/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ /** * * About Marlin * * This firmware is a mashup between Sprinter and grbl. * - https://github.com/kliment/Sprinter * - https://github.com/simen/grbl/tree * * It has preliminary support for Matthew Roberts advance algorithm * - http://reprap.org/pipermail/reprap-dev/2011-May/003323.html */ #include "Marlin.h" #if ENABLED(AUTO_BED_LEVELING_FEATURE) #include "vector_3.h" #if ENABLED(AUTO_BED_LEVELING_GRID) #include "qr_solve.h" #endif #endif // AUTO_BED_LEVELING_FEATURE #if ENABLED(MESH_BED_LEVELING) #include "mesh_bed_leveling.h" #endif #include "ultralcd.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "cardreader.h" #include "configuration_store.h" #include "language.h" #include "pins_arduino.h" #include "math.h" #include "buzzer.h" #if ENABLED(USE_WATCHDOG) #include "watchdog.h" #endif #if ENABLED(BLINKM) #include "blinkm.h" #include "Wire.h" #endif #if HAS_SERVOS #include "servo.h" #endif #if HAS_DIGIPOTSS #include <SPI.h> #endif #if ENABLED(DAC_STEPPER_CURRENT) #include "stepper_dac.h" #endif #if ENABLED(EXPERIMENTAL_I2CBUS) #include "twibus.h" #endif /** * Look here for descriptions of G-codes: * - http://linuxcnc.org/handbook/gcode/g-code.html * - http://objects.reprap.org/wiki/Mendel_User_Manual:_RepRapGCodes * * Help us document these G-codes online: * - https://github.com/MarlinFirmware/Marlin/wiki/G-Code-in-Marlin * - http://reprap.org/wiki/G-code * * ----------------- * Implemented Codes * ----------------- * * "G" Codes * * G0 -> G1 * G1 - Coordinated Movement X Y Z E * G2 - CW ARC * G3 - CCW ARC * G4 - Dwell S<seconds> or P<milliseconds> * G10 - retract filament according to settings of M207 * G11 - retract recover filament according to settings of M208 * G28 - Home one or more axes * G29 - Detailed Z probe, probes the bed at 3 or more points. Will fail if you haven't homed yet. * G30 - Single Z probe, probes bed at current XY location. * G31 - Dock sled (Z_PROBE_SLED only) * G32 - Undock sled (Z_PROBE_SLED only) * G90 - Use Absolute Coordinates * G91 - Use Relative Coordinates * G92 - Set current position to coordinates given * * "M" Codes * * M0 - Unconditional stop - Wait for user to press a button on the LCD (Only if ULTRA_LCD is enabled) * M1 - Same as M0 * M17 - Enable/Power all stepper motors * M18 - Disable all stepper motors; same as M84 * M20 - List SD card * M21 - Init SD card * M22 - Release SD card * M23 - Select SD file (M23 filename.g) * M24 - Start/resume SD print * M25 - Pause SD print * M26 - Set SD position in bytes (M26 S12345) * M27 - Report SD print status * M28 - Start SD write (M28 filename.g) * M29 - Stop SD write * M30 - Delete file from SD (M30 filename.g) * M31 - Output time since last M109 or SD card start to serial * M32 - Select file and start SD print (Can be used _while_ printing from SD card files): * syntax "M32 /path/filename#", or "M32 S<startpos bytes> !filename#" * Call gcode file : "M32 P !filename#" and return to caller file after finishing (similar to #include). * The '#' is necessary when calling from within sd files, as it stops buffer prereading * M33 - Get the longname version of a path * M42 - Change pin status via gcode Use M42 Px Sy to set pin x to value y, when omitting Px the onboard led will be used. * M48 - Measure Z_Probe repeatability. M48 [P # of points] [X position] [Y position] [V_erboseness #] [E_ngage Probe] [L # of legs of travel] * M80 - Turn on Power Supply * M81 - Turn off Power Supply * M82 - Set E codes absolute (default) * M83 - Set E codes relative while in Absolute Coordinates (G90) mode * M84 - Disable steppers until next move, * or use S<seconds> to specify an inactivity timeout, after which the steppers will be disabled. S0 to disable the timeout. * M85 - Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default) * M92 - Set axis_steps_per_unit - same syntax as G92 * M104 - Set extruder target temp * M105 - Read current temp * M106 - Fan on * M107 - Fan off * M109 - Sxxx Wait for extruder current temp to reach target temp. Waits only when heating * Rxxx Wait for extruder current temp to reach target temp. Waits when heating and cooling * IF AUTOTEMP is enabled, S<mintemp> B<maxtemp> F<factor>. Exit autotemp by any M109 without F * M110 - Set the current line number * M111 - Set debug flags with S<mask>. See flag bits defined in Marlin.h. * M112 - Emergency stop * M113 - Get or set the timeout interval for Host Keepalive "busy" messages * M114 - Output current position to serial port * M115 - Capabilities string * M117 - Display a message on the controller screen * M119 - Output Endstop status to serial port * M120 - Enable endstop detection * M121 - Disable endstop detection * M126 - Solenoid Air Valve Open (BariCUDA support by jmil) * M127 - Solenoid Air Valve Closed (BariCUDA vent to atmospheric pressure by jmil) * M128 - EtoP Open (BariCUDA EtoP = electricity to air pressure transducer by jmil) * M129 - EtoP Closed (BariCUDA EtoP = electricity to air pressure transducer by jmil) * M140 - Set bed target temp * M145 - Set the heatup state H<hotend> B<bed> F<fan speed> for S<material> (0=PLA, 1=ABS) * M150 - Set BlinkM Color Output R: Red<0-255> U(!): Green<0-255> B: Blue<0-255> over i2c, G for green does not work. * M190 - Sxxx Wait for bed current temp to reach target temp. Waits only when heating * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling * M200 - set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters).:D<millimeters>- * M201 - Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) * M202 - Set max acceleration in units/s^2 for travel moves (M202 X1000 Y1000) Unused in Marlin!! * M203 - Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec * M204 - Set default acceleration: P for Printing moves, R for Retract only (no X, Y, Z) moves and T for Travel (non printing) moves (ex. M204 P800 T3000 R9000) in mm/sec^2 * M205 - advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk, E=maximum E jerk * M206 - Set additional homing offset * M207 - Set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop], stays in mm regardless of M200 setting * M208 - Set recover=unretract length S[positive mm surplus to the M207 S*] F[feedrate mm/min] * M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. * M218 - Set hotend offset (in mm): T<extruder_number> X<offset_on_X> Y<offset_on_Y> * M220 - Set speed factor override percentage: S<factor in percent> * M221 - Set extrude factor override percentage: S<factor in percent> * M226 - Wait until the specified pin reaches the state required: P<pin number> S<pin state> * M240 - Trigger a camera to take a photograph * M250 - Set LCD contrast C<contrast value> (value 0..63) * M280 - Set servo position absolute. P: servo index, S: angle or microseconds * M300 - Play beep sound S<frequency Hz> P<duration ms> * M301 - Set PID parameters P I and D * M302 - Allow cold extrudes, or set the minimum extrude S<temperature>. * M303 - PID relay autotune S<temperature> sets the target temperature. (default target temperature = 150C) * M304 - Set bed PID parameters P I and D * M380 - Activate solenoid on active extruder * M381 - Disable all solenoids * M400 - Finish all moves * M401 - Lower Z probe if present * M402 - Raise Z probe if present * M404 - N<dia in mm> Enter the nominal filament width (3mm, 1.75mm ) or will display nominal filament width without parameters * M405 - Turn on Filament Sensor extrusion control. Optional D<delay in cm> to set delay in centimeters between sensor and extruder * M406 - Turn off Filament Sensor extrusion control * M407 - Display measured filament diameter * M410 - Quickstop. Abort all the planned moves * M420 - Enable/Disable Mesh Leveling (with current values) S1=enable S0=disable * M421 - Set a single Z coordinate in the Mesh Leveling grid. X<mm> Y<mm> Z<mm> * M428 - Set the home_offset logically based on the current_position * M500 - Store parameters in EEPROM * M501 - Read parameters from EEPROM (if you need reset them after you changed them temporarily). * M502 - Revert to the default "factory settings". You still need to store them in EEPROM afterwards if you want to. * M503 - Print the current settings (from memory not from EEPROM). Use S0 to leave off headings. * M540 - Use S[0|1] to enable or disable the stop SD card print on endstop hit (requires ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) * M600 - Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] * M665 - Set delta configurations: L<diagonal rod> R<delta radius> S<segments/s> * M666 - Set delta endstop adjustment * M605 - Set dual x-carriage movement mode: S<mode> [ X<duplication x-offset> R<duplication temp offset> ] * M907 - Set digital trimpot motor current using axis codes. * M908 - Control digital trimpot directly. * M909 - DAC_STEPPER_CURRENT: Print digipot/DAC current value * M910 - DAC_STEPPER_CURRENT: Commit digipot/DAC value to external EEPROM via I2C * M350 - Set microstepping mode. * M351 - Toggle MS1 MS2 pins directly. * * ************ SCARA Specific - This can change to suit future G-code regulations * M360 - SCARA calibration: Move to cal-position ThetaA (0 deg calibration) * M361 - SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree) * M362 - SCARA calibration: Move to cal-position PsiA (0 deg calibration) * M363 - SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree) * M364 - SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position) * M365 - SCARA calibration: Scaling factor, X, Y, Z axis * ************* SCARA End *************** * * ************ Custom codes - This can change to suit future G-code regulations * M100 - Watch Free Memory (For Debugging Only) * M851 - Set Z probe's Z offset (mm above extruder -- The value will always be negative) * M928 - Start SD logging (M928 filename.g) - ended by M29 * M999 - Restart after being stopped by error * * "T" Codes * * T0-T3 - Select a tool by index (usually an extruder) [ F<mm/min> ] * */ #if ENABLED(M100_FREE_MEMORY_WATCHER) void gcode_M100(); #endif #if ENABLED(SDSUPPORT) CardReader card; #endif #if ENABLED(EXPERIMENTAL_I2CBUS) TWIBus i2c; #endif bool Running = true; uint8_t marlin_debug_flags = DEBUG_NONE; static float feedrate = 1500.0, saved_feedrate; float current_position[NUM_AXIS] = { 0.0 }; static float destination[NUM_AXIS] = { 0.0 }; bool axis_known_position[3] = { false }; bool axis_homed[3] = { false }; static long gcode_N, gcode_LastN, Stopped_gcode_LastN = 0; static char* current_command, *current_command_args; static int cmd_queue_index_r = 0; static int cmd_queue_index_w = 0; static int commands_in_queue = 0; static char command_queue[BUFSIZE][MAX_CMD_SIZE]; const float homing_feedrate[] = HOMING_FEEDRATE; bool axis_relative_modes[] = AXIS_RELATIVE_MODES; int feedrate_multiplier = 100; //100->1 200->2 int saved_feedrate_multiplier; int extruder_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(100); bool volumetric_enabled = false; float filament_size[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(DEFAULT_NOMINAL_FILAMENT_DIA); float volumetric_multiplier[EXTRUDERS] = ARRAY_BY_EXTRUDERS1(1.0); float home_offset[3] = { 0 }; float min_pos[3] = { X_MIN_POS, Y_MIN_POS, Z_MIN_POS }; float max_pos[3] = { X_MAX_POS, Y_MAX_POS, Z_MAX_POS }; #if FAN_COUNT > 0 int fanSpeeds[FAN_COUNT] = { 0 }; #endif uint8_t active_extruder = 0; bool cancel_heatup = false; const char errormagic[] PROGMEM = "Error:"; const char echomagic[] PROGMEM = "echo:"; const char axis_codes[NUM_AXIS] = {'X', 'Y', 'Z', 'E'}; static bool relative_mode = false; //Determines Absolute or Relative Coordinates static int serial_count = 0; static char* seen_pointer; ///< A pointer to find chars in the command string (X, Y, Z, E, etc.) const char* queued_commands_P = NULL; /* pointer to the current line in the active sequence of commands, or NULL when none */ const int sensitive_pins[] = SENSITIVE_PINS; ///< Sensitive pin list for M42 // Inactivity shutdown millis_t previous_cmd_ms = 0; static millis_t max_inactive_time = 0; static millis_t stepper_inactive_time = (DEFAULT_STEPPER_DEACTIVE_TIME) * 1000UL; Stopwatch print_job_timer = Stopwatch(); static uint8_t target_extruder; #if ENABLED(AUTO_BED_LEVELING_FEATURE) int xy_travel_speed = XY_TRAVEL_SPEED; float zprobe_zoffset = Z_PROBE_OFFSET_FROM_EXTRUDER; #endif #if ENABLED(Z_DUAL_ENDSTOPS) && DISABLED(DELTA) float z_endstop_adj = 0; #endif // Extruder offsets #if EXTRUDERS > 1 #ifndef EXTRUDER_OFFSET_X #define EXTRUDER_OFFSET_X { 0 } // X offsets for each extruder #endif #ifndef EXTRUDER_OFFSET_Y #define EXTRUDER_OFFSET_Y { 0 } // Y offsets for each extruder #endif float extruder_offset[][EXTRUDERS] = { EXTRUDER_OFFSET_X, EXTRUDER_OFFSET_Y #if ENABLED(DUAL_X_CARRIAGE) , { 0 } // Z offsets for each extruder #endif }; #endif #if HAS_SERVO_ENDSTOPS const int servo_endstop_id[] = SERVO_ENDSTOP_IDS; const int servo_endstop_angle[][2] = SERVO_ENDSTOP_ANGLES; #endif #if ENABLED(BARICUDA) int ValvePressure = 0; int EtoPPressure = 0; #endif #if ENABLED(FWRETRACT) bool autoretract_enabled = false; bool retracted[EXTRUDERS] = { false }; bool retracted_swap[EXTRUDERS] = { false }; float retract_length = RETRACT_LENGTH; float retract_length_swap = RETRACT_LENGTH_SWAP; float retract_feedrate = RETRACT_FEEDRATE; float retract_zlift = RETRACT_ZLIFT; float retract_recover_length = RETRACT_RECOVER_LENGTH; float retract_recover_length_swap = RETRACT_RECOVER_LENGTH_SWAP; float retract_recover_feedrate = RETRACT_RECOVER_FEEDRATE; #endif // FWRETRACT #if ENABLED(ULTIPANEL) && HAS_POWER_SWITCH bool powersupply = #if ENABLED(PS_DEFAULT_OFF) false #else true #endif ; #endif #if ENABLED(DELTA) #define TOWER_1 X_AXIS #define TOWER_2 Y_AXIS #define TOWER_3 Z_AXIS float delta[3] = { 0 }; #define SIN_60 0.8660254037844386 #define COS_60 0.5 float endstop_adj[3] = { 0 }; // these are the default values, can be overriden with M665 float delta_radius = DELTA_RADIUS; float delta_tower1_x = -SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower float delta_tower1_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_1); float delta_tower2_x = SIN_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower float delta_tower2_y = -COS_60 * (delta_radius + DELTA_RADIUS_TRIM_TOWER_2); float delta_tower3_x = 0; // back middle tower float delta_tower3_y = (delta_radius + DELTA_RADIUS_TRIM_TOWER_3); float delta_diagonal_rod = DELTA_DIAGONAL_ROD; float delta_diagonal_rod_trim_tower_1 = DELTA_DIAGONAL_ROD_TRIM_TOWER_1; float delta_diagonal_rod_trim_tower_2 = DELTA_DIAGONAL_ROD_TRIM_TOWER_2; float delta_diagonal_rod_trim_tower_3 = DELTA_DIAGONAL_ROD_TRIM_TOWER_3; float delta_diagonal_rod_2_tower_1 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_1); float delta_diagonal_rod_2_tower_2 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_2); float delta_diagonal_rod_2_tower_3 = sq(delta_diagonal_rod + delta_diagonal_rod_trim_tower_3); //float delta_diagonal_rod_2 = sq(delta_diagonal_rod); float delta_segments_per_second = DELTA_SEGMENTS_PER_SECOND; #if ENABLED(AUTO_BED_LEVELING_FEATURE) int delta_grid_spacing[2] = { 0, 0 }; float bed_level[AUTO_BED_LEVELING_GRID_POINTS][AUTO_BED_LEVELING_GRID_POINTS]; #endif #else static bool home_all_axis = true; #endif #if ENABLED(SCARA) float delta_segments_per_second = SCARA_SEGMENTS_PER_SECOND; static float delta[3] = { 0 }; float axis_scaling[3] = { 1, 1, 1 }; // Build size scaling, default to 1 #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) //Variables for Filament Sensor input float filament_width_nominal = DEFAULT_NOMINAL_FILAMENT_DIA; //Set nominal filament width, can be changed with M404 bool filament_sensor = false; //M405 turns on filament_sensor control, M406 turns it off float filament_width_meas = DEFAULT_MEASURED_FILAMENT_DIA; //Stores the measured filament diameter int8_t measurement_delay[MAX_MEASUREMENT_DELAY + 1]; //ring buffer to delay measurement store extruder factor after subtracting 100 int filwidth_delay_index1 = 0; //index into ring buffer int filwidth_delay_index2 = -1; //index into ring buffer - set to -1 on startup to indicate ring buffer needs to be initialized int meas_delay_cm = MEASUREMENT_DELAY_CM; //distance delay setting #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) static bool filrunoutEnqueued = false; #endif static bool send_ok[BUFSIZE]; #if HAS_SERVOS Servo servo[NUM_SERVOS]; #endif #ifdef CHDK millis_t chdkHigh = 0; boolean chdkActive = false; #endif #if ENABLED(PID_ADD_EXTRUSION_RATE) int lpq_len = 20; #endif #if ENABLED(HOST_KEEPALIVE_FEATURE) // States for managing Marlin and host communication // Marlin sends messages if blocked or busy enum MarlinBusyState { NOT_BUSY, // Not in a handler IN_HANDLER, // Processing a GCode IN_PROCESS, // Known to be blocking command input (as in G29) PAUSED_FOR_USER, // Blocking pending any input PAUSED_FOR_INPUT // Blocking pending text input (concept) }; static MarlinBusyState busy_state = NOT_BUSY; static millis_t next_busy_signal_ms = 0; uint8_t host_keepalive_interval = DEFAULT_KEEPALIVE_INTERVAL; #define KEEPALIVE_STATE(n) do{ busy_state = n; }while(0) #else #define host_keepalive() ; #define KEEPALIVE_STATE(n) ; #endif // HOST_KEEPALIVE_FEATURE /** * *************************************************************************** * ******************************** FUNCTIONS ******************************** * *************************************************************************** */ void get_available_commands(); void process_next_command(); void plan_arc(float target[NUM_AXIS], float* offset, uint8_t clockwise); bool setTargetedHotend(int code); void serial_echopair_P(const char* s_P, int v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, float v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, double v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void serial_echopair_P(const char* s_P, unsigned long v) { serialprintPGM(s_P); SERIAL_ECHO(v); } void gcode_M114(); #if ENABLED(DEBUG_LEVELING_FEATURE) void print_xyz(const char* prefix, const float x, const float y, const float z) { SERIAL_ECHO(prefix); SERIAL_ECHOPAIR(": (", x); SERIAL_ECHOPAIR(", ", y); SERIAL_ECHOPAIR(", ", z); SERIAL_ECHOLNPGM(")"); } void print_xyz(const char* prefix, const float xyz[]) { print_xyz(prefix, xyz[X_AXIS], xyz[Y_AXIS], xyz[Z_AXIS]); } #define DEBUG_POS(PREFIX,VAR) do{ SERIAL_ECHOPGM(PREFIX); print_xyz(" > " STRINGIFY(VAR), VAR); }while(0) #endif #if ENABLED(DELTA) || ENABLED(SCARA) inline void sync_plan_position_delta() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position_delta", current_position); #endif calculate_delta(current_position); plan_set_position(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], current_position[E_AXIS]); } #endif #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) float extrude_min_temp = EXTRUDE_MINTEMP; #endif #if ENABLED(HAS_Z_MIN_PROBE) extern volatile bool z_probe_is_active; #endif #if ENABLED(SDSUPPORT) #include "SdFatUtil.h" int freeMemory() { return SdFatUtil::FreeRam(); } #else extern "C" { extern unsigned int __bss_end; extern unsigned int __heap_start; extern void* __brkval; int freeMemory() { int free_memory; if ((int)__brkval == 0) free_memory = ((int)&free_memory) - ((int)&__bss_end); else free_memory = ((int)&free_memory) - ((int)__brkval); return free_memory; } } #endif //!SDSUPPORT /** * Inject the next "immediate" command, when possible. * Return true if any immediate commands remain to inject. */ static bool drain_queued_commands_P() { if (queued_commands_P != NULL) { size_t i = 0; char c, cmd[30]; strncpy_P(cmd, queued_commands_P, sizeof(cmd) - 1); cmd[sizeof(cmd) - 1] = '\0'; while ((c = cmd[i]) && c != '\n') i++; // find the end of this gcode command cmd[i] = '\0'; if (enqueue_and_echo_command(cmd)) { // success? if (c) // newline char? queued_commands_P += i + 1; // advance to the next command else queued_commands_P = NULL; // nul char? no more commands } } return (queued_commands_P != NULL); // return whether any more remain } /** * Record one or many commands to run from program memory. * Aborts the current queue, if any. * Note: drain_queued_commands_P() must be called repeatedly to drain the commands afterwards */ void enqueue_and_echo_commands_P(const char* pgcode) { queued_commands_P = pgcode; drain_queued_commands_P(); // first command executed asap (when possible) } /** * Once a new command is in the ring buffer, call this to commit it */ inline void _commit_command(bool say_ok) { send_ok[cmd_queue_index_w] = say_ok; cmd_queue_index_w = (cmd_queue_index_w + 1) % BUFSIZE; commands_in_queue++; } /** * Copy a command directly into the main command buffer, from RAM. * Returns true if successfully adds the command */ inline bool _enqueuecommand(const char* cmd, bool say_ok=false) { if (*cmd == ';' || commands_in_queue >= BUFSIZE) return false; strcpy(command_queue[cmd_queue_index_w], cmd); _commit_command(say_ok); return true; } void enqueue_and_echo_command_now(const char* cmd) { while (!enqueue_and_echo_command(cmd)) idle(); } /** * Enqueue with Serial Echo */ bool enqueue_and_echo_command(const char* cmd, bool say_ok/*=false*/) { if (_enqueuecommand(cmd, say_ok)) { SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_Enqueueing); SERIAL_ECHO(cmd); SERIAL_ECHOLNPGM("\""); return true; } return false; } void setup_killpin() { #if HAS_KILL SET_INPUT(KILL_PIN); WRITE(KILL_PIN, HIGH); #endif } void setup_filrunoutpin() { #if HAS_FILRUNOUT pinMode(FILRUNOUT_PIN, INPUT); #if ENABLED(ENDSTOPPULLUP_FIL_RUNOUT) WRITE(FILRUNOUT_PIN, HIGH); #endif #endif } // Set home pin void setup_homepin(void) { #if HAS_HOME SET_INPUT(HOME_PIN); WRITE(HOME_PIN, HIGH); #endif } void setup_photpin() { #if HAS_PHOTOGRAPH OUT_WRITE(PHOTOGRAPH_PIN, LOW); #endif } void setup_powerhold() { #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, HIGH); #endif #if HAS_POWER_SWITCH #if ENABLED(PS_DEFAULT_OFF) OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); #else OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); #endif #endif } void suicide() { #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, LOW); #endif } void servo_init() { #if NUM_SERVOS >= 1 && HAS_SERVO_0 servo[0].attach(SERVO0_PIN); servo[0].detach(); // Just set up the pin. We don't have a position yet. Don't move to a random position. #endif #if NUM_SERVOS >= 2 && HAS_SERVO_1 servo[1].attach(SERVO1_PIN); servo[1].detach(); #endif #if NUM_SERVOS >= 3 && HAS_SERVO_2 servo[2].attach(SERVO2_PIN); servo[2].detach(); #endif #if NUM_SERVOS >= 4 && HAS_SERVO_3 servo[3].attach(SERVO3_PIN); servo[3].detach(); #endif #if HAS_SERVO_ENDSTOPS z_probe_is_active = false; /** * Set position of all defined Servo Endstops * * ** UNSAFE! - NEEDS UPDATE! ** * * The servo might be deployed and positioned too low to stow * when starting up the machine or rebooting the board. * There's no way to know where the nozzle is positioned until * homing has been done - no homing with z-probe without init! * */ for (int i = 0; i < 3; i++) if (servo_endstop_id[i] >= 0) servo[servo_endstop_id[i]].move(servo_endstop_angle[i][1]); #endif // HAS_SERVO_ENDSTOPS } /** * Stepper Reset (RigidBoard, et.al.) */ #if HAS_STEPPER_RESET void disableStepperDrivers() { pinMode(STEPPER_RESET_PIN, OUTPUT); digitalWrite(STEPPER_RESET_PIN, LOW); // drive it down to hold in reset motor driver chips } void enableStepperDrivers() { pinMode(STEPPER_RESET_PIN, INPUT); } // set to input, which allows it to be pulled high by pullups #endif /** * Marlin entry-point: Set up before the program loop * - Set up the kill pin, filament runout, power hold * - Start the serial port * - Print startup messages and diagnostics * - Get EEPROM or default settings * - Initialize managers for: * • temperature * • planner * • watchdog * • stepper * • photo pin * • servos * • LCD controller * • Digipot I2C * • Z probe sled * • status LEDs */ void setup() { #ifdef DISABLE_JTAG // Disable JTAG on AT90USB chips to free up pins for IO MCUCR = 0x80; MCUCR = 0x80; #endif setup_killpin(); setup_filrunoutpin(); setup_powerhold(); #if HAS_STEPPER_RESET disableStepperDrivers(); #endif MYSERIAL.begin(BAUDRATE); SERIAL_PROTOCOLLNPGM("start"); SERIAL_ECHO_START; // Check startup - does nothing if bootloader sets MCUSR to 0 byte mcu = MCUSR; if (mcu & 1) SERIAL_ECHOLNPGM(MSG_POWERUP); if (mcu & 2) SERIAL_ECHOLNPGM(MSG_EXTERNAL_RESET); if (mcu & 4) SERIAL_ECHOLNPGM(MSG_BROWNOUT_RESET); if (mcu & 8) SERIAL_ECHOLNPGM(MSG_WATCHDOG_RESET); if (mcu & 32) SERIAL_ECHOLNPGM(MSG_SOFTWARE_RESET); MCUSR = 0; SERIAL_ECHOPGM(MSG_MARLIN); SERIAL_ECHOLNPGM(" " SHORT_BUILD_VERSION); #ifdef STRING_DISTRIBUTION_DATE #ifdef STRING_CONFIG_H_AUTHOR SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_CONFIGURATION_VER); SERIAL_ECHOPGM(STRING_DISTRIBUTION_DATE); SERIAL_ECHOPGM(MSG_AUTHOR); SERIAL_ECHOLNPGM(STRING_CONFIG_H_AUTHOR); SERIAL_ECHOPGM("Compiled: "); SERIAL_ECHOLNPGM(__DATE__); #endif // STRING_CONFIG_H_AUTHOR #endif // STRING_DISTRIBUTION_DATE SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_FREE_MEMORY); SERIAL_ECHO(freeMemory()); SERIAL_ECHOPGM(MSG_PLANNER_BUFFER_BYTES); SERIAL_ECHOLN((int)sizeof(block_t)*BLOCK_BUFFER_SIZE); // Send "ok" after commands by default for (int8_t i = 0; i < BUFSIZE; i++) send_ok[i] = true; // loads data from EEPROM if available else uses defaults (and resets step acceleration rate) Config_RetrieveSettings(); lcd_init(); tp_init(); // Initialize temperature loop plan_init(); // Initialize planner; #if ENABLED(DELTA) || ENABLED(SCARA) // Vital to init kinematic equivalent for X0 Y0 Z0 sync_plan_position_delta(); #endif #if ENABLED(USE_WATCHDOG) watchdog_init(); #endif st_init(); // Initialize stepper, this enables interrupts! setup_photpin(); servo_init(); #if HAS_CONTROLLERFAN SET_OUTPUT(CONTROLLERFAN_PIN); //Set pin used for driver cooling fan #endif #if HAS_STEPPER_RESET enableStepperDrivers(); #endif #if ENABLED(DIGIPOT_I2C) digipot_i2c_init(); #endif #if ENABLED(Z_PROBE_SLED) pinMode(SLED_PIN, OUTPUT); digitalWrite(SLED_PIN, LOW); // turn it off #endif // Z_PROBE_SLED setup_homepin(); #ifdef STAT_LED_RED pinMode(STAT_LED_RED, OUTPUT); digitalWrite(STAT_LED_RED, LOW); // turn it off #endif #ifdef STAT_LED_BLUE pinMode(STAT_LED_BLUE, OUTPUT); digitalWrite(STAT_LED_BLUE, LOW); // turn it off #endif } /** * The main Marlin program loop * * - Save or log commands to SD * - Process available commands (if not saving) * - Call heater manager * - Call inactivity manager * - Call endstop manager * - Call LCD update */ void loop() { if (commands_in_queue < BUFSIZE) get_available_commands(); #if