted by the height specified * with the C parameter. Being able to adjust the height of a Mesh is useful tool. It * can be used to compensate for poorly calibrated Z-Probes and other errors. Ideally, * you should have the Mesh adjusted for a Mean Height of 0.00 and the Z-Probe measuring * 0.000 at the Z Home location. * * Q Test * Load specified Test Pattern to assist in checking correct operation of system. This * command is not anticipated to be of much value to the typical user. It is intended * for developers to help them verify correct operation of the Unified Bed Leveling System. * * S Store Store the current Mesh in the Activated area of the EEPROM. It will also store the * current state of the Unified Bed Leveling system in the EEPROM. * * S # Store Store the current Mesh at the specified location in EEPROM. Activate this location * for subsequent Load and Store operations. It will also store the current state of * the Unified Bed Leveling system in the EEPROM. * * S -1 Store Store the current Mesh as a print out that is suitable to be feed back into * the system at a later date. The text generated can be saved and later sent by PronterFace or * Repetier Host to reconstruct the current mesh on another machine. * * T 3-Point Perform a 3 Point Bed Leveling on the current Mesh * * U Unlevel Perform a probe of the outer perimeter to assist in physically leveling unlevel beds. * Only used for G29 P1 O U It will speed up the probing of the edge of the bed. This * is useful when the entire bed does not need to be probed because it will be adjusted. * * W What? Display valuable data the Unified Bed Leveling System knows. * * X # * * X Location for this line of commands * * Y # * * Y Location for this line of commands * * Z Zero * Probes to set the Z Height of the nozzle. The entire Mesh can be raised or lowered * by just doing a G29 Z * * Z # Zero * The entire Mesh can be raised or lowered to conform with the specified difference. * zprobe_zoffset is added to the calculation. * * * Release Notes: * You MUST do M502, M500 to initialize the storage. Failure to do this will cause all * kinds of problems. Enabling EEPROM Storage is highly recommended. With EEPROM Storage * of the mesh, you are limited to 3-Point and Grid Leveling. (G29 P0 T and G29 P0 G * respectively.) * * When you do a G28 and then a G29 P1 to automatically build your first mesh, you are going to notice * the Unified Bed Leveling probes points further and further away from the starting location. (The * starting location defaults to the center of the bed.) The original Grid and Mesh leveling used * a Zig Zag pattern. The new pattern is better, especially for people with Delta printers. This * allows you to get the center area of the Mesh populated (and edited) quicker. This allows you to * perform a small print and check out your settings quicker. You do not need to populate the * entire mesh to use it. (You don't want to spend a lot of time generating a mesh only to realize * you don't have the resolution or zprobe_zoffset set correctly. The Mesh generation * gathers points closest to where the nozzle is located unless you specify an (X,Y) coordinate pair. * * The Unified Bed Leveling uses a lot of EEPROM storage to hold its data. And it takes some effort * to get this Mesh data correct for a user's printer. We do not want this data destroyed as * new versions of Marlin add or subtract to the items stored in EEPROM. So, for the benefit of * the users, we store the Mesh data at the end of the EEPROM and do not keep it contiguous with the * other data stored in the EEPROM. (For sure the developers are going to complain about this, but * this is going to be helpful to the users!) * * The foundation of this Bed Leveling System is built on Epatel's Mesh Bed Leveling code. A big * 'Thanks!' to him and the creators of 3-Point and Grid Based leveling. Combining thier contributions * we now have the functionality and features of all three systems combined. */ int ubl_eeprom_start = -1; bool ubl_has_control_of_lcd_panel = false; volatile int8_t ubl_encoderDiff = 0; // Volatile because it's changed by Temperature ISR button update // The simple parameter flags and values are 'static' so parameter parsing can be in a support routine. static int g29_verbose_level = 0, phase_value = -1, repetition_cnt = 1, storage_slot = 0, map_type = 0, test_pattern = 0, unlevel_value = -1; static bool repeat_flag = UBL_OK, c_flag = false, x_flag = UBL_OK, y_flag = UBL_OK, statistics_flag = UBL_OK, business_card_mode = false; static float x_pos = 0.0, y_pos = 0.0, height_value = 5.0, measured_z, card_thickness = 0.0, constant = 0.0; #if ENABLED(ULTRA_LCD) void lcd_setstatus(const char* message, bool persist); #endif void gcode_G29() { float Z1, Z2, Z3; g29_verbose_level = 0; // These may change, but let's get some reasonable values into them. repeat_flag = UBL_OK; repetition_cnt = 1; c_flag = false; SERIAL_PROTOCOLLNPAIR("ubl_eeprom_start=", ubl_eeprom_start); if (ubl_eeprom_start < 0) { SERIAL_PROTOCOLLNPGM("?You need to enable your EEPROM and initialize it"); SERIAL_PROTOCOLLNPGM("with M502, M500, M501 in that order.