ENABLED(SDSUPPORT) card.checkautostart(false); #endif if (commands_in_queue) { #if ENABLED(SDSUPPORT) if (card.saving) { char* command = command_queue[cmd_queue_index_r]; if (strstr_P(command, PSTR("M29"))) { // M29 closes the file card.closefile(); SERIAL_PROTOCOLLNPGM(MSG_FILE_SAVED); ok_to_send(); } else { // Write the string from the read buffer to SD card.write_command(command); if (card.logging) process_next_command(); // The card is saving because it's logging else ok_to_send(); } } else process_next_command(); #else process_next_command(); #endif // SDSUPPORT commands_in_queue--; cmd_queue_index_r = (cmd_queue_index_r + 1) % BUFSIZE; } checkHitEndstops(); idle(); } void gcode_line_error(const char* err, bool doFlush = true) { SERIAL_ERROR_START; serialprintPGM(err); SERIAL_ERRORLN(gcode_LastN); //Serial.println(gcode_N); if (doFlush) FlushSerialRequestResend(); serial_count = 0; } inline void get_serial_commands() { static char serial_line_buffer[MAX_CMD_SIZE]; static boolean serial_comment_mode = false; // If the command buffer is empty for too long, // send "wait" to indicate Marlin is still waiting. #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0 static millis_t last_command_time = 0; millis_t ms = millis(); if (commands_in_queue == 0 && !MYSERIAL.available() && ELAPSED(ms, last_command_time + NO_TIMEOUTS)) { SERIAL_ECHOLNPGM(MSG_WAIT); last_command_time = ms; } #endif /** * Loop while serial characters are incoming and the queue is not full */ while (commands_in_queue < BUFSIZE && MYSERIAL.available() > 0) { char serial_char = MYSERIAL.read(); /** * If the character ends the line */ if (serial_char == '\n' || serial_char == '\r') { serial_comment_mode = false; // end of line == end of comment if (!serial_count) continue; // skip empty lines serial_line_buffer[serial_count] = 0; // terminate string serial_count = 0; //reset buffer char* command = serial_line_buffer; while (*command == ' ') command++; // skip any leading spaces char* npos = (*command == 'N') ? command : NULL; // Require the N parameter to start the line char* apos = strchr(command, '*'); if (npos) { boolean M110 = strstr_P(command, PSTR("M110")) != NULL; if (M110) { char* n2pos = strchr(command + 4, 'N'); if (n2pos) npos = n2pos; } gcode_N = strtol(npos + 1, NULL, 10); if (gcode_N != gcode_LastN + 1 && !M110) { gcode_line_error(PSTR(MSG_ERR_LINE_NO)); return; } if (apos) { byte checksum = 0, count = 0; while (command[count] != '*') checksum ^= command[count++]; if (strtol(apos + 1, NULL, 10) != checksum) { gcode_line_error(PSTR(MSG_ERR_CHECKSUM_MISMATCH)); return; } // if no errors, continue parsing } else { gcode_line_error(PSTR(MSG_ERR_NO_CHECKSUM)); return; } gcode_LastN = gcode_N; // if no errors, continue parsing } else if (apos) { // No '*' without 'N' gcode_line_error(PSTR(MSG_ERR_NO_LINENUMBER_WITH_CHECKSUM), false); return; } // Movement commands alert when stopped if (IsStopped()) { char* gpos = strchr(command, 'G'); if (gpos) { int codenum = strtol(gpos + 1, NULL, 10); switch (codenum) { case 0: case 1: case 2: case 3: SERIAL_ERRORLNPGM(MSG_ERR_STOPPED); LCD_MESSAGEPGM(MSG_STOPPED); break; } } } // If command was e-stop process now if (strcmp(command, "M112") == 0) kill(PSTR(MSG_KILLED)); #if defined(NO_TIMEOUTS) && NO_TIMEOUTS > 0 last_command_time = ms; #endif // Add the command to the queue _enqueuecommand(serial_line_buffer, true); } else if (serial_count >= MAX_CMD_SIZE - 1) { // Keep fetching, but ignore normal characters beyond the max length // The command will be injected when EOL is reached } else if (serial_char == '\\') { // Handle escapes if (MYSERIAL.available() > 0) { // if we have one more character, copy it over serial_char = MYSERIAL.read(); if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char; } // otherwise do nothing } else { // it's not a newline, carriage return or escape char if (serial_char == ';') serial_comment_mode = true; if (!serial_comment_mode) serial_line_buffer[serial_count++] = serial_char; } } // queue has space, serial has data } #if ENABLED(SDSUPPORT) inline void get_sdcard_commands() { static bool stop_buffering = false, sd_comment_mode = false; if (!card.sdprinting) return; /** * '#' stops reading from SD to the buffer prematurely, so procedural * macro calls are possible. If it occurs, stop_buffering is triggered * and the buffer is run dry; this character _can_ occur in serial com * due to checksums, however, no checksums are used in SD printing. */ if (commands_in_queue == 0) stop_buffering = false; uint16_t sd_count = 0; bool card_eof = card.eof(); while (commands_in_queue < BUFSIZE && !card_eof && !stop_buffering) { int16_t n = card.get(); char sd_char = (char)n; card_eof = card.eof(); if (card_eof || n == -1 || sd_char == '\n' || sd_char == '\r' || ((sd_char == '#' || sd_char == ':') && !sd_comment_mode) ) { if (card_eof) { SERIAL_PROTOCOLLNPGM(MSG_FILE_PRINTED); print_job_timer.stop(); char time[30]; millis_t t = print_job_timer.duration(); int hours = t / 60 / 60, minutes = (t / 60) % 60; sprintf_P(time, PSTR("%i " MSG_END_HOUR " %i " MSG_END_MINUTE), hours, minutes); SERIAL_ECHO_START; SERIAL_ECHOLN(time); lcd_setstatus(time, true); card.printingHasFinished(); card.checkautostart(true); } if (sd_char == '#') stop_buffering = true; sd_comment_mode = false; //for new command if (!sd_count) continue; //skip empty lines command_queue[cmd_queue_index_w][sd_count] = '\0'; //terminate string sd_count = 0; //clear buffer _commit_command(false); } else if (sd_count >= MAX_CMD_SIZE - 1) { /** * Keep fetching, but ignore normal characters beyond the max length * The command will be injected when EOL is reached */ } else { if (sd_char == ';') sd_comment_mode = true; if (!sd_comment_mode) command_queue[cmd_queue_index_w][sd_count++] = sd_char; } } } #endif // SDSUPPORT /** * Add to the circular command queue the next command from: * - The command-injection queue (queued_commands_P) * - The active serial input (usually USB) * - The SD card file being actively printed */ void get_available_commands() { // if any immediate commands remain, don't get other commands yet if (drain_queued_commands_P()) return; get_serial_commands(); #if ENABLED(SDSUPPORT) get_sdcard_commands(); #endif } bool code_has_value() { int i = 1; char c = seen_pointer[i]; while (c == ' ') c = seen_pointer[++i]; if (c == '-' || c == '+') c = seen_pointer[++i]; if (c == '.') c = seen_pointer[++i]; return NUMERIC(c); } float code_value() { float ret; char* e = strchr(seen_pointer, 'E'); if (e) { *e = 0; ret = strtod(seen_pointer + 1, NULL); *e = 'E'; } else ret = strtod(seen_pointer + 1, NULL); return ret; } long code_value_long() { return strtol(seen_pointer + 1, NULL, 10); } int16_t code_value_short() { return (int16_t)strtol(seen_pointer + 1, NULL, 10); } bool code_seen(char code) { seen_pointer = strchr(current_command_args, code); return (seen_pointer != NULL); // Return TRUE if the code-letter was found } #define DEFINE_PGM_READ_ANY(type, reader) \ static inline type pgm_read_any(const type *p) \ { return pgm_read_##reader##_near(p); } DEFINE_PGM_READ_ANY(float, float); DEFINE_PGM_READ_ANY(signed char, byte); #define XYZ_CONSTS_FROM_CONFIG(type, array, CONFIG) \ static const PROGMEM type array##_P[3] = \ { X_##CONFIG, Y_##CONFIG, Z_##CONFIG }; \ static inline type array(int axis) \ { return pgm_read_any(&array##_P[axis]); } XYZ_CONSTS_FROM_CONFIG(float, base_min_pos, MIN_POS); XYZ_CONSTS_FROM_CONFIG(float, base_max_pos, MAX_POS); XYZ_CONSTS_FROM_CONFIG(float, base_home_pos, HOME_POS); XYZ_CONSTS_FROM_CONFIG(float, max_length, MAX_LENGTH); XYZ_CONSTS_FROM_CONFIG(float, home_bump_mm, HOME_BUMP_MM); XYZ_CONSTS_FROM_CONFIG(signed char, home_dir, HOME_DIR); #if ENABLED(DUAL_X_CARRIAGE) #define DXC_FULL_CONTROL_MODE 0 #define DXC_AUTO_PARK_MODE 1 #define DXC_DUPLICATION_MODE 2 static int dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; static float x_home_pos(int extruder) { if (extruder == 0) return base_home_pos(X_AXIS) + home_offset[X_AXIS]; else /** * In dual carriage mode the extruder offset provides an override of the * second X-carriage offset when homed - otherwise X2_HOME_POS is used. * This allow soft recalibration of the second extruder offset position * without firmware reflash (through the M218 command). */ return (extruder_offset[X_AXIS][1] > 0) ? extruder_offset[X_AXIS][1] : X2_HOME_POS; } static int x_home_dir(int extruder) { return (extruder == 0) ? X_HOME_DIR : X2_HOME_DIR; } static float inactive_extruder_x_pos = X2_MAX_POS; // used in mode 0 & 1 static bool active_extruder_parked = false; // used in mode 1 & 2 static float raised_parked_position[NUM_AXIS]; // used in mode 1 static millis_t delayed_move_time = 0; // used in mode 1 static float duplicate_extruder_x_offset = DEFAULT_DUPLICATION_X_OFFSET; // used in mode 2 static float duplicate_extruder_temp_offset = 0; // used in mode 2 bool extruder_duplication_enabled = false; // used in mode 2 #endif //DUAL_X_CARRIAGE static void set_axis_is_at_home(AxisEnum axis) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("set_axis_is_at_home(", axis); SERIAL_ECHOLNPGM(") >>>"); } #endif #if ENABLED(DUAL_X_CARRIAGE) if (axis == X_AXIS) { if (active_extruder != 0) { current_position[X_AXIS] = x_home_pos(active_extruder); min_pos[X_AXIS] = X2_MIN_POS; max_pos[X_AXIS] = max(extruder_offset[X_AXIS][1], X2_MAX_POS); return; } else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { float xoff = home_offset[X_AXIS]; current_position[X_AXIS] = base_home_pos(X_AXIS) + xoff; min_pos[X_AXIS] = base_min_pos(X_AXIS) + xoff; max_pos[X_AXIS] = min(base_max_pos(X_AXIS) + xoff, max(extruder_offset[X_AXIS][1], X2_MAX_POS) - duplicate_extruder_x_offset); return; } } #endif #if ENABLED(SCARA) if (axis == X_AXIS || axis == Y_AXIS) { float homeposition[3]; for (int i = 0; i < 3; i++) homeposition[i] = base_home_pos(i); // SERIAL_ECHOPGM("homeposition[x]= "); SERIAL_ECHO(homeposition[0]); // SERIAL_ECHOPGM("homeposition[y]= "); SERIAL_ECHOLN(homeposition[1]); /** * Works out real Homeposition angles using inverse kinematics, * and calculates homing offset using forward kinematics */ calculate_delta(homeposition); // SERIAL_ECHOPGM("base Theta= "); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM(" base Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); for (int i = 0; i < 2; i++) delta[i] -= home_offset[i]; // SERIAL_ECHOPGM("addhome X="); SERIAL_ECHO(home_offset[X_AXIS]); // SERIAL_ECHOPGM(" addhome Y="); SERIAL_ECHO(home_offset[Y_AXIS]); // SERIAL_ECHOPGM(" addhome Theta="); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM(" addhome Psi+Theta="); SERIAL_ECHOLN(delta[Y_AXIS]); calculate_SCARA_forward_Transform(delta); // SERIAL_ECHOPGM("Delta X="); SERIAL_ECHO(delta[X_AXIS]); // SERIAL_ECHOPGM(" Delta Y="); SERIAL_ECHOLN(delta[Y_AXIS]); current_position[axis] = delta[axis]; /** * SCARA home positions are based on configuration since the actual * limits are determined by the inverse kinematic transform. */ min_pos[axis] = base_min_pos(axis); // + (delta[axis] - base_home_pos(axis)); max_pos[axis] = base_max_pos(axis); // + (delta[axis] - base_home_pos(axis)); } else #endif { current_position[axis] = base_home_pos(axis) + home_offset[axis]; min_pos[axis] = base_min_pos(axis) + home_offset[axis]; max_pos[axis] = base_max_pos(axis) + home_offset[axis]; #if ENABLED(AUTO_BED_LEVELING_FEATURE) && Z_HOME_DIR < 0 if (axis == Z_AXIS) { current_position[Z_AXIS] -= zprobe_zoffset; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> zprobe_zoffset==", zprobe_zoffset); SERIAL_EOL; } #endif } #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> home_offset[axis]==", home_offset[axis]); DEBUG_POS("", current_position); } #endif } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< set_axis_is_at_home(", axis); SERIAL_ECHOLNPGM(")"); } #endif } /** * Some planner shorthand inline functions */ inline void set_homing_bump_feedrate(AxisEnum axis) { const int homing_bump_divisor[] = HOMING_BUMP_DIVISOR; int hbd = homing_bump_divisor[axis]; if (hbd < 1) { hbd = 10; SERIAL_ECHO_START; SERIAL_ECHOLNPGM("Warning: Homing Bump Divisor < 1"); } feedrate = homing_feedrate[axis] / hbd; } // // line_to_current_position // Move the planner to the current position from wherever it last moved // (or from wherever it has been told it is located). // inline void line_to_current_position() { plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], feedrate / 60, active_extruder); } inline void line_to_z(float zPosition) { plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS], feedrate / 60, active_extruder); } // // line_to_destination // Move the planner, not necessarily synced with current_position // inline void line_to_destination(float mm_m) { plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], mm_m / 60, active_extruder); } inline void line_to_destination() { line_to_destination(feedrate); } /** * sync_plan_position * Set planner / stepper positions to the cartesian current_position. * The stepper code translates these coordinates into step units. * Allows translation between steps and units (mm) for cartesian & core robots */ inline void sync_plan_position() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("sync_plan_position", current_position); #endif