\n"); return; } if (!code_seen('N') && axis_unhomed_error(true, true, true)) // Don't allow auto-leveling without homing first gcode_G28(); if (g29_parameter_parsing()) return; // abort if parsing the simple parameters causes a problem, // Invalidate Mesh Points. This command is a little bit asymetrical because // it directly specifies the repetition count and does not use the 'R' parameter. if (code_seen('I')) { repetition_cnt = code_has_value() ? code_value_int() : 1; while (repetition_cnt--) { const mesh_index_pair location = find_closest_mesh_point_of_type(REAL, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position if (location.x_index < 0) { SERIAL_PROTOCOLLNPGM("Entire Mesh invalidated.\n"); break; // No more invalid Mesh Points to populate } z_values[location.x_index][location.y_index] = NAN; } SERIAL_PROTOCOLLNPGM("Locations invalidated.\n"); } if (code_seen('Q')) { if (code_has_value()) test_pattern = code_value_int(); if (test_pattern < 0 || test_pattern > 4) { SERIAL_PROTOCOLLNPGM("Invalid test_pattern value. (0-4)\n"); return; } SERIAL_PROTOCOLLNPGM("Loading test_pattern values.\n"); switch (test_pattern) { case 0: for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a bowl shape. This is for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) { // similar to what a user would see with Z1 = 0.5 * (UBL_MESH_NUM_X_POINTS) - x; // a poorly calibrated Delta. Z2 = 0.5 * (UBL_MESH_NUM_Y_POINTS) - y; z_values[x][y] += 2.0 * HYPOT(Z1, Z2); } } break; case 1: for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) { // Create a diagonal line several Mesh z_values[x][x] += 9.999; // cells thick that is raised if (x < UBL_MESH_NUM_Y_POINTS - 1) z_values[x][x + 1] += 9.999; // We want the altered line several mesh points thick if (x > 0) z_values[x][x - 1] += 9.999; // We want the altered line several mesh points thick } break; case 2: // Allow the user to specify the height because 10mm is // a little bit extreme in some cases. for (uint8_t x = (UBL_MESH_NUM_X_POINTS) / 3; x < 2 * (UBL_MESH_NUM_X_POINTS) / 3; x++) // Create a rectangular raised area in for (uint8_t y = (UBL_MESH_NUM_Y_POINTS) / 3; y < 2 * (UBL_MESH_NUM_Y_POINTS) / 3; y++) // the center of the bed z_values[x][y] += code_seen('C') ? constant : 9.99; break; case 3: break; } } /* if (code_seen('U')) { unlevel_value = code_value_int(); // if (unlevel_value < 0 || unlevel_value > 7) { // SERIAL_PROTOCOLLNPGM("Invalid Unlevel value. (0-4)\n"); // return; // } } */ if (code_seen('P')) { phase_value = code_value_int(); if (phase_value < 0 || phase_value > 7) { SERIAL_PROTOCOLLNPGM("Invalid Phase value. (0-4)\n"); return; } switch (phase_value) { // // Zero Mesh Data // case 0: ubl.reset(); SERIAL_PROTOCOLLNPGM("Mesh zeroed.\n"); break; // // Invalidate Entire Mesh and Automatically Probe Mesh in areas that can be reached by the probe // case 1: if (!code_seen('C') ) { ubl.invalidate(); SERIAL_PROTOCOLLNPGM("Mesh invalidated. Probing mesh.\n"); } if (g29_verbose_level > 1) { SERIAL_ECHOPGM("Probing Mesh Points Closest to ("); SERIAL_ECHO(x_pos); SERIAL_ECHOPAIR(",", y_pos); SERIAL_PROTOCOLLNPGM(")\n"); } probe_entire_mesh(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, code_seen('O') || code_seen('M'), code_seen('E'), code_seen('U')); break; // // Manually Probe Mesh in areas that can not be reached by the probe // case 2: SERIAL_PROTOCOLLNPGM("Manually probing unreachable mesh locations.\n"); do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); if (!x_flag && !y_flag) { // use a good default location for the path x_pos = X_MIN_POS; y_pos = Y_MIN_POS; if (X_PROBE_OFFSET_FROM_EXTRUDER > 0) // The flipped > and < operators on these two comparisons is x_pos = X_MAX_POS; // intentional. It should cause the probed points to follow a if (Y_PROBE_OFFSET_FROM_EXTRUDER < 0) // nice path on Cartesian printers. It may make sense to y_pos = Y_MAX_POS; // have Delta printers default to the center of the bed. } // For now, until that is decided, it can be forced with the X // and Y parameters. if (code_seen('C')) { x_pos = current_position[X_AXIS]; y_pos = current_position[Y_AXIS]; } height_value = code_seen('H') && code_has_value() ? code_value_float() : Z_CLEARANCE_BETWEEN_PROBES; if ((business_card_mode = code_seen('B'))) { card_thickness = code_has_value() ? code_value_float() : measure_business_card_thickness(height_value); if (fabs(card_thickness) > 1.5) { SERIAL_PROTOCOLLNPGM("?Error in Business Card measurment.\n"); return; } } manually_probe_remaining_mesh(x_pos, y_pos, height_value, card_thickness, code_seen('O') || code_seen('M')); break; // // Populate invalid Mesh areas with a constant // case 3: height_value = 0.0; // Assume 0.0 until proven otherwise if (code_seen('C')) height_value = constant; // If no repetition is specified, do the whole Mesh if (!repeat_flag) repetition_cnt = 9999; while (repetition_cnt--) { const mesh_index_pair location = find_closest_mesh_point_of_type(INVALID, x_pos, y_pos, 0, NULL, false); // The '0' says we want to use the nozzle's position if (location.x_index < 0) break; // No more invalid Mesh Points to populate z_values[location.x_index][location.y_index] = height_value; } break; // // Fine Tune (Or Edit) the Mesh // case 4: fine_tune_mesh(x_pos, y_pos, code_seen('O') || code_seen('M')); break; case 5: find_mean_mesh_height(); break; case 6: shift_mesh_height(); break; case 10: // Debug code... Pay no attention to this stuff // it can be removed soon. SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Checking G29 has control of LCD Panel:"); wait_for_user = true; while (!ubl_lcd_clicked()) { safe_delay(250); SERIAL_ECHO((int)ubl_encoderDiff); ubl_encoderDiff = 0; SERIAL_EOL; } SERIAL_ECHOLNPGM("G29 giving back control of LCD Panel."); break; } } if (code_seen('T')) { Z1 = probe_pt(ubl_3_point_1_X, ubl_3_point_1_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; Z2 = probe_pt(ubl_3_point_2_X, ubl_3_point_2_Y, false /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; Z3 = probe_pt(ubl_3_point_3_X, ubl_3_point_3_Y, true /*Stow Flag*/, g29_verbose_level) + zprobe_zoffset; // We need to adjust Z1, Z2, Z3 by the Mesh Height at these points. Just because they are non-zero doesn't mean // the Mesh is tilted! (We need to compensate each probe point by what the Mesh says that location's height is) Z1 -= ubl.get_z_correction(ubl_3_point_1_X, ubl_3_point_1_Y); Z2 -= ubl.get_z_correction(ubl_3_point_2_X, ubl_3_point_2_Y); Z3 -= ubl.get_z_correction(ubl_3_point_3_X, ubl_3_point_3_Y); do_blocking_move_to_xy((X_MAX_POS - (X_MIN_POS)) / 2.0, (Y_MAX_POS - (Y_MIN_POS)) / 2.0); tilt_mesh_based_on_3pts(Z1, Z2, Z3); } // // Much of the 'What?' command can be eliminated. But until we are fully debugged, it is // good to have the extra information. Soon... we prune this to just a few items // if (code_seen('W')) g29_what_command(); // // When we are fully debugged, the EEPROM dump command will get deleted also. But // right now, it is good to have the extra information. Soon... we prune this. // if (code_seen('J')) g29_eeprom_dump(); // EEPROM Dump // // When we are fully debugged, this may go away. But there are some valid // use cases for the users. So we can wait and see what to do with it. // if (code_seen('K')) // Kompare Current Mesh Data to Specified Stored Mesh g29_compare_current_mesh_to_stored_mesh(); // // Load a Mesh from the EEPROM // if (code_seen('L')) { // Load Current Mesh Data storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } ubl.load_mesh(storage_slot); ubl.state.eeprom_storage_slot = storage_slot; if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state(); SERIAL_PROTOCOLLNPGM("Done.\n"); } // // Store a Mesh in the EEPROM // if (code_seen('S')) { // Store (or Save) Current Mesh Data storage_slot = code_has_value() ? code_value_int() : ubl.state.eeprom_storage_slot; if (storage_slot == -1) { // Special case, we are going to 'Export' the mesh to the SERIAL_ECHOLNPGM("G29 I 999"); // host in a form it can be reconstructed on a different machine for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) if (!isnan(z_values[x][y])) { SERIAL_ECHOPAIR("M421 I ", x); SERIAL_ECHOPAIR(" J ", y); SERIAL_ECHOPGM(" Z "); SERIAL_ECHO_F(z_values[x][y], 6); SERIAL_EOL; } return; } const int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(z_values); if (storage_slot < 0 || storage_slot >= j || ubl_eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); SERIAL_PROTOCOLLNPAIR("?Use 0 to ", j - 1); goto LEAVE; } ubl.store_mesh(storage_slot); ubl.state.eeprom_storage_slot = storage_slot; // // if (storage_slot != ubl.state.eeprom_storage_slot) ubl.store_state(); // Always save an updated copy of the UBL State info SERIAL_PROTOCOLLNPGM("Done.\n"); } if (code_seen('O') || code_seen('M')) ubl.display_map(code_has_value() ? code_value_int() : 0); if (code_seen('Z')) { if (code_has_value()) ubl.state.z_offset = code_value_float(); // do the simple case. Just lock in the specified value else { save_ubl_active_state_and_disable(); //measured_z = probe_pt(x_pos + X_PROBE_OFFSET_FROM_EXTRUDER, y_pos + Y_PROBE_OFFSET_FROM_EXTRUDER, ProbeDeployAndStow, g29_verbose_level); ubl_has_control_of_lcd_panel = true;// Grab the LCD Hardware measured_z = 1.5; do_blocking_move_to_z(measured_z); // Get close to the bed, but leave some space so we don't damage anything // The user is not going to be locking in a new Z-Offset very often so // it won't be that painful to spin the Encoder Wheel for 1.5mm lcd_implementation_clear(); lcd_z_offset_edit_setup(measured_z); do { measured_z = lcd_z_offset_edit(); idle(); do_blocking_move_to_z(measured_z); } while (!ubl_lcd_clicked()); ubl_has_control_of_lcd_panel++; // There is a race condition for the Encoder Wheel getting clicked. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) // or here. So, until we are done looking for a long Encoder Wheel Press, // we need to take control of the panel lcd_return_to_status(); const millis_t nxt = millis() + 1500UL; while (ubl_lcd_clicked()) { // debounce and watch for abort idle(); if (ELAPSED(millis(), nxt)) { SERIAL_PROTOCOLLNPGM("\nZ-Offset Adjustment Stopped."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_setstatus("Z-Offset Stopped", true); ubl_has_control_of_lcd_panel = false; restore_ubl_active_state_and_leave(); goto LEAVE; } } ubl_has_control_of_lcd_panel = false; safe_delay(20); // We don't want any switch noise. ubl.state.z_offset = measured_z; lcd_implementation_clear(); restore_ubl_active_state_and_leave(); } } LEAVE: #if ENABLED(ULTRA_LCD) lcd_setstatus(" ", true); lcd_quick_feedback(); #endif ubl_has_control_of_lcd_panel = false; } void find_mean_mesh_height() { uint8_t x, y; int n; float sum, sum_of_diff_squared, sigma, difference, mean; sum = sum_of_diff_squared = 0.0; n = 0; for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) if (!isnan(z_values[x][y])) { sum += z_values[x][y]; n++; } mean = sum / n; // // Now do the sumation of the squares of difference from mean // for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) if (!isnan(z_values[x][y])) { difference = (z_values[x][y] - mean); sum_of_diff_squared += difference * difference; } SERIAL_ECHOLNPAIR("# of samples: ", n); SERIAL_ECHOPGM("Mean Mesh Height: "); SERIAL_ECHO_F(mean, 6); SERIAL_EOL; sigma = sqrt(sum_of_diff_squared / (n + 1)); SERIAL_ECHOPGM("Standard Deviation: "); SERIAL_ECHO_F(sigma, 6); SERIAL_EOL; if (c_flag) for (x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) if (!isnan(z_values[x][y])) z_values[x][y] -= mean + constant; } void shift_mesh_height() { for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) if (!isnan(z_values[x][y])) z_values[x][y] += constant; } /** * Probe all invalidated locations of the mesh that can be reached by the probe. * This attempts to fill in locations closest to the nozzle's start location first. */ void probe_entire_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map, const bool stow_probe, bool do_furthest) { mesh_index_pair location; ubl_has_control_of_lcd_panel++; save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe DEPLOY_PROBE(); do { if (ubl_lcd_clicked()) { SERIAL_PROTOCOLLNPGM("\nMesh only partially populated.\n"); lcd_quick_feedback(); STOW_PROBE(); while (ubl_lcd_clicked() ) { idle(); } ubl_has_control_of_lcd_panel = false; restore_ubl_active_state_and_leave(); safe_delay(50); // Debounce the Encoder wheel return; } location = find_closest_mesh_point_of_type(INVALID, lx, ly, 1, NULL, do_furthest ); // the '1' says we want the location to be relative to the probe if (location.x_index >= 0 && location.y_index >= 0) { const float xProbe = ubl.map_x_index_to_bed_location(location.x_index), yProbe = ubl.map_y_index_to_bed_location(location.y_index); if (xProbe < MIN_PROBE_X || xProbe > MAX_PROBE_X || yProbe < MIN_PROBE_Y || yProbe > MAX_PROBE_Y) { SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed."); ubl_has_control_of_lcd_panel = false; goto LEAVE; } const float measured_z = probe_pt(xProbe, yProbe, stow_probe, g29_verbose_level); z_values[location.x_index][location.y_index] = measured_z + zprobe_zoffset; } if (do_ubl_mesh_map) ubl.display_map(map_type); } while (location.x_index >= 0 && location.y_index >= 0); LEAVE: STOW_PROBE(); restore_ubl_active_state_and_leave(); do_blocking_move_to_xy( constrain(lx - (X_PROBE_OFFSET_FROM_EXTRUDER), X_MIN_POS, X_MAX_POS), constrain(ly - (Y_PROBE_OFFSET_FROM_EXTRUDER), Y_MIN_POS, Y_MAX_POS) ); } vector_3 tilt_mesh_based_on_3pts(const float &pt1, const float &pt2, const float &pt3) { float c, d, t; int i, j; vector_3 v1 = vector_3( (ubl_3_point_1_X - ubl_3_point_2_X), (ubl_3_point_1_Y - ubl_3_point_2_Y), (pt1 - pt2) ), v2 = vector_3( (ubl_3_point_3_X - ubl_3_point_2_X), (ubl_3_point_3_Y - ubl_3_point_2_Y), (pt3 - pt2) ), normal = vector_3::cross(v1, v2); // printf("[%f,%f,%f] ", normal.x, normal.y, normal.z); /** * This code does two things. This vector is normal to the tilted plane. * However, we don't know its direction. We need it to point up. So if * Z is negative, we need to invert the sign of all components of the vector * We also need Z to be unity because we are