plan_set_position(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); } inline void set_current_to_destination() { memcpy(current_position, destination, sizeof(current_position)); } inline void set_destination_to_current() { memcpy(destination, current_position, sizeof(destination)); } static void setup_for_endstop_move() { saved_feedrate = feedrate; saved_feedrate_multiplier = feedrate_multiplier; feedrate_multiplier = 100; refresh_cmd_timeout(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("setup_for_endstop_move > enable_endstops(true)"); #endif enable_endstops(true); } #if ENABLED(AUTO_BED_LEVELING_FEATURE) #if ENABLED(DELTA) /** * Calculate delta, start a line, and set current_position to destination */ void prepare_move_raw() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("prepare_move_raw", destination); #endif refresh_cmd_timeout(); calculate_delta(destination); plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder); set_current_to_destination(); } #endif #if ENABLED(AUTO_BED_LEVELING_GRID) #if DISABLED(DELTA) static void set_bed_level_equation_lsq(double* plane_equation_coefficients) { #if ENABLED(DEBUG_LEVELING_FEATURE) plan_bed_level_matrix.set_to_identity(); if (DEBUGGING(LEVELING)) { vector_3 uncorrected_position = plan_get_position(); DEBUG_POS(">>> set_bed_level_equation_lsq", uncorrected_position); DEBUG_POS(">>> set_bed_level_equation_lsq", current_position); } #endif vector_3 planeNormal = vector_3(-plane_equation_coefficients[0], -plane_equation_coefficients[1], 1); // planeNormal.debug("planeNormal"); plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); //bedLevel.debug("bedLevel"); //plan_bed_level_matrix.debug("bed level before"); //vector_3 uncorrected_position = plan_get_position(); //uncorrected_position.debug("position before"); vector_3 corrected_position = plan_get_position(); //corrected_position.debug("position after"); current_position[X_AXIS] = corrected_position.x; current_position[Y_AXIS] = corrected_position.y; current_position[Z_AXIS] = corrected_position.z; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("<<< set_bed_level_equation_lsq", current_position); #endif sync_plan_position(); } #endif // !DELTA #else // !AUTO_BED_LEVELING_GRID static void set_bed_level_equation_3pts(float z_at_pt_1, float z_at_pt_2, float z_at_pt_3) { plan_bed_level_matrix.set_to_identity(); vector_3 pt1 = vector_3(ABL_PROBE_PT_1_X, ABL_PROBE_PT_1_Y, z_at_pt_1); vector_3 pt2 = vector_3(ABL_PROBE_PT_2_X, ABL_PROBE_PT_2_Y, z_at_pt_2); vector_3 pt3 = vector_3(ABL_PROBE_PT_3_X, ABL_PROBE_PT_3_Y, z_at_pt_3); vector_3 planeNormal = vector_3::cross(pt1 - pt2, pt3 - pt2).get_normal(); if (planeNormal.z < 0) { planeNormal.x = -planeNormal.x; planeNormal.y = -planeNormal.y; planeNormal.z = -planeNormal.z; } plan_bed_level_matrix = matrix_3x3::create_look_at(planeNormal); vector_3 corrected_position = plan_get_position(); current_position[X_AXIS] = corrected_position.x; current_position[Y_AXIS] = corrected_position.y; current_position[Z_AXIS] = corrected_position.z; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("set_bed_level_equation_3pts", current_position); #endif sync_plan_position(); } #endif // !AUTO_BED_LEVELING_GRID static void run_z_probe() { /** * To prevent stepper_inactive_time from running out and * EXTRUDER_RUNOUT_PREVENT from extruding */ refresh_cmd_timeout(); #if ENABLED(DELTA) float start_z = current_position[Z_AXIS]; long start_steps = st_get_position(Z_AXIS); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("run_z_probe (DELTA) 1"); #endif // move down slowly until you find the bed feedrate = homing_feedrate[Z_AXIS] / 4; destination[Z_AXIS] = -10; prepare_move_raw(); // this will also set_current_to_destination st_synchronize(); endstops_hit_on_purpose(); // clear endstop hit flags /** * We have to let the planner know where we are right now as it * is not where we said to go. */ long stop_steps = st_get_position(Z_AXIS); float mm = start_z - float(start_steps - stop_steps) / axis_steps_per_unit[Z_AXIS]; current_position[Z_AXIS] = mm; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe (DELTA) 2", current_position); #endif sync_plan_position_delta(); #else // !DELTA plan_bed_level_matrix.set_to_identity(); feedrate = homing_feedrate[Z_AXIS]; // Move down until the Z probe (or endstop?) is triggered float zPosition = -(Z_MAX_LENGTH + 10); line_to_z(zPosition); st_synchronize(); // Tell the planner where we ended up - Get this from the stepper handler zPosition = st_get_axis_position_mm(Z_AXIS); plan_set_position( current_position[X_AXIS], current_position[Y_AXIS], zPosition, current_position[E_AXIS] ); // move up the retract distance zPosition += home_bump_mm(Z_AXIS); line_to_z(zPosition); st_synchronize(); endstops_hit_on_purpose(); // clear endstop hit flags // move back down slowly to find bed set_homing_bump_feedrate(Z_AXIS); zPosition -= home_bump_mm(Z_AXIS) * 2; line_to_z(zPosition); st_synchronize(); endstops_hit_on_purpose(); // clear endstop hit flags // Get the current stepper position after bumping an endstop current_position[Z_AXIS] = st_get_axis_position_mm(Z_AXIS); sync_plan_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("run_z_probe", current_position); #endif #endif // !DELTA } /** * Plan a move to (X, Y, Z) and set the current_position * The final current_position may not be the one that was requested */ static void do_blocking_move_to(float x, float y, float z) { float oldFeedRate = feedrate; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) print_xyz("do_blocking_move_to", x, y, z); #endif #if ENABLED(DELTA) feedrate = XY_TRAVEL_SPEED; destination[X_AXIS] = x; destination[Y_AXIS] = y; destination[Z_AXIS] = z; prepare_move_raw(); // this will also set_current_to_destination st_synchronize(); #else feedrate = homing_feedrate[Z_AXIS]; current_position[Z_AXIS] = z; line_to_current_position(); st_synchronize(); feedrate = xy_travel_speed; current_position[X_AXIS] = x; current_position[Y_AXIS] = y; line_to_current_position(); st_synchronize(); #endif feedrate = oldFeedRate; } inline void do_blocking_move_to_xy(float x, float y) { do_blocking_move_to(x, y, current_position[Z_AXIS]); } inline void do_blocking_move_to_x(float x) { do_blocking_move_to(x, current_position[Y_AXIS], current_position[Z_AXIS]); } inline void do_blocking_move_to_z(float z) { do_blocking_move_to(current_position[X_AXIS], current_position[Y_AXIS], z); } inline void raise_z_after_probing() { do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING); } static void clean_up_after_endstop_move() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("clean_up_after_endstop_move > ENDSTOPS_ONLY_FOR_HOMING > endstops_not_homing()"); #endif endstops_not_homing(); feedrate = saved_feedrate; feedrate_multiplier = saved_feedrate_multiplier; refresh_cmd_timeout(); } #if ENABLED(HAS_Z_MIN_PROBE) static void deploy_z_probe() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("deploy_z_probe", current_position); #endif if (z_probe_is_active) return; #if HAS_SERVO_ENDSTOPS // Engage Z Servo endstop if enabled if (servo_endstop_id[Z_AXIS] >= 0) servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][0]); #elif ENABLED(Z_PROBE_ALLEN_KEY) feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE; // If endstop is already false, the Z probe is deployed #if ENABLED(Z_MIN_PROBE_ENDSTOP) bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING); if (z_probe_endstop) #else bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); if (z_min_endstop) #endif { // Move to the start position to initiate deployment destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_X; destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Y; destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_1_Z; prepare_move_raw(); // this will also set_current_to_destination // Move to engage deployment if (Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_1_FEEDRATE) feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE; if (Z_PROBE_ALLEN_KEY_DEPLOY_2_X != Z_PROBE_ALLEN_KEY_DEPLOY_1_X) destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_X; if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Y != Z_PROBE_ALLEN_KEY_DEPLOY_1_Y) destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Y; if (Z_PROBE_ALLEN_KEY_DEPLOY_2_Z != Z_PROBE_ALLEN_KEY_DEPLOY_1_Z) destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_2_Z; prepare_move_raw(); #ifdef Z_PROBE_ALLEN_KEY_DEPLOY_3_X if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE; // Move to trigger deployment if (Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE != Z_PROBE_ALLEN_KEY_DEPLOY_2_FEEDRATE) feedrate = Z_PROBE_ALLEN_KEY_DEPLOY_3_FEEDRATE; if (Z_PROBE_ALLEN_KEY_DEPLOY_3_X != Z_PROBE_ALLEN_KEY_DEPLOY_2_X) destination[X_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_X; if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Y != Z_PROBE_ALLEN_KEY_DEPLOY_2_Y) destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Y; if (Z_PROBE_ALLEN_KEY_DEPLOY_3_Z != Z_PROBE_ALLEN_KEY_DEPLOY_2_Z) destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_DEPLOY_3_Z; prepare_move_raw(); #endif } // Partially Home X,Y for safety destination[X_AXIS] = destination[X_AXIS] * 0.75; destination[Y_AXIS] = destination[Y_AXIS] * 0.75; prepare_move_raw(); // this will also set_current_to_destination st_synchronize(); #if ENABLED(Z_MIN_PROBE_ENDSTOP) z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING); if (z_probe_endstop) #else z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); if (z_min_endstop) #endif { if (IsRunning()) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Z-Probe failed to engage!"); LCD_ALERTMESSAGEPGM("Err: ZPROBE"); } Stop(); } #endif // Z_PROBE_ALLEN_KEY #if ENABLED(FIX_MOUNTED_PROBE) // Noting to be done. Just set z_probe_is_active #endif z_probe_is_active = true; } static void stow_z_probe(bool doRaise = true) { #if !(HAS_SERVO_ENDSTOPS && (Z_RAISE_AFTER_PROBING > 0)) UNUSED(doRaise); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("stow_z_probe", current_position); #endif if (!z_probe_is_active) return; #if HAS_SERVO_ENDSTOPS // Retract Z Servo endstop if enabled if (servo_endstop_id[Z_AXIS] >= 0) { #if Z_RAISE_AFTER_PROBING > 0 if (doRaise) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Raise Z (after) by ", Z_RAISE_AFTER_PROBING); SERIAL_EOL; SERIAL_ECHO("> SERVO_ENDSTOPS > raise_z_after_probing()"); SERIAL_EOL; } #endif raise_z_after_probing(); // this also updates current_position st_synchronize(); } #endif // Change the Z servo angle servo[servo_endstop_id[Z_AXIS]].move(servo_endstop_angle[Z_AXIS][1]); } #elif ENABLED(Z_PROBE_ALLEN_KEY) // Move up for safety feedrate = Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE; #if Z_RAISE_AFTER_PROBING > 0 destination[Z_AXIS] = current_position[Z_AXIS] + Z_RAISE_AFTER_PROBING; prepare_move_raw(); // this will also set_current_to_destination #endif // Move to the start position to initiate retraction destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_X; destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Y; destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_1_Z; prepare_move_raw(); // Move the nozzle down to push the Z probe into retracted position if (Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_1_FEEDRATE) feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE; if (Z_PROBE_ALLEN_KEY_STOW_2_X != Z_PROBE_ALLEN_KEY_STOW_1_X) destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_X; if (Z_PROBE_ALLEN_KEY_STOW_2_Y != Z_PROBE_ALLEN_KEY_STOW_1_Y) destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Y; destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_2_Z; prepare_move_raw(); // Move up for safety if (Z_PROBE_ALLEN_KEY_STOW_3_FEEDRATE != Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE) feedrate = Z_PROBE_ALLEN_KEY_STOW_2_FEEDRATE; if (Z_PROBE_ALLEN_KEY_STOW_3_X != Z_PROBE_ALLEN_KEY_STOW_2_X) destination[X_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_X; if (Z_PROBE_ALLEN_KEY_STOW_3_Y != Z_PROBE_ALLEN_KEY_STOW_2_Y) destination[Y_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Y; destination[Z_AXIS] = Z_PROBE_ALLEN_KEY_STOW_3_Z; prepare_move_raw(); // Home XY for safety feedrate = homing_feedrate[X_AXIS] / 2; destination[X_AXIS] = 0; destination[Y_AXIS] = 0; prepare_move_raw(); // this will also set_current_to_destination st_synchronize(); #if ENABLED(Z_MIN_PROBE_ENDSTOP) bool z_probe_endstop = (READ(Z_MIN_PROBE_PIN) != Z_MIN_PROBE_ENDSTOP_INVERTING); if (!z_probe_endstop) #else bool z_min_endstop = (READ(Z_MIN_PIN) != Z_MIN_ENDSTOP_INVERTING); if (!z_min_endstop) #endif { if (IsRunning()) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM("Z-Probe failed to retract!"); LCD_ALERTMESSAGEPGM("Err: ZPROBE"); } Stop(); } #endif // Z_PROBE_ALLEN_KEY #if ENABLED(FIX_MOUNTED_PROBE) // Noting to be done. Just set z_probe_is_active #endif z_probe_is_active = false; } #endif // HAS_Z_MIN_PROBE enum ProbeAction { ProbeStay = 0, ProbeDeploy = _BV(0), ProbeStow = _BV(1), ProbeDeployAndStow = (ProbeDeploy | ProbeStow) }; // Probe bed height at position (x,y), returns the measured z value static float probe_pt(float x, float y, float z_before, ProbeAction probe_action = ProbeDeployAndStow, int verbose_level = 1) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("probe_pt >>>"); SERIAL_ECHOPAIR("> ProbeAction:", probe_action); SERIAL_EOL; DEBUG_POS("", current_position); } #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Z Raise to z_before ", z_before); SERIAL_EOL; SERIAL_ECHOPAIR("> do_blocking_move_to_z ", z_before); SERIAL_EOL; } #endif // Move Z up to the z_before height, then move the Z probe to the given XY do_blocking_move_to_z(z_before); // this also updates current_position #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> do_blocking_move_to_xy ", x - (X_PROBE_OFFSET_FROM_EXTRUDER)); SERIAL_ECHOPAIR(", ", y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); SERIAL_EOL; } #endif // this also updates current_position do_blocking_move_to_xy(x - (X_PROBE_OFFSET_FROM_EXTRUDER), y - (Y_PROBE_OFFSET_FROM_EXTRUDER)); #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY) if (probe_action & ProbeDeploy) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeDeploy"); #endif deploy_z_probe(); } #endif run_z_probe(); float measured_z = current_position[Z_AXIS]; #if DISABLED(Z_PROBE_SLED) && DISABLED(Z_PROBE_ALLEN_KEY) if (probe_action & ProbeStow) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> ProbeStow (stow_z_probe will do Z Raise)"); #endif stow_z_probe(); } #endif if (verbose_level > 2) { SERIAL_PROTOCOLPGM("Bed X: "); SERIAL_PROTOCOL_F(x, 3); SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOL_F(y, 3); SERIAL_PROTOCOLPGM(" Z: "); SERIAL_PROTOCOL_F(measured_z, 3); SERIAL_EOL; } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("<<< probe_pt"); #endif return measured_z; } #if ENABLED(DELTA) /** * All DELTA leveling in the Marlin uses NONLINEAR_BED_LEVELING */ static void extrapolate_one_point(int x, int y, int xdir, int ydir) { if (bed_level[x][y] != 0.0) { return; // Don't overwrite good values. } float a = 2 * bed_level[x + xdir][y] - bed_level[x + xdir * 2][y]; // Left to right. float b = 2 * bed_level[x][y + ydir] - bed_level[x][y + ydir * 2]; // Front to back. float c = 2 * bed_level[x + xdir][y + ydir] - bed_level[x + xdir * 2][y + ydir * 2]; // Diagonal. float median = c; // Median is robust (ignores outliers). if (a < b) { if (b < c) median = b; if (c < a) median = a; } else { // b <= a if (c < b) median = b; if (a < c) median = a; } bed_level[x][y] = median; } /** * Fill in the unprobed points (corners of circular print surface) * using linear extrapolation, away from the center. */ static void extrapolate_unprobed_bed_level() { int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; for (int y = 0; y <= half; y++) { for (int x = 0; x <= half; x++) { if (x + y < 3) continue; extrapolate_one_point(half - x, half - y, x > 1 ? +1 : 0, y > 1 ? +1 : 0); extrapolate_one_point(half + x, half - y, x > 1 ? -1 : 0, y > 1 ? +1 : 0); extrapolate_one_point(half - x, half + y, x > 1 ? +1 : 0, y > 1 ? -1 : 0); extrapolate_one_point(half + x, half + y, x > 1 ? -1 : 0, y > 1 ? -1 : 0); } } } /** * Print calibration results for plotting or manual frame adjustment. */ static void print_bed_level() { for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { SERIAL_PROTOCOL_F(bed_level[x][y], 2); SERIAL_PROTOCOLCHAR(' '); } SERIAL_EOL; } } /** * Reset calibration results to zero. */ void reset_bed_level() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("reset_bed_level"); #endif for (int y = 0; y < AUTO_BED_LEVELING_GRID_POINTS; y++) { for (int x = 0; x < AUTO_BED_LEVELING_GRID_POINTS; x++) { bed_level[x][y] = 0.0; } } } #endif // DELTA #if HAS_SERVO_ENDSTOPS && DISABLED(Z_PROBE_SLED) void raise_z_for_servo() { float zpos = current_position[Z_AXIS], z_dest = Z_RAISE_BEFORE_PROBING; /** * The zprobe_zoffset is negative any switch below the nozzle, so * multiply by Z_HOME_DIR (-1) to move enough away from bed for the probe */ z_dest += axis_homed[Z_AXIS] ? zprobe_zoffset * Z_HOME_DIR : zpos; if (zpos < z_dest) do_blocking_move_to_z(z_dest); // also updates current_position } #endif #endif // AUTO_BED_LEVELING_FEATURE #if ENABLED(Z_PROBE_SLED) || ENABLED(Z_SAFE_HOMING) || ENABLED(AUTO_BED_LEVELING_FEATURE) static void axis_unhomed_error() { LCD_MESSAGEPGM(MSG_YX_UNHOMED); SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_YX_UNHOMED); } #endif #if ENABLED(Z_PROBE_SLED) #ifndef SLED_DOCKING_OFFSET #define SLED_DOCKING_OFFSET 0 #endif /** * Method to dock/undock a sled designed by Charles Bell. * * dock[in] If true, move to MAX_X and engage the electromagnet * offset[in] The additional distance to move to adjust docking location */ static void dock_sled(bool dock, int offset = 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("dock_sled(", dock); SERIAL_ECHOLNPGM(")"); } #endif if (z_probe_is_active == dock) return; if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) { axis_unhomed_error(); return; } float oldXpos = current_position[X_AXIS]; // save x position if (dock) { #if Z_RAISE_AFTER_PROBING > 0 raise_z_after_probing(); // raise Z #endif // Dock sled a bit closer to ensure proper capturing do_blocking_move_to_x(X_MAX_POS + SLED_DOCKING_OFFSET + offset - 1); digitalWrite(SLED_PIN, LOW); // turn off magnet } else { float z_loc = current_position[Z_AXIS]; if (z_loc < Z_RAISE_BEFORE_PROBING + 5) z_loc = Z_RAISE_BEFORE_PROBING; do_blocking_move_to(X_MAX_POS + SLED_DOCKING_OFFSET + offset, current_position[Y_AXIS], z_loc); // this also updates current_position digitalWrite(SLED_PIN, HIGH); // turn on magnet } do_blocking_move_to_x(oldXpos); // return to position before docking z_probe_is_active = dock; } #endif // Z_PROBE_SLED /** * Home an individual axis */ #define HOMEAXIS(LETTER) homeaxis(LETTER##_AXIS) static void homeaxis(AxisEnum axis) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR(">>> homeaxis(", axis); SERIAL_ECHOLNPGM(")"); } #endif #define HOMEAXIS_DO(LETTER) \ ((LETTER##_MIN_PIN > -1 && LETTER##_HOME_DIR==-1) || (LETTER##_MAX_PIN > -1 && LETTER##_HOME_DIR==1)) if (axis == X_AXIS ? HOMEAXIS_DO(X) : axis == Y_AXIS ? HOMEAXIS_DO(Y) : axis == Z_AXIS ? HOMEAXIS_DO(Z) : 0) { int axis_home_dir = #if ENABLED(DUAL_X_CARRIAGE) (axis == X_AXIS) ? x_home_dir(active_extruder) : #endif home_dir(axis); // Set the axis position as setup for the move current_position[axis] = 0; sync_plan_position(); #if ENABLED(Z_PROBE_SLED) #define _Z_SERVO_TEST (axis != Z_AXIS) // deploy Z, servo.move XY #define _Z_PROBE_SUBTEST false // Z will never be invoked #define _Z_DEPLOY (dock_sled(false)) #define _Z_STOW (dock_sled(true)) #elif SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE) #define _Z_SERVO_TEST (axis != Z_AXIS) // servo.move XY #define _Z_PROBE_SUBTEST false // Z will never be invoked #define _Z_DEPLOY (deploy_z_probe()) #define _Z_STOW (stow_z_probe()) #elif HAS_SERVO_ENDSTOPS #define _Z_SERVO_TEST true // servo.move X, Y, Z #define _Z_PROBE_SUBTEST (axis == Z_AXIS) // Z is a probe #endif if (axis == Z_AXIS) { // If there's a Z probe that needs deployment... #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE) // ...and homing Z towards the bed? Deploy it. if (axis_home_dir < 0) _Z_DEPLOY; #endif } #if HAS_SERVO_ENDSTOPS // Engage an X or Y Servo endstop if enabled if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) { servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][0]); if (_Z_PROBE_SUBTEST) z_probe_is_active = true; } #endif // Set a flag for Z motor locking #if ENABLED(Z_DUAL_ENDSTOPS) if (axis == Z_AXIS) In_Homing_Process(true); #endif // Move towards the endstop until an endstop is triggered destination[axis] = 1.5 * max_length(axis) * axis_home_dir; feedrate = homing_feedrate[axis]; line_to_destination(); st_synchronize(); // Set the axis position as setup for the move current_position[axis] = 0; sync_plan_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)"); #endif enable_endstops(false); // Disable endstops while moving away // Move away from the endstop by the axis HOME_BUMP_MM destination[axis] = -home_bump_mm(axis) * axis_home_dir; line_to_destination(); st_synchronize(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)"); #endif enable_endstops(true); // Enable endstops for next homing move // Slow down the feedrate for the next move set_homing_bump_feedrate(axis); // Move slowly towards the endstop until triggered destination[axis] = 2 * home_bump_mm(axis) * axis_home_dir; line_to_destination(); st_synchronize(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> TRIGGER ENDSTOP", current_position); #endif #if ENABLED(Z_DUAL_ENDSTOPS) if (axis == Z_AXIS) { float adj = fabs(z_endstop_adj); bool lockZ1; if (axis_home_dir > 0) { adj = -adj; lockZ1 = (z_endstop_adj > 0); } else lockZ1 = (z_endstop_adj < 0); if (lockZ1) Lock_z_motor(true); else Lock_z2_motor(true); sync_plan_position(); // Move to the adjusted endstop height feedrate = homing_feedrate[axis]; destination[Z_AXIS] = adj; line_to_destination(); st_synchronize(); if (lockZ1) Lock_z_motor(false); else Lock_z2_motor(false); In_Homing_Process(false); } // Z_AXIS #endif #if ENABLED(DELTA) // retrace by the amount specified in endstop_adj if (endstop_adj[axis] * axis_home_dir < 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(false)"); #endif enable_endstops(false); // Disable endstops while moving away sync_plan_position(); destination[axis] = endstop_adj[axis]; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> endstop_adj = ", endstop_adj[axis]); DEBUG_POS("", destination); } #endif line_to_destination(); st_synchronize(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> enable_endstops(true)"); #endif enable_endstops(true); // Enable endstops for next homing move } #if ENABLED(DEBUG_LEVELING_FEATURE) else { if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> endstop_adj * axis_home_dir = ", endstop_adj[axis] * axis_home_dir); SERIAL_EOL; } } #endif #endif // Set the axis position to its home position (plus home offsets) set_axis_is_at_home(axis); sync_plan_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> AFTER set_axis_is_at_home", current_position); #endif destination[axis] = current_position[axis]; feedrate = 0.0; endstops_hit_on_purpose(); // clear endstop hit flags axis_known_position[axis] = true; axis_homed[axis] = true; // Put away the Z probe #if ENABLED(Z_PROBE_SLED) || SERVO_LEVELING || ENABLED(FIX_MOUNTED_PROBE) if (axis == Z_AXIS && axis_home_dir < 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_LEVELING > " STRINGIFY(_Z_STOW)); #endif _Z_STOW; } #endif // Retract Servo endstop if enabled #if HAS_SERVO_ENDSTOPS if (_Z_SERVO_TEST && servo_endstop_id[axis] >= 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("> SERVO_ENDSTOPS > Stow with servo.move()"); #endif servo[servo_endstop_id[axis]].move(servo_endstop_angle[axis][1]); if (_Z_PROBE_SUBTEST) z_probe_is_active = false; } #endif } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("<<< homeaxis(", axis); SERIAL_ECHOLNPGM(")"); } #endif } #if ENABLED(FWRETRACT) void retract(bool retracting, bool swapping = false) { if (retracting == retracted[active_extruder]) return; float oldFeedrate = feedrate; set_destination_to_current(); if (retracting) { feedrate = retract_feedrate * 60; current_position[E_AXIS] += (swapping ? retract_length_swap : retract_length) / volumetric_multiplier[active_extruder]; plan_set_e_position(current_position[E_AXIS]); prepare_move(); if (retract_zlift > 0.01) { current_position[Z_AXIS] -= retract_zlift; #if ENABLED(DELTA) sync_plan_position_delta(); #else sync_plan_position(); #endif prepare_move(); } } else { if (retract_zlift > 0.01) { current_position[Z_AXIS] += retract_zlift; #if ENABLED(DELTA) sync_plan_position_delta(); #else sync_plan_position(); #endif //prepare_move(); } feedrate = retract_recover_feedrate * 60; float move_e = swapping ? retract_length_swap + retract_recover_length_swap : retract_length + retract_recover_length; current_position[E_AXIS] -= move_e / volumetric_multiplier[active_extruder]; plan_set_e_position(current_position[E_AXIS]); prepare_move(); } feedrate = oldFeedrate; retracted[active_extruder] = retracting; } // retract() #endif // FWRETRACT /** * *************************************************************************** * ***************************** G-CODE HANDLING ***************************** * *************************************************************************** */ /** * Set XYZE destination and feedrate from the current GCode command * * - Set destination from included axis codes * - Set to current for missing axis codes * - Set the feedrate, if included */ void gcode_get_destination() { for (int i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) destination[i] = code_value() + (axis_relative_modes[i] || relative_mode ? current_position[i] : 0); else destination[i] = current_position[i]; } if (code_seen('F')) { float next_feedrate = code_value(); if (next_feedrate > 0.0) feedrate = next_feedrate; } } void unknown_command_error() { SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_UNKNOWN_COMMAND); SERIAL_ECHO(current_command); SERIAL_ECHOPGM("\"\n"); } #if ENABLED(HOST_KEEPALIVE_FEATURE) /** * Output a "busy" message at regular intervals * while the machine is not accepting commands. */ void host_keepalive() { millis_t ms = millis(); if (host_keepalive_interval && busy_state != NOT_BUSY) { if (PENDING(ms, next_busy_signal_ms)) return; switch (busy_state) { case IN_HANDLER: case IN_PROCESS: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_BUSY_PROCESSING); break; case PAUSED_FOR_USER: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_USER); break; case PAUSED_FOR_INPUT: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_BUSY_PAUSED_FOR_INPUT); break; default: break; } } next_busy_signal_ms = ms + host_keepalive_interval * 1000UL; } #endif //HOST_KEEPALIVE_FEATURE /** * G0, G1: Coordinated movement of X Y Z E axes */ inline void gcode_G0_G1() { if (IsRunning()) { gcode_get_destination(); // For X Y Z E F #if ENABLED(FWRETRACT) if (autoretract_enabled && !