going to be treating this triangle * as the sin() and cos() of the bed's tilt */ const float inv_z = 1.0 / normal.z; normal.x *= inv_z; normal.y *= inv_z; normal.z = 1.0; // // All of 3 of these points should give us the same d constant // t = normal.x * ubl_3_point_1_X + normal.y * ubl_3_point_1_Y; d = t + normal.z * pt1; c = d - t; SERIAL_ECHOPGM("d from 1st point: "); SERIAL_ECHO_F(d, 6); SERIAL_ECHOPGM(" c: "); SERIAL_ECHO_F(c, 6); SERIAL_EOL; t = normal.x * ubl_3_point_2_X + normal.y * ubl_3_point_2_Y; d = t + normal.z * pt2; c = d - t; SERIAL_ECHOPGM("d from 2nd point: "); SERIAL_ECHO_F(d, 6); SERIAL_ECHOPGM(" c: "); SERIAL_ECHO_F(c, 6); SERIAL_EOL; t = normal.x * ubl_3_point_3_X + normal.y * ubl_3_point_3_Y; d = t + normal.z * pt3; c = d - t; SERIAL_ECHOPGM("d from 3rd point: "); SERIAL_ECHO_F(d, 6); SERIAL_ECHOPGM(" c: "); SERIAL_ECHO_F(c, 6); SERIAL_EOL; for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { c = -((normal.x * (UBL_MESH_MIN_X + i * (MESH_X_DIST)) + normal.y * (UBL_MESH_MIN_Y + j * (MESH_Y_DIST))) - d); z_values[i][j] += c; } } return normal; } float use_encoder_wheel_to_measure_point() { while (!ubl_lcd_clicked()) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); if (ubl_encoderDiff) { do_blocking_move_to_z(current_position[Z_AXIS] + 0.01 * float(ubl_encoderDiff)); ubl_encoderDiff = 0; } } return current_position[Z_AXIS]; } float measure_business_card_thickness(const float &height_value) { ubl_has_control_of_lcd_panel++; save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe SERIAL_PROTOCOLLNPGM("Place Shim Under Nozzle and Perform Measurement."); do_blocking_move_to_z(height_value); do_blocking_move_to_xy((float(X_MAX_POS) - float(X_MIN_POS)) / 2.0, (float(Y_MAX_POS) - float(Y_MIN_POS)) / 2.0); //, min( planner.max_feedrate_mm_s[X_AXIS], planner.max_feedrate_mm_s[Y_AXIS])/2.0); const float Z1 = use_encoder_wheel_to_measure_point(); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); ubl_has_control_of_lcd_panel = false; SERIAL_PROTOCOLLNPGM("Remove Shim and Measure Bed Height."); const float Z2 = use_encoder_wheel_to_measure_point(); do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); if (g29_verbose_level > 1) { SERIAL_PROTOCOLPGM("Business Card is: "); SERIAL_PROTOCOL_F(abs(Z1 - Z2), 6); SERIAL_PROTOCOLLNPGM("mm thick."); } restore_ubl_active_state_and_leave(); return abs(Z1 - Z2); } void manually_probe_remaining_mesh(const float &lx, const float &ly, const float &z_clearance, const float &card_thickness, const bool do_ubl_mesh_map) { ubl_has_control_of_lcd_panel++; save_ubl_active_state_and_disable(); // we don't do bed level correction because we want the raw data when we probe do_blocking_move_to_z(z_clearance); do_blocking_move_to_xy(lx, ly); float last_x = -9999.99, last_y = -9999.99; mesh_index_pair location; do { if (do_ubl_mesh_map) ubl.display_map(map_type); location = find_closest_mesh_point_of_type(INVALID, lx, ly, 0, NULL, false); // The '0' says we want to use the nozzle's position // It doesn't matter if the probe can not reach the // NAN location. This is a manual probe. if (location.x_index < 0 && location.y_index < 0) continue; const float xProbe = ubl.map_x_index_to_bed_location(location.x_index), yProbe = ubl.map_y_index_to_bed_location(location.y_index); // Modify to use if (position_is_reachable(pos[XYZ])) if (xProbe < (X_MIN_POS) || xProbe > (X_MAX_POS) || yProbe < (Y_MIN_POS) || yProbe > (Y_MAX_POS)) { SERIAL_PROTOCOLLNPGM("?Error: Attempt to probe off the bed."); ubl_has_control_of_lcd_panel = false; goto LEAVE; } const float dx = xProbe - last_x, dy = yProbe - last_y; if (HYPOT(dx, dy) < BIG_RAISE_NOT_NEEDED) do_blocking_move_to_z(current_position[Z_AXIS] + SIZE_OF_LITTLE_RAISE); else do_blocking_move_to_z(z_clearance); do_blocking_move_to_xy(xProbe, yProbe); last_x = xProbe; last_y = yProbe; ubl_has_control_of_lcd_panel = true; while (!ubl_lcd_clicked) { // we need the loop to move the nozzle based on the encoder wheel here! idle(); if (ubl_encoderDiff) { do_blocking_move_to_z(current_position[Z_AXIS] + float(ubl_encoderDiff) / 100.0); ubl_encoderDiff = 0; } } const millis_t nxt = millis() + 1500L; while (ubl_lcd_clicked()) { // debounce and watch for abort idle(); if (ELAPSED(millis(), nxt)) { SERIAL_PROTOCOLLNPGM("\nMesh only partially populated."