(code_seen('X') || code_seen('Y') || code_seen('Z')) && code_seen('E')) { float echange = destination[E_AXIS] - current_position[E_AXIS]; // Is this move an attempt to retract or recover? if ((echange < -MIN_RETRACT && !retracted[active_extruder]) || (echange > MIN_RETRACT && retracted[active_extruder])) { current_position[E_AXIS] = destination[E_AXIS]; // hide the slicer-generated retract/recover from calculations plan_set_e_position(current_position[E_AXIS]); // AND from the planner retract(!retracted[active_extruder]); return; } } #endif //FWRETRACT prepare_move(); } } /** * G2: Clockwise Arc * G3: Counterclockwise Arc */ inline void gcode_G2_G3(bool clockwise) { if (IsRunning()) { #if ENABLED(SF_ARC_FIX) bool relative_mode_backup = relative_mode; relative_mode = true; #endif gcode_get_destination(); #if ENABLED(SF_ARC_FIX) relative_mode = relative_mode_backup; #endif // Center of arc as offset from current_position float arc_offset[2] = { code_seen('I') ? code_value() : 0, code_seen('J') ? code_value() : 0 }; // Send an arc to the planner plan_arc(destination, arc_offset, clockwise); refresh_cmd_timeout(); } } /** * G4: Dwell S<seconds> or P<milliseconds> */ inline void gcode_G4() { millis_t codenum = 0; if (code_seen('P')) codenum = code_value_long(); // milliseconds to wait if (code_seen('S')) codenum = code_value() * 1000UL; // seconds to wait st_synchronize(); refresh_cmd_timeout(); codenum += previous_cmd_ms; // keep track of when we started waiting if (!lcd_hasstatus()) LCD_MESSAGEPGM(MSG_DWELL); while (PENDING(millis(), codenum)) idle(); } #if ENABLED(FWRETRACT) /** * G10 - Retract filament according to settings of M207 * G11 - Recover filament according to settings of M208 */ inline void gcode_G10_G11(bool doRetract=false) { #if EXTRUDERS > 1 if (doRetract) { retracted_swap[active_extruder] = (code_seen('S') && code_value_short() == 1); // checks for swap retract argument } #endif retract(doRetract #if EXTRUDERS > 1 , retracted_swap[active_extruder] #endif ); } #endif //FWRETRACT /** * G28: Home all axes according to settings * * Parameters * * None Home to all axes with no parameters. * With QUICK_HOME enabled XY will home together, then Z. * * Cartesian parameters * * X Home to the X endstop * Y Home to the Y endstop * Z Home to the Z endstop * */ inline void gcode_G28() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) SERIAL_ECHOLNPGM("gcode_G28 >>>"); #endif // Wait for planner moves to finish! st_synchronize(); // For auto bed leveling, clear the level matrix #if ENABLED(AUTO_BED_LEVELING_FEATURE) plan_bed_level_matrix.set_to_identity(); #if ENABLED(DELTA) reset_bed_level(); #endif #endif /** * For mesh bed leveling deactivate the mesh calculations, will be turned * on again when homing all axis */ #if ENABLED(MESH_BED_LEVELING) uint8_t mbl_was_active = mbl.active; mbl.active = 0; #endif setup_for_endstop_move(); /** * Directly after a reset this is all 0. Later we get a hint if we have * to raise z or not. */ set_destination_to_current(); feedrate = 0.0; #if ENABLED(DELTA) /** * A delta can only safely home all axis at the same time * all axis have to home at the same time */ // Pretend the current position is 0,0,0 for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = 0; sync_plan_position(); // Move all carriages up together until the first endstop is hit. for (int i = X_AXIS; i <= Z_AXIS; i++) destination[i] = 3 * (Z_MAX_LENGTH); feedrate = 1.732 * homing_feedrate[X_AXIS]; line_to_destination(); st_synchronize(); endstops_hit_on_purpose(); // clear endstop hit flags // Destination reached for (int i = X_AXIS; i <= Z_AXIS; i++) current_position[i] = destination[i]; // take care of back off and rehome now we are all at the top HOMEAXIS(X); HOMEAXIS(Y); HOMEAXIS(Z); sync_plan_position_delta(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("(DELTA)", current_position); #endif #else // NOT DELTA bool homeX = code_seen(axis_codes[X_AXIS]), homeY = code_seen(axis_codes[Y_AXIS]), homeZ = code_seen(axis_codes[Z_AXIS]); home_all_axis = (!homeX && !homeY && !homeZ) || (homeX && homeY && homeZ); #if Z_HOME_DIR > 0 // If homing away from BED do Z first if (home_all_axis || homeZ) { HOMEAXIS(Z); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> HOMEAXIS(Z)", current_position); #endif } #elif defined(MIN_Z_HEIGHT_FOR_HOMING) && MIN_Z_HEIGHT_FOR_HOMING > 0 // Raise Z before homing any other axes and z is not already high enough (never lower z) if (current_position[Z_AXIS] <= MIN_Z_HEIGHT_FOR_HOMING) { destination[Z_AXIS] = MIN_Z_HEIGHT_FOR_HOMING; feedrate = max_feedrate[Z_AXIS] * 60; // feedrate (mm/m) = max_feedrate (mm/s) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("Raise Z (before homing) to ", (MIN_Z_HEIGHT_FOR_HOMING)); SERIAL_EOL; DEBUG_POS("> (home_all_axis || homeZ)", current_position); DEBUG_POS("> (home_all_axis || homeZ)", destination); } #endif line_to_destination(); st_synchronize(); /** * Update the current Z position even if it currently not real from * Z-home otherwise each call to line_to_destination() will want to * move Z-axis by MIN_Z_HEIGHT_FOR_HOMING. */ current_position[Z_AXIS] = destination[Z_AXIS]; } #endif #if ENABLED(QUICK_HOME) if (home_all_axis || (homeX && homeY)) { // First diagonal move current_position[X_AXIS] = current_position[Y_AXIS] = 0; #if ENABLED(DUAL_X_CARRIAGE) int x_axis_home_dir = x_home_dir(active_extruder); extruder_duplication_enabled = false; #else int x_axis_home_dir = home_dir(X_AXIS); #endif sync_plan_position(); float mlx = max_length(X_AXIS), mly = max_length(Y_AXIS), mlratio = mlx > mly ? mly / mlx : mlx / mly; destination[X_AXIS] = 1.5 * mlx * x_axis_home_dir; destination[Y_AXIS] = 1.5 * mly * home_dir(Y_AXIS); feedrate = min(homing_feedrate[X_AXIS], homing_feedrate[Y_AXIS]) * sqrt(mlratio * mlratio + 1); line_to_destination(); st_synchronize(); set_axis_is_at_home(X_AXIS); set_axis_is_at_home(Y_AXIS); sync_plan_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 1", current_position); #endif destination[X_AXIS] = current_position[X_AXIS]; destination[Y_AXIS] = current_position[Y_AXIS]; line_to_destination(); feedrate = 0.0; st_synchronize(); endstops_hit_on_purpose(); // clear endstop hit flags current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; #if DISABLED(SCARA) current_position[Z_AXIS] = destination[Z_AXIS]; #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> QUICK_HOME 2", current_position); #endif } #endif // QUICK_HOME #if ENABLED(HOME_Y_BEFORE_X) // Home Y if (home_all_axis || homeY) HOMEAXIS(Y); #endif // Home X if (home_all_axis || homeX) { #if ENABLED(DUAL_X_CARRIAGE) int tmp_extruder = active_extruder; extruder_duplication_enabled = false; active_extruder = !active_extruder; HOMEAXIS(X); inactive_extruder_x_pos = current_position[X_AXIS]; active_extruder = tmp_extruder; HOMEAXIS(X); // reset state used by the different modes memcpy(raised_parked_position, current_position, sizeof(raised_parked_position)); delayed_move_time = 0; active_extruder_parked = true; #else HOMEAXIS(X); #endif #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> homeX", current_position); #endif } #if DISABLED(HOME_Y_BEFORE_X) // Home Y if (home_all_axis || homeY) { HOMEAXIS(Y); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> homeY", current_position); #endif } #endif // Home Z last if homing towards the bed #if Z_HOME_DIR < 0 if (home_all_axis || homeZ) { #if ENABLED(Z_SAFE_HOMING) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("> Z_SAFE_HOMING >>>"); } #endif if (home_all_axis) { /** * At this point we already have Z at MIN_Z_HEIGHT_FOR_HOMING height * No need to move Z any more as this height should already be safe * enough to reach Z_SAFE_HOMING XY positions. * Just make sure the planner is in sync. */ sync_plan_position(); /** * Set the Z probe (or just the nozzle) destination to the safe * homing point */ destination[X_AXIS] = round(Z_SAFE_HOMING_X_POINT - (X_PROBE_OFFSET_FROM_EXTRUDER)); destination[Y_AXIS] = round(Z_SAFE_HOMING_Y_POINT - (Y_PROBE_OFFSET_FROM_EXTRUDER)); destination[Z_AXIS] = current_position[Z_AXIS]; //z is already at the right height feedrate = XY_TRAVEL_SPEED; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", current_position); DEBUG_POS("> Z_SAFE_HOMING > home_all_axis", destination); } #endif // Move in the XY plane line_to_destination(); st_synchronize(); /** * Update the current positions for XY, Z is still at least at * MIN_Z_HEIGHT_FOR_HOMING height, no changes there. */ current_position[X_AXIS] = destination[X_AXIS]; current_position[Y_AXIS] = destination[Y_AXIS]; // Home the Z axis HOMEAXIS(Z); } else if (homeZ) { // Don't need to Home Z twice // Let's see if X and Y are homed if (axis_homed[X_AXIS] && axis_homed[Y_AXIS]) { /** * Make sure the Z probe is within the physical limits * NOTE: This doesn't necessarily ensure the Z probe is also * within the bed! */ float cpx = current_position[X_AXIS], cpy = current_position[Y_AXIS]; if ( cpx >= X_MIN_POS - (X_PROBE_OFFSET_FROM_EXTRUDER) && cpx <= X_MAX_POS - (X_PROBE_OFFSET_FROM_EXTRUDER) && cpy >= Y_MIN_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER) && cpy <= Y_MAX_POS - (Y_PROBE_OFFSET_FROM_EXTRUDER)) { // Home the Z axis HOMEAXIS(Z); } else { LCD_MESSAGEPGM(MSG_ZPROBE_OUT); SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ZPROBE_OUT); } } else { axis_unhomed_error(); } } // !home_all_axes && homeZ #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("<<< Z_SAFE_HOMING"); } #endif #else // !Z_SAFE_HOMING HOMEAXIS(Z); #endif // !Z_SAFE_HOMING #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> (home_all_axis || homeZ) > final", current_position); #endif } // home_all_axis || homeZ #endif // Z_HOME_DIR < 0 sync_plan_position(); #endif // else DELTA #if ENABLED(SCARA) sync_plan_position_delta(); #endif #if ENABLED(ENDSTOPS_ONLY_FOR_HOMING) enable_endstops(false); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("ENDSTOPS_ONLY_FOR_HOMING enable_endstops(false)"); } #endif #endif // For mesh leveling move back to Z=0 #if ENABLED(MESH_BED_LEVELING) if (mbl_was_active && home_all_axis) { current_position[Z_AXIS] = MESH_HOME_SEARCH_Z; sync_plan_position(); mbl.active = 1; current_position[Z_AXIS] = 0.0; set_destination_to_current(); feedrate = homing_feedrate[Z_AXIS]; line_to_destination(); st_synchronize(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("mbl_was_active", current_position); #endif } #endif feedrate = saved_feedrate; feedrate_multiplier = saved_feedrate_multiplier; refresh_cmd_timeout(); endstops_hit_on_purpose(); // clear endstop hit flags #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("<<< gcode_G28"); } #endif gcode_M114(); // Send end position to RepetierHost } #if ENABLED(MESH_BED_LEVELING) enum MeshLevelingState { MeshReport, MeshStart, MeshNext, MeshSet, MeshSetZOffset }; /** * G29: Mesh-based Z probe, probes a grid and produces a * mesh to compensate for variable bed height * * Parameters With MESH_BED_LEVELING: * * S0 Produce a mesh report * S1 Start probing mesh points * S2 Probe the next mesh point * S3 Xn Yn Zn.nn Manually modify a single point * S4 Zn.nn Set z offset. Positive away from bed, negative closer to bed. * * The S0 report the points as below * * +----> X-axis 1-n * | * | * v Y-axis 1-n * */ inline void gcode_G29() { static int probe_point = -1; MeshLevelingState state = code_seen('S') ? (MeshLevelingState)code_value_short() : MeshReport; if (state < 0 || state > 4) { SERIAL_PROTOCOLLNPGM("S out of range (0-4)."); return; } int ix, iy; float z; switch (state) { case MeshReport: if (mbl.active) { SERIAL_PROTOCOLPGM("Num X,Y: "); SERIAL_PROTOCOL(MESH_NUM_X_POINTS); SERIAL_PROTOCOLCHAR(','); SERIAL_PROTOCOL(MESH_NUM_Y_POINTS); SERIAL_PROTOCOLPGM("\nZ search height: "); SERIAL_PROTOCOL(MESH_HOME_SEARCH_Z); SERIAL_PROTOCOLPGM("\nZ offset: "); SERIAL_PROTOCOL_F(mbl.z_offset, 5); SERIAL_PROTOCOLLNPGM("\nMeasured points:"); for (int y = 0; y < MESH_NUM_Y_POINTS; y++) { for (int x = 0; x < MESH_NUM_X_POINTS; x++) { SERIAL_PROTOCOLPGM(" "); SERIAL_PROTOCOL_F(mbl.z_values[y][x], 5); } SERIAL_EOL; } } else SERIAL_PROTOCOLLNPGM("Mesh bed leveling not active."); break; case MeshStart: mbl.reset(); probe_point = 0; enqueue_and_echo_commands_P(PSTR("G28\nG29 S2")); break; case MeshNext: if (probe_point < 0) { SERIAL_PROTOCOLLNPGM("Start mesh probing with \"G29 S1\" first."); return; } if (probe_point == 0) { // Set Z to a positive value before recording the first Z. current_position[Z_AXIS] = MESH_HOME_SEARCH_Z + home_offset[Z_AXIS]; sync_plan_position(); } else { // For others, save the Z of the previous point, then raise Z again. ix = (probe_point - 1) % (MESH_NUM_X_POINTS); iy = (probe_point - 1) / (MESH_NUM_X_POINTS); if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag mbl.set_z(ix, iy, current_position[Z_AXIS]); current_position[Z_AXIS] = MESH_HOME_SEARCH_Z + home_offset[Z_AXIS]; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder); st_synchronize(); } // Is there another point to sample? Move there. if (probe_point < (MESH_NUM_X_POINTS) * (MESH_NUM_Y_POINTS)) { ix = probe_point % (MESH_NUM_X_POINTS); iy = probe_point / (MESH_NUM_X_POINTS); if (iy & 1) ix = (MESH_NUM_X_POINTS - 1) - ix; // zig-zag current_position[X_AXIS] = mbl.get_x(ix) + home_offset[X_AXIS]; current_position[Y_AXIS] = mbl.get_y(iy) + home_offset[Y_AXIS]; plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], homing_feedrate[X_AXIS] / 60, active_extruder); st_synchronize(); probe_point++; } else { // After recording the last point, activate the mbl and home SERIAL_PROTOCOLLNPGM("Mesh probing done."); probe_point = -1; mbl.active = 1; enqueue_and_echo_commands_P(PSTR("G28")); } break; case MeshSet: if (code_seen('X')) { ix = code_value_long() - 1; if (ix < 0 || ix >= MESH_NUM_X_POINTS) { SERIAL_PROTOCOLPGM("X out of range (1-" STRINGIFY(MESH_NUM_X_POINTS) ").