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_quick_feedback(); while (ubl_lcd_clicked()) idle(); ubl_has_control_of_lcd_panel = false; restore_ubl_active_state_and_leave(); return; } } z_values[location.x_index][location.y_index] = current_position[Z_AXIS] - card_thickness; if (g29_verbose_level > 2) { SERIAL_PROTOCOL("Mesh Point Measured at: "); SERIAL_PROTOCOL_F(z_values[location.x_index][location.y_index], 6); SERIAL_EOL; } } while (location.x_index >= 0 && location.y_index >= 0); if (do_ubl_mesh_map) ubl.display_map(map_type); LEAVE: restore_ubl_active_state_and_leave(); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_xy(lx, ly); } bool g29_parameter_parsing() { #if ENABLED(ULTRA_LCD) lcd_setstatus("Doing G29 UBL !", true); lcd_quick_feedback(); #endif x_pos = current_position[X_AXIS]; y_pos = current_position[Y_AXIS]; x_flag = y_flag = repeat_flag = false; map_type = 0; constant = 0.0; repetition_cnt = 1; if ((x_flag = code_seen('X'))) { x_pos = code_value_float(); if (x_pos < X_MIN_POS || x_pos > X_MAX_POS) { SERIAL_PROTOCOLLNPGM("Invalid X location specified.\n"); return UBL_ERR; } } if ((y_flag = code_seen('Y'))) { y_pos = code_value_float(); if (y_pos < Y_MIN_POS || y_pos > Y_MAX_POS) { SERIAL_PROTOCOLLNPGM("Invalid Y location specified.\n"); return UBL_ERR; } } if (x_flag != y_flag) { SERIAL_PROTOCOLLNPGM("Both X & Y locations must be specified.\n"); return UBL_ERR; } g29_verbose_level = 0; if (code_seen('V')) { g29_verbose_level = code_value_int(); if (g29_verbose_level < 0 || g29_verbose_level > 4) { SERIAL_PROTOCOLLNPGM("Invalid Verbose Level specified. (0-4)\n"); return UBL_ERR; } } if (code_seen('A')) { // Activate the Unified Bed Leveling System ubl.state.active = 1; SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System activated.\n"); ubl.store_state(); } if ((c_flag = code_seen('C') && code_has_value())) constant = code_value_float(); if (code_seen('D')) { // Disable the Unified Bed Leveling System ubl.state.active = 0; SERIAL_PROTOCOLLNPGM("Unified Bed Leveling System de-activated.\n"); ubl.store_state(); } #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) if (code_seen('F') && code_has_value()) { const float fh = code_value_float(); if (fh < 0.0 || fh > 100.0) { SERIAL_PROTOCOLLNPGM("?Bed Level Correction Fade Height Not Plausible.\n"); return UBL_ERR; } ubl.state.g29_correction_fade_height = fh; ubl.state.g29_fade_height_multiplier = 1.0 / fh; } #endif if ((repeat_flag = code_seen('R'))) { repetition_cnt = code_has_value() ? code_value_int() : 9999; if (repetition_cnt < 1) { SERIAL_PROTOCOLLNPGM("Invalid Repetition count.\n"); return UBL_ERR; } } if (code_seen('O')) { // Check if a map type was specified map_type = code_value_int() ? code_has_value() : 0; if ( map_type<0 || map_type>1) { SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); return UBL_ERR; } } if (code_seen('M')) { // Check if a map type was specified map_type = code_value_int() ? code_has_value() : 0; if ( map_type<0 || map_type>1) { SERIAL_PROTOCOLLNPGM("Invalid map type.\n"); return UBL_ERR; } } return UBL_OK; } /** * This function goes away after G29 debug is complete. But for right now, it is a handy * routine to dump binary data structures. */ void dump(char * const str, const float &f) { char *ptr; SERIAL_PROTOCOL(str); SERIAL_PROTOCOL_F(f, 8); SERIAL_PROTOCOL(" "); ptr = (char*)&f; for (uint8_t i = 0; i < 4; i++) { SERIAL_PROTOCOL(" "); prt_hex_byte(*ptr++); } SERIAL_PROTOCOL(" isnan()="); SERIAL_PROTOCOL(isnan(f)); SERIAL_PROTOCOL(" isinf()="); SERIAL_PROTOCOL(isinf(f)); constexpr float g = INFINITY; if (f == -g) SERIAL_PROTOCOL(" Minus Infinity detected."); SERIAL_EOL; } static int ubl_state_at_invocation = 0, ubl_state_recursion_chk = 0; void save_ubl_active_state_and_disable() { ubl_state_recursion_chk++; if (ubl_state_recursion_chk != 1) { SERIAL_ECHOLNPGM("save_ubl_active_state_and_disabled() called multiple times in a row."); lcd_setstatus("save_UBL_active() error", true); lcd_quick_feedback(); return; } ubl_state_at_invocation = ubl.state.active; ubl.state.active = 0; } void restore_ubl_active_state_and_leave() { if (--ubl_state_recursion_chk) { SERIAL_ECHOLNPGM("restore_ubl_active_state_and_leave() called too many times."); lcd_setstatus("restore_UBL_active() error", true); lcd_quick_feedback(); return; } ubl.state.active = ubl_state_at_invocation; } /** * Much of the 'What?' command can be eliminated. But until we are fully debugged, it is * good to have the extra information. Soon... we prune this to just a few items */ void g29_what_command() { const uint16_t k = E2END - ubl_eeprom_start; statistics_flag++; SERIAL_PROTOCOLPGM("Unified Bed Leveling System Version 1.00 "); if (ubl.state.active) SERIAL_PROTOCOLCHAR('A'); else SERIAL_PROTOCOLPGM("In"); SERIAL_PROTOCOLLNPGM("ctive.\n"); safe_delay(50); if (ubl.state.eeprom_storage_slot == -1) SERIAL_PROTOCOLPGM("No Mesh Loaded."); else { SERIAL_PROTOCOLPGM("Mesh: "); prt_hex_word(ubl.state.eeprom_storage_slot); SERIAL_PROTOCOLPGM(" Loaded."); } SERIAL_EOL; safe_delay(50); #if ENABLED(ENABLE_LEVELING_FADE_HEIGHT) SERIAL_PROTOCOLPAIR("g29_correction_fade_height : ", ubl.state.g29_correction_fade_height); SERIAL_EOL; #endif SERIAL_PROTOCOLPGM("z_offset: "); SERIAL_PROTOCOL_F(ubl.state.z_offset, 6); SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLPGM("X-Axis Mesh Points at: "); for (uint8_t i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { SERIAL_PROTOCOL_F( ubl.map_x_index_to_bed_location(i), 1); SERIAL_PROTOCOLPGM(" "); safe_delay(50); } SERIAL_EOL; SERIAL_PROTOCOLPGM("Y-Axis Mesh Points at: "); for (uint8_t i = 0; i < UBL_MESH_NUM_Y_POINTS; i++) { SERIAL_PROTOCOL_F( ubl.map_y_index_to_bed_location(i), 1); SERIAL_PROTOCOLPGM(" "); safe_delay(50); } SERIAL_EOL; #if HAS_KILL SERIAL_PROTOCOLPAIR("Kill pin on :", KILL_PIN); SERIAL_PROTOCOLLNPAIR(" state:", READ(KILL_PIN)); #endif SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLLNPAIR("ubl_state_at_invocation :", ubl_state_at_invocation); SERIAL_EOL; SERIAL_PROTOCOLLNPAIR("ubl_state_recursion_chk :", ubl_state_recursion_chk); SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLPGM("Free EEPROM space starts at: 0x"); prt_hex_word(ubl_eeprom_start); SERIAL_EOL; SERIAL_PROTOCOLPGM("end of EEPROM : "); prt_hex_word(E2END); SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLLNPAIR("sizeof(ubl) : ", (int)sizeof(ubl)); SERIAL_EOL; SERIAL_PROTOCOLLNPAIR("z_value[][] size: ", (int)sizeof(z_values)); SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLPGM("EEPROM free for UBL: 0x"); prt_hex_word(k); SERIAL_EOL; safe_delay(50); SERIAL_PROTOCOLPGM("EEPROM can hold 0x"); prt_hex_word(k / sizeof(z_values)); SERIAL_PROTOCOLLNPGM(" meshes.\n"); safe_delay(50); SERIAL_PROTOCOLPGM("sizeof(ubl.state) :"); prt_hex_word(sizeof(ubl.state)); SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_X_POINTS ", UBL_MESH_NUM_X_POINTS); SERIAL_PROTOCOLPAIR("\nUBL_MESH_NUM_Y_POINTS ", UBL_MESH_NUM_Y_POINTS); safe_delay(50); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_X ", UBL_MESH_MIN_X); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MIN_Y ", UBL_MESH_MIN_Y); safe_delay(50); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_X ", UBL_MESH_MAX_X); SERIAL_PROTOCOLPAIR("\nUBL_MESH_MAX_Y ", UBL_MESH_MAX_Y); safe_delay(50); SERIAL_PROTOCOLPGM("\nMESH_X_DIST "); SERIAL_PROTOCOL_F(MESH_X_DIST, 6); SERIAL_PROTOCOLPGM("\nMESH_Y_DIST "); SERIAL_PROTOCOL_F(MESH_Y_DIST, 6); SERIAL_EOL; safe_delay(50); if (!ubl.sanity_check()) SERIAL_PROTOCOLLNPGM("Unified Bed Leveling sanity checks passed."); } /** * When we are fully debugged, the EEPROM dump command will get deleted also. But * right now, it is good to have the extra information. Soon... we prune this. */ void g29_eeprom_dump() { unsigned char cccc; uint16_t kkkk; SERIAL_ECHO_START; SERIAL_ECHOLNPGM("EEPROM Dump:"); for (uint16_t i = 0; i < E2END + 1; i += 16) { if (!(i & 0x3)) idle(); prt_hex_word(i); SERIAL_ECHOPGM(": "); for (uint16_t j = 0; j < 16; j++) { kkkk = i + j; eeprom_read_block(&cccc, (void *)kkkk, 1); prt_hex_byte(cccc); SERIAL_ECHO(' '); } SERIAL_EOL; } SERIAL_EOL; } /** * When we are fully debugged, this may go away. But there are some valid * use cases for the users. So we can wait and see what to do with it. */ void g29_compare_current_mesh_to_stored_mesh() { float tmp_z_values[UBL_MESH_NUM_X_POINTS][UBL_MESH_NUM_Y_POINTS]; if (!code_has_value()) { SERIAL_PROTOCOLLNPGM("?Mesh # required.\n"); return; } storage_slot = code_value_int(); int16_t j = (UBL_LAST_EEPROM_INDEX - ubl_eeprom_start) / sizeof(tmp_z_values); if (storage_slot < 0 || storage_slot > j || ubl_eeprom_start <= 0) { SERIAL_PROTOCOLLNPGM("?EEPROM storage not available for use.\n"); return; } j = UBL_LAST_EEPROM_INDEX - (storage_slot + 1) * sizeof(tmp_z_values); eeprom_read_block((void *)&tmp_z_values, (void *)j, sizeof(tmp_z_values)); SERIAL_ECHOPAIR("Subtracting Mesh ", storage_slot); SERIAL_PROTOCOLPGM(" loaded from EEPROM address "); // Soon, we can remove the extra clutter of printing prt_hex_word(j); // the address in the EEPROM where the Mesh is stored. SERIAL_EOL; for (uint8_t x = 0; x < UBL_MESH_NUM_X_POINTS; x++) for (uint8_t y = 0; y < UBL_MESH_NUM_Y_POINTS; y++) z_values[x][y] = z_values[x][y] - tmp_z_values[x][y]; } mesh_index_pair find_closest_mesh_point_of_type(const MeshPointType type, const float &lx, const float &ly, const bool probe_as_reference, unsigned int bits[16], bool far_flag) { int i, j, k, l; float distance, closest = far_flag ? -99999.99 : 99999.99; mesh_index_pair return_val; return_val.x_index = return_val.y_index = -1; const float current_x = current_position[X_AXIS], current_y = current_position[Y_AXIS]; // Get our reference position. Either the nozzle or probe location. const float px = lx - (probe_as_reference ? X_PROBE_OFFSET_FROM_EXTRUDER : 0), py = ly - (probe_as_reference ? Y_PROBE_OFFSET_FROM_EXTRUDER : 0); for (i = 0; i < UBL_MESH_NUM_X_POINTS; i++) { for (j = 0; j < UBL_MESH_NUM_Y_POINTS; j++) { if ( (type == INVALID && isnan(z_values[i][j])) // Check to see if this location holds the right thing || (type == REAL && !isnan(z_values[i][j])) || (type == SET_IN_BITMAP && is_bit_set(bits, i, j)) ) { // We only get here if we found a Mesh Point of the specified type const float mx = LOGICAL_X_POSITION(ubl.map_x_index_to_bed_location(i)), // Check if we can probe this mesh location my = LOGICAL_Y_POSITION(ubl.map_y_index_to_bed_location(j)); // If we are using the probe as the reference there are some locations we can't get to. // We prune these out of the list and ignore them until the next Phase where we do the // manual nozzle probing. if (probe_as_reference && (mx < (MIN_PROBE_X) || mx > (MAX_PROBE_X) || my < (MIN_PROBE_Y) || my > (MAX_PROBE_Y)) ) continue; // We can get to it. Let's see if it is the closest location to the nozzle. // Add in a weighting factor that considers the current location of the nozzle. distance = HYPOT(px - mx, py - my) + HYPOT(current_x - mx, current_y - my) * 0.1; if (far_flag) { // If doing the far_flag action, we want to be as far as possible for (k = 0; k < UBL_MESH_NUM_X_POINTS; k++) { // from the starting point and from any other probed points. We for (l = 0; l < UBL_MESH_NUM_Y_POINTS; l++) { // want the next point spread out and filling in any blank spaces if ( !isnan(z_values[k][l])) { // in the mesh. So we add in some of the distance to every probed distance += (i-k)*(i-k)*MESH_X_DIST*.05; // point we can find. distance += (j-l)*(j-l)*MESH_Y_DIST*.05; } } } } if ( (!far_flag&&(distance < closest)) || (far_flag&&(distance > closest)) ) { // if far_flag, look for furthest away point closest = distance; // We found a closer location with return_val.x_index = i; // the specified type of mesh value. return_val.y_index = j; return_val.distance = closest; } } } } return return_val; } void fine_tune_mesh(const float &lx, const float &ly, const bool do_ubl_mesh_map) { mesh_index_pair location; uint16_t not_done[16]; int32_t round_off; save_ubl_active_state_and_disable(); memset(not_done, 0xFF, sizeof(not_done)); #if ENABLED(ULTRA_LCD) lcd_setstatus("Fine Tuning Mesh.", true); #endif do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_xy(lx, ly); do { if (do_ubl_mesh_map) ubl.display_map(map_type); location = find_closest_mesh_point_of_type( SET_IN_BITMAP, lx, ly, 0, not_done, false); // The '0' says we want to use the nozzle's position // It doesn't matter if the probe can not reach this // location. This is a manual edit of the Mesh Point. if (location.x_index < 0 && location.y_index < 0) continue; // abort if we can't find any more points. bit_clear(not_done, location.x_index, location.y_index); // Mark this location as 'adjusted' so we will find a // different location the next time through the loop const float xProbe = ubl.map_x_index_to_bed_location(location.x_index), yProbe = ubl.map_y_index_to_bed_location(location.y_index); if (xProbe < X_MIN_POS || xProbe > X_MAX_POS || yProbe < Y_MIN_POS || yProbe > Y_MAX_POS) { // In theory, we don't need this check. SERIAL_PROTOCOLLNPGM("?Error: Attempt to edit off the bed."); // This really can't happen, but for now, ubl_has_control_of_lcd_panel = false; // Let's do the check. goto FINE_TUNE_EXIT; } do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); // Move the nozzle to where we are going to edit do_blocking_move_to_xy(xProbe, yProbe); float new_z = z_values[location.x_index][location.y_index]; round_off = (int32_t)(new_z * 1000.0); // we chop off the last digits just to be clean. We are rounding to the new_z = float(round_off) / 1000.0; ubl_has_control_of_lcd_panel = true; lcd_implementation_clear(); lcd_mesh_edit_setup(new_z); wait_for_user = true; do { new_z = lcd_mesh_edit(); idle(); } while (!ubl_lcd_clicked()); lcd_return_to_status(); ubl_has_control_of_lcd_panel = true; // There is a race condition for the Encoder Wheel getting clicked. // It could get detected in lcd_mesh_edit (actually _lcd_mesh_fine_tune) // or here. const millis_t nxt = millis() + 1500UL; while (ubl_lcd_clicked()) { // debounce and watch for abort idle(); if (ELAPSED(millis(), nxt)) { lcd_return_to_status(); // SERIAL_PROTOCOLLNPGM("\nFine Tuning of Mesh Stopped."); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); lcd_setstatus("Mesh Editing Stopped", true); while (ubl_lcd_clicked()) idle(); ubl_has_control_of_lcd_panel = false; goto FINE_TUNE_EXIT; } } safe_delay(20); // We don't want any switch noise. z_values[location.x_index][location.y_index] = new_z; lcd_implementation_clear(); } while (location.x_index >= 0 && location.y_index >= 0 && --repetition_cnt); FINE_TUNE_EXIT: ubl_has_control_of_lcd_panel = false; if (do_ubl_mesh_map) ubl.display_map(map_type); restore_ubl_active_state_and_leave(); do_blocking_move_to_z(Z_CLEARANCE_DEPLOY_PROBE); do_blocking_move_to_xy(lx, ly); #if ENABLED(ULTRA_LCD) lcd_setstatus("Done Editing Mesh", true); #endif SERIAL_ECHOLNPGM("Done Editing Mesh."); } #endif // AUTO_BED_LEVELING_UBL