\n"); return; } } else { SERIAL_PROTOCOLPGM("X not entered.\n"); return; } if (code_seen('Y')) { iy = code_value_long() - 1; if (iy < 0 || iy >= MESH_NUM_Y_POINTS) { SERIAL_PROTOCOLPGM("Y out of range (1-" STRINGIFY(MESH_NUM_Y_POINTS) ").\n"); return; } } else { SERIAL_PROTOCOLPGM("Y not entered.\n"); return; } if (code_seen('Z')) { z = code_value(); } else { SERIAL_PROTOCOLPGM("Z not entered.\n"); return; } mbl.z_values[iy][ix] = z; break; case MeshSetZOffset: if (code_seen('Z')) { z = code_value(); } else { SERIAL_PROTOCOLPGM("Z not entered.\n"); return; } mbl.z_offset = z; } // switch(state) } #elif ENABLED(AUTO_BED_LEVELING_FEATURE) void out_of_range_error(const char* p_edge) { SERIAL_PROTOCOLPGM("?Probe "); serialprintPGM(p_edge); SERIAL_PROTOCOLLNPGM(" position out of range."); } /** * G29: Detailed Z probe, probes the bed at 3 or more points. * Will fail if the printer has not been homed with G28. * * Enhanced G29 Auto Bed Leveling Probe Routine * * Parameters With AUTO_BED_LEVELING_GRID: * * P Set the size of the grid that will be probed (P x P points). * Not supported by non-linear delta printer bed leveling. * Example: "G29 P4" * * S Set the XY travel speed between probe points (in mm/min) * * D Dry-Run mode. Just evaluate the bed Topology - Don't apply * or clean the rotation Matrix. Useful to check the topology * after a first run of G29. * * V Set the verbose level (0-4). Example: "G29 V3" * * T Generate a Bed Topology Report. Example: "G29 P5 T" for a detailed report. * This is useful for manual bed leveling and finding flaws in the bed (to * assist with part placement). * Not supported by non-linear delta printer bed leveling. * * F Set the Front limit of the probing grid * B Set the Back limit of the probing grid * L Set the Left limit of the probing grid * R Set the Right limit of the probing grid * * Global Parameters: * * E/e By default G29 will engage the Z probe, test the bed, then disengage. * Include "E" to engage/disengage the Z probe for each sample. * There's no extra effect if you have a fixed Z probe. * Usage: "G29 E" or "G29 e" * */ inline void gcode_G29() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("gcode_G29 >>>"); DEBUG_POS("", current_position); } #endif // Don't allow auto-leveling without homing first if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS]) { axis_unhomed_error(); return; } int verbose_level = code_seen('V') ? code_value_short() : 1; if (verbose_level < 0 || verbose_level > 4) { SERIAL_ECHOLNPGM("?(V)erbose Level is implausible (0-4)."); return; } bool dryrun = code_seen('D'), deploy_probe_for_each_reading = code_seen('E'); #if ENABLED(AUTO_BED_LEVELING_GRID) #if DISABLED(DELTA) bool do_topography_map = verbose_level > 2 || code_seen('T'); #endif if (verbose_level > 0) { SERIAL_PROTOCOLPGM("G29 Auto Bed Leveling\n"); if (dryrun) SERIAL_ECHOLNPGM("Running in DRY-RUN mode"); } int auto_bed_leveling_grid_points = AUTO_BED_LEVELING_GRID_POINTS; #if DISABLED(DELTA) if (code_seen('P')) auto_bed_leveling_grid_points = code_value_short(); if (auto_bed_leveling_grid_points < 2) { SERIAL_PROTOCOLPGM("?Number of probed (P)oints is implausible (2 minimum).\n"); return; } #endif xy_travel_speed = code_seen('S') ? code_value_short() : XY_TRAVEL_SPEED; int left_probe_bed_position = code_seen('L') ? code_value_short() : LEFT_PROBE_BED_POSITION, right_probe_bed_position = code_seen('R') ? code_value_short() : RIGHT_PROBE_BED_POSITION, front_probe_bed_position = code_seen('F') ? code_value_short() : FRONT_PROBE_BED_POSITION, back_probe_bed_position = code_seen('B') ? code_value_short() : BACK_PROBE_BED_POSITION; bool left_out_l = left_probe_bed_position < MIN_PROBE_X, left_out = left_out_l || left_probe_bed_position > right_probe_bed_position - (MIN_PROBE_EDGE), right_out_r = right_probe_bed_position > MAX_PROBE_X, right_out = right_out_r || right_probe_bed_position < left_probe_bed_position + MIN_PROBE_EDGE, front_out_f = front_probe_bed_position < MIN_PROBE_Y, front_out = front_out_f || front_probe_bed_position > back_probe_bed_position - (MIN_PROBE_EDGE), back_out_b = back_probe_bed_position > MAX_PROBE_Y, back_out = back_out_b || back_probe_bed_position < front_probe_bed_position + MIN_PROBE_EDGE; if (left_out || right_out || front_out || back_out) { if (left_out) { out_of_range_error(PSTR("(L)eft")); left_probe_bed_position = left_out_l ? MIN_PROBE_X : right_probe_bed_position - (MIN_PROBE_EDGE); } if (right_out) { out_of_range_error(PSTR("(R)ight")); right_probe_bed_position = right_out_r ? MAX_PROBE_X : left_probe_bed_position + MIN_PROBE_EDGE; } if (front_out) { out_of_range_error(PSTR("(F)ront")); front_probe_bed_position = front_out_f ? MIN_PROBE_Y : back_probe_bed_position - (MIN_PROBE_EDGE); } if (back_out) { out_of_range_error(PSTR("(B)ack")); back_probe_bed_position = back_out_b ? MAX_PROBE_Y : front_probe_bed_position + MIN_PROBE_EDGE; } return; } #endif // AUTO_BED_LEVELING_GRID if (!dryrun) { // make sure the bed_level_rotation_matrix is identity or the planner will get it wrong plan_bed_level_matrix.set_to_identity(); #if ENABLED(DELTA) reset_bed_level(); #else //!DELTA #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { vector_3 corrected_position = plan_get_position(); DEBUG_POS("BEFORE matrix.set_to_identity", corrected_position); DEBUG_POS("BEFORE matrix.set_to_identity", current_position); } #endif //vector_3 corrected_position = plan_get_position(); //corrected_position.debug("position before G29"); vector_3 uncorrected_position = plan_get_position(); //uncorrected_position.debug("position during G29"); current_position[X_AXIS] = uncorrected_position.x; current_position[Y_AXIS] = uncorrected_position.y; current_position[Z_AXIS] = uncorrected_position.z; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("AFTER matrix.set_to_identity", uncorrected_position); #endif sync_plan_position(); #endif // !DELTA } #if ENABLED(Z_PROBE_SLED) dock_sled(false); // engage (un-dock) the Z probe #elif ENABLED(Z_PROBE_ALLEN_KEY) || (ENABLED(DELTA) && SERVO_LEVELING) deploy_z_probe(); #endif st_synchronize(); setup_for_endstop_move(); feedrate = homing_feedrate[Z_AXIS]; #if ENABLED(AUTO_BED_LEVELING_GRID) // probe at the points of a lattice grid const int xGridSpacing = (right_probe_bed_position - left_probe_bed_position) / (auto_bed_leveling_grid_points - 1), yGridSpacing = (back_probe_bed_position - front_probe_bed_position) / (auto_bed_leveling_grid_points - 1); #if ENABLED(DELTA) delta_grid_spacing[0] = xGridSpacing; delta_grid_spacing[1] = yGridSpacing; float zoffset = zprobe_zoffset; if (code_seen(axis_codes[Z_AXIS])) zoffset += code_value(); #else // !DELTA /** * solve the plane equation ax + by + d = z * A is the matrix with rows [x y 1] for all the probed points * B is the vector of the Z positions * the normal vector to the plane is formed by the coefficients of the * plane equation in the standard form, which is Vx*x+Vy*y+Vz*z+d = 0 * so Vx = -a Vy = -b Vz = 1 (we want the vector facing towards positive Z */ int abl2 = auto_bed_leveling_grid_points * auto_bed_leveling_grid_points; double eqnAMatrix[abl2 * 3], // "A" matrix of the linear system of equations eqnBVector[abl2], // "B" vector of Z points mean = 0.0; int8_t indexIntoAB[auto_bed_leveling_grid_points][auto_bed_leveling_grid_points]; #endif // !DELTA int probePointCounter = 0; bool zig = (auto_bed_leveling_grid_points & 1) ? true : false; //always end at [RIGHT_PROBE_BED_POSITION, BACK_PROBE_BED_POSITION] for (int yCount = 0; yCount < auto_bed_leveling_grid_points; yCount++) { double yProbe = front_probe_bed_position + yGridSpacing * yCount; int xStart, xStop, xInc; if (zig) { xStart = 0; xStop = auto_bed_leveling_grid_points; xInc = 1; } else { xStart = auto_bed_leveling_grid_points - 1; xStop = -1; xInc = -1; } zig = !zig; for (int xCount = xStart; xCount != xStop; xCount += xInc) { double xProbe = left_probe_bed_position + xGridSpacing * xCount; // raise extruder float measured_z, z_before = probePointCounter ? Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS] : Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]; if (probePointCounter) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("z_before = (between) ", (Z_RAISE_BETWEEN_PROBINGS + current_position[Z_AXIS])); SERIAL_EOL; } #endif } else { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("z_before = (before) ", Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS]); SERIAL_EOL; } #endif } #if ENABLED(DELTA) // Avoid probing the corners (outside the round or hexagon print surface) on a delta printer. float distance_from_center = sqrt(xProbe * xProbe + yProbe * yProbe); if (distance_from_center > DELTA_PROBEABLE_RADIUS) continue; #endif //DELTA ProbeAction act; if (deploy_probe_for_each_reading) // G29 E - Stow between probes act = ProbeDeployAndStow; else if (yCount == 0 && xCount == xStart) act = ProbeDeploy; else if (yCount == auto_bed_leveling_grid_points - 1 && xCount == xStop - xInc) act = ProbeStow; else act = ProbeStay; measured_z = probe_pt(xProbe, yProbe, z_before, act, verbose_level); #if DISABLED(DELTA) mean += measured_z; eqnBVector[probePointCounter] = measured_z; eqnAMatrix[probePointCounter + 0 * abl2] = xProbe; eqnAMatrix[probePointCounter + 1 * abl2] = yProbe; eqnAMatrix[probePointCounter + 2 * abl2] = 1; indexIntoAB[xCount][yCount] = probePointCounter; #else bed_level[xCount][yCount] = measured_z + zoffset; #endif probePointCounter++; idle(); } //xProbe } //yProbe #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> probing complete", current_position); #endif clean_up_after_endstop_move(); #if ENABLED(DELTA) if (!dryrun) extrapolate_unprobed_bed_level(); print_bed_level(); #else // !DELTA // solve lsq problem double plane_equation_coefficients[3]; qr_solve(plane_equation_coefficients, abl2, 3, eqnAMatrix, eqnBVector); mean /= abl2; if (verbose_level) { SERIAL_PROTOCOLPGM("Eqn coefficients: a: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[0], 8); SERIAL_PROTOCOLPGM(" b: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[1], 8); SERIAL_PROTOCOLPGM(" d: "); SERIAL_PROTOCOL_F(plane_equation_coefficients[2], 8); SERIAL_EOL; if (verbose_level > 2) { SERIAL_PROTOCOLPGM("Mean of sampled points: "); SERIAL_PROTOCOL_F(mean, 8); SERIAL_EOL; } } if (!dryrun) set_bed_level_equation_lsq(plane_equation_coefficients); // Show the Topography map if enabled if (do_topography_map) { SERIAL_PROTOCOLPGM(" \nBed Height Topography: \n"); SERIAL_PROTOCOLPGM(" +--- BACK --+\n"); SERIAL_PROTOCOLPGM(" | |\n"); SERIAL_PROTOCOLPGM(" L | (+) | R\n"); SERIAL_PROTOCOLPGM(" E | | I\n"); SERIAL_PROTOCOLPGM(" F | (-) N (+) | G\n"); SERIAL_PROTOCOLPGM(" T | | H\n"); SERIAL_PROTOCOLPGM(" | (-) | T\n"); SERIAL_PROTOCOLPGM(" | |\n"); SERIAL_PROTOCOLPGM(" O-- FRONT --+\n"); SERIAL_PROTOCOLPGM(" (0,0)\n"); float min_diff = 999; for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) { for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) { int ind = indexIntoAB[xx][yy]; float diff = eqnBVector[ind] - mean; float x_tmp = eqnAMatrix[ind + 0 * abl2], y_tmp = eqnAMatrix[ind + 1 * abl2], z_tmp = 0; apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); NOMORE(min_diff, eqnBVector[ind] - z_tmp); if (diff >= 0.0) SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment else SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL_F(diff, 5); } // xx SERIAL_EOL; } // yy SERIAL_EOL; if (verbose_level > 3) { SERIAL_PROTOCOLPGM(" \nCorrected Bed Height vs. Bed Topology: \n"); for (int yy = auto_bed_leveling_grid_points - 1; yy >= 0; yy--) { for (int xx = 0; xx < auto_bed_leveling_grid_points; xx++) { int ind = indexIntoAB[xx][yy]; float x_tmp = eqnAMatrix[ind + 0 * abl2], y_tmp = eqnAMatrix[ind + 1 * abl2], z_tmp = 0; apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); float diff = eqnBVector[ind] - z_tmp - min_diff; if (diff >= 0.0) SERIAL_PROTOCOLPGM(" +"); // Include + for column alignment else SERIAL_PROTOCOLCHAR(' '); SERIAL_PROTOCOL_F(diff, 5); } // xx SERIAL_EOL; } // yy SERIAL_EOL; } } //do_topography_map #endif //!DELTA #else // !AUTO_BED_LEVELING_GRID #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("> 3-point Leveling"); } #endif // Actions for each probe ProbeAction p1, p2, p3; if (deploy_probe_for_each_reading) p1 = p2 = p3 = ProbeDeployAndStow; else p1 = ProbeDeploy, p2 = ProbeStay, p3 = ProbeStow; // Probe at 3 arbitrary points float z_at_pt_1 = probe_pt( ABL_PROBE_PT_1_X + home_offset[X_AXIS], ABL_PROBE_PT_1_Y + home_offset[Y_AXIS], Z_RAISE_BEFORE_PROBING + home_offset[Z_AXIS], p1, verbose_level), z_at_pt_2 = probe_pt( ABL_PROBE_PT_2_X + home_offset[X_AXIS], ABL_PROBE_PT_2_Y + home_offset[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p2, verbose_level), z_at_pt_3 = probe_pt( ABL_PROBE_PT_3_X + home_offset[X_AXIS], ABL_PROBE_PT_3_Y + home_offset[Y_AXIS], current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS, p3, verbose_level); clean_up_after_endstop_move(); if (!dryrun) set_bed_level_equation_3pts(z_at_pt_1, z_at_pt_2, z_at_pt_3); #endif // !AUTO_BED_LEVELING_GRID #if ENABLED(DELTA) // Allen Key Probe for Delta #if ENABLED(Z_PROBE_ALLEN_KEY) || SERVO_LEVELING stow_z_probe(); #elif Z_RAISE_AFTER_PROBING > 0 raise_z_after_probing(); // ??? #endif #else // !DELTA if (verbose_level > 0) plan_bed_level_matrix.debug(" \n\nBed Level Correction Matrix:"); if (!dryrun) { /** * Correct the Z height difference from Z probe position and nozzle tip position. * The Z height on homing is measured by Z probe, but the Z probe is quite far * from the nozzle. When the bed is uneven, this height must be corrected. */ float x_tmp = current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER, y_tmp = current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER, z_tmp = current_position[Z_AXIS], real_z = st_get_axis_position_mm(Z_AXIS); //get the real Z (since plan_get_position is now correcting the plane) #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > z_tmp = ", z_tmp); SERIAL_EOL; SERIAL_ECHOPAIR("> BEFORE apply_rotation_xyz > real_z = ", real_z); SERIAL_EOL; } #endif // Apply the correction sending the Z probe offset apply_rotation_xyz(plan_bed_level_matrix, x_tmp, y_tmp, z_tmp); /* * Get the current Z position and send it to the planner. * * >> (z_tmp - real_z) : The rotated current Z minus the uncorrected Z * (most recent plan_set_position/sync_plan_position) * * >> zprobe_zoffset : Z distance from nozzle to Z probe * (set by default, M851, EEPROM, or Menu) * * >> Z_RAISE_AFTER_PROBING : The distance the Z probe will have lifted * after the last probe * * >> Should home_offset[Z_AXIS] be included? * * * Discussion: home_offset[Z_AXIS] was applied in G28 to set the * starting Z. If Z is not tweaked in G29 -and- the Z probe in G29 is * not actually "homing" Z... then perhaps it should not be included * here. The purpose of home_offset[] is to adjust for inaccurate * endstops, not for reasonably accurate probes. If it were added * here, it could be seen as a compensating factor for the Z probe. */ #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> AFTER apply_rotation_xyz > z_tmp = ", z_tmp); SERIAL_EOL; } #endif current_position[Z_AXIS] = -zprobe_zoffset + (z_tmp - real_z) #if HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY) || ENABLED(Z_PROBE_SLED) + Z_RAISE_AFTER_PROBING #endif ; // current_position[Z_AXIS] += home_offset[Z_AXIS]; // The Z probe determines Z=0, not "Z home" sync_plan_position(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) DEBUG_POS("> corrected Z in G29", current_position); #endif } // Sled assembly for Cartesian bots #if ENABLED(Z_PROBE_SLED) dock_sled(true); // dock the sled #elif Z_RAISE_AFTER_PROBING > 0 // Raise Z axis for non-delta and non servo based probes #if !defined(HAS_SERVO_ENDSTOPS) && DISABLED(Z_PROBE_ALLEN_KEY) && DISABLED(Z_PROBE_SLED) raise_z_after_probing(); #endif #endif #endif // !DELTA #ifdef Z_PROBE_END_SCRIPT #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHO("Z Probe End Script: "); SERIAL_ECHOLNPGM(Z_PROBE_END_SCRIPT); } #endif enqueue_and_echo_commands_P(PSTR(Z_PROBE_END_SCRIPT)); #if ENABLED(HAS_Z_MIN_PROBE) z_probe_is_active = false; #endif st_synchronize(); #endif KEEPALIVE_STATE(IN_HANDLER); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("<<< gcode_G29"); } #endif gcode_M114(); // Send end position to RepetierHost } #if DISABLED(Z_PROBE_SLED) // could be avoided /** * G30: Do a single Z probe at the current XY */ inline void gcode_G30() { #if HAS_SERVO_ENDSTOPS raise_z_for_servo(); #endif deploy_z_probe(); // Engage Z Servo endstop if available. Z_PROBE_SLED is missed here. st_synchronize(); // TODO: clear the leveling matrix or the planner will be set incorrectly setup_for_endstop_move(); // Too late. Must be done before deploying. feedrate = homing_feedrate[Z_AXIS]; run_z_probe(); SERIAL_PROTOCOLPGM("Bed X: "); SERIAL_PROTOCOL(current_position[X_AXIS] + X_PROBE_OFFSET_FROM_EXTRUDER + 0.0001); SERIAL_PROTOCOLPGM(" Y: "); SERIAL_PROTOCOL(current_position[Y_AXIS] + Y_PROBE_OFFSET_FROM_EXTRUDER + 0.0001); SERIAL_PROTOCOLPGM(" Z: "); SERIAL_PROTOCOL(current_position[Z_AXIS] + 0.0001); SERIAL_EOL; clean_up_after_endstop_move(); // Too early. must be done after the stowing. #if HAS_SERVO_ENDSTOPS raise_z_for_servo(); #endif stow_z_probe(false); // Retract Z Servo endstop if available. Z_PROBE_SLED is missed here. gcode_M114(); // Send end position to RepetierHost } #endif //!Z_PROBE_SLED #endif //AUTO_BED_LEVELING_FEATURE /** * G92: Set current position to given X Y Z E */ inline void gcode_G92() { if (!code_seen(axis_codes[E_AXIS])) st_synchronize(); bool didXYZ = false; for (int i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) { float v = current_position[i] = code_value(); if (i == E_AXIS) plan_set_e_position(v); else didXYZ = true; } } if (didXYZ) { #if ENABLED(DELTA) || ENABLED(SCARA) sync_plan_position_delta(); #else sync_plan_position(); #endif } } #if ENABLED(ULTIPANEL) /** * M0: // M0 - Unconditional stop - Wait for user button press on LCD * M1: // M1 - Conditional stop - Wait for user button press on LCD */ inline void gcode_M0_M1() { char* args = current_command_args; uint8_t test_value = 12; SERIAL_ECHOPAIR("TEST", test_value); millis_t codenum = 0; bool hasP = false, hasS = false; if (code_seen('P')) { codenum = code_value_short(); // milliseconds to wait hasP = codenum > 0; } if (code_seen('S')) { codenum = code_value() * 1000UL; // seconds to wait hasS = codenum > 0; } if (!hasP && !hasS && *args != '\0') lcd_setstatus(args, true); else { LCD_MESSAGEPGM(MSG_USERWAIT); #if ENABLED(LCD_PROGRESS_BAR) && PROGRESS_MSG_EXPIRE > 0 dontExpireStatus(); #endif } lcd_ignore_click(); st_synchronize(); refresh_cmd_timeout(); if (codenum > 0) { codenum += previous_cmd_ms; // wait until this time for a click KEEPALIVE_STATE(PAUSED_FOR_USER); while (PENDING(millis(), codenum) && !lcd_clicked()) idle(); KEEPALIVE_STATE(IN_HANDLER); lcd_ignore_click(false); } else { if (!lcd_detected()) return; KEEPALIVE_STATE(PAUSED_FOR_USER); while (!lcd_clicked()) idle(); KEEPALIVE_STATE(IN_HANDLER); } if (IS_SD_PRINTING) LCD_MESSAGEPGM(MSG_RESUMING); else LCD_MESSAGEPGM(WELCOME_MSG); } #endif // ULTIPANEL /** * M17: Enable power on all stepper motors */ inline void gcode_M17() { LCD_MESSAGEPGM(MSG_NO_MOVE); enable_all_steppers(); } #if ENABLED(SDSUPPORT) /** * M20: List SD card to serial output */ inline void gcode_M20() { SERIAL_PROTOCOLLNPGM(MSG_BEGIN_FILE_LIST); card.ls(); SERIAL_PROTOCOLLNPGM(MSG_END_FILE_LIST); } /** * M21: Init SD Card */ inline void gcode_M21() { card.initsd(); } /** * M22: Release SD Card */ inline void gcode_M22() { card.release(); } /** * M23: Open a file */ inline void gcode_M23() { card.openFile(current_command_args, true); } /** * M24: Start SD Print */ inline void gcode_M24() { card.startFileprint(); print_job_timer.start(); } /** * M25: Pause SD Print */ inline void gcode_M25() { card.pauseSDPrint(); } /** * M26: Set SD Card file index */ inline void gcode_M26() { if (card.cardOK && code_seen('S')) card.setIndex(code_value_short()); } /** * M27: Get SD Card status */ inline void gcode_M27() { card.getStatus(); } /** * M28: Start SD Write */ inline void gcode_M28() { card.openFile(current_command_args, false); } /** * M29: Stop SD Write * Processed in write to file routine above */ inline void gcode_M29() { // card.saving = false; } /** * M30 <filename>: Delete SD Card file */ inline void gcode_M30() { if (card.cardOK) { card.closefile(); card.removeFile(current_command_args); } } #endif //SDSUPPORT /** * M31: Get the time since the start of SD Print (or last M109) */ inline void gcode_M31() { millis_t t = print_job_timer.duration(); int min = t / 60, sec = t % 60; char time[30]; sprintf_P(time, PSTR("%i min, %i sec"), min, sec); SERIAL_ECHO_START; SERIAL_ECHOLN(time); lcd_setstatus(time); autotempShutdown(); } #if ENABLED(SDSUPPORT) /** * M32: Select file and start SD Print */ inline void gcode_M32() { if (card.sdprinting) st_synchronize(); char* namestartpos = strchr(current_command_args, '!'); // Find ! to indicate filename string start. if (!namestartpos) namestartpos = current_command_args; // Default name position, 4 letters after the M else namestartpos++; //to skip the '!' bool call_procedure = code_seen('P') && (seen_pointer < namestartpos); if (card.cardOK) { card.openFile(namestartpos, true, call_procedure); if (code_seen('S') && seen_pointer < namestartpos) // "S" (must occur _before_ the filename!) card.setIndex(code_value_short()); card.startFileprint(); // Procedure calls count as normal print time. if (!call_procedure) print_job_timer.start(); } } #if ENABLED(LONG_FILENAME_HOST_SUPPORT) /** * M33: Get the long full path of a file or folder * * Parameters: * <dospath> Case-insensitive DOS-style path to a file or folder * * Example: * M33 miscel~1/armchair/armcha~1.gco * * Output: * /Miscellaneous/Armchair/Armchair.gcode */ inline void gcode_M33() { card.printLongPath(current_command_args); } #endif /** * M928: Start SD Write */ inline void gcode_M928() { card.openLogFile(current_command_args); } #endif // SDSUPPORT /** * M42: Change pin status via GCode * * P<pin> Pin number (LED if omitted) * S<byte> Pin status from 0 - 255 */ inline void gcode_M42() { if (code_seen('S')) { int pin_status = code_value_short(); if (pin_status < 0 || pin_status > 255) return; int pin_number = code_seen('P') ? code_value_short() : LED_PIN; if (pin_number < 0) return; for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) if (pin_number == sensitive_pins[i]) return; pinMode(pin_number, OUTPUT); digitalWrite(pin_number, pin_status); analogWrite(pin_number, pin_status); #if FAN_COUNT > 0 switch (pin_number) { #if HAS_FAN0 case FAN_PIN: fanSpeeds[0] = pin_status; break; #endif #if HAS_FAN1 case FAN1_PIN: fanSpeeds[1] = pin_status; break; #endif #if HAS_FAN2 case FAN2_PIN: fanSpeeds[2] = pin_status; break; #endif } #endif } // code_seen('S') } #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) /** * This is redundant since the SanityCheck.h already checks for a valid * Z_MIN_PROBE_PIN, but here for clarity. */ #if ENABLED(Z_MIN_PROBE_ENDSTOP) #if !HAS_Z_PROBE #error You must define Z_MIN_PROBE_PIN to enable Z probe repeatability calculation. #endif #elif !HAS_Z_MIN #error You must define Z_MIN_PIN to enable Z probe repeatability calculation. #endif /** * M48: Z probe repeatability measurement function. * * Usage: * M48 <P#> <X#> <Y#> <V#> <E> <L#> * P = Number of sampled points (4-50, default 10) * X = Sample X position * Y = Sample Y position * V = Verbose level (0-4, default=1) * E = Engage Z probe for each reading * L = Number of legs of movement before probe * S = Schizoid (Or Star if you prefer) * * This function assumes the bed has been homed. Specifically, that a G28 command * as been issued prior to invoking the M48 Z probe repeatability measurement function. * Any information generated by a prior G29 Bed leveling command will be lost and need to be * regenerated. */ inline void gcode_M48() { if (!axis_homed[X_AXIS] || !axis_homed[Y_AXIS] || !axis_homed[Z_AXIS]) { axis_unhomed_error(); return; } double sum = 0.0, mean = 0.0, sigma = 0.0, sample_set[50]; int8_t verbose_level = 1, n_samples = 10, n_legs = 0, schizoid_flag = 0; if (code_seen('V')) { verbose_level = code_value_short(); if (verbose_level < 0 || verbose_level > 4) { SERIAL_PROTOCOLPGM("?Verbose Level not plausible (0-4).\n"); return; } } if (verbose_level > 0) SERIAL_PROTOCOLPGM("M48 Z-Probe Repeatability test\n"); if (code_seen('P')) { n_samples = code_value_short(); if (n_samples < 4 || n_samples > 50) { SERIAL_PROTOCOLPGM("?Sample size not plausible (4-50).\n"); return; } } float X_current = current_position[X_AXIS], Y_current = current_position[Y_AXIS], Z_current = current_position[Z_AXIS], X_probe_location = X_current + X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location = Y_current + Y_PROBE_OFFSET_FROM_EXTRUDER, Z_start_location = Z_current + Z_RAISE_BEFORE_PROBING; bool deploy_probe_for_each_reading = code_seen('E'); if (code_seen('X')) { X_probe_location = code_value(); #if DISABLED(DELTA) if (X_probe_location < MIN_PROBE_X || X_probe_location > MAX_PROBE_X) { out_of_range_error(PSTR("X")); return; } #endif } if (code_seen('Y')) { Y_probe_location = code_value(); #if DISABLED(DELTA) if (Y_probe_location < MIN_PROBE_Y || Y_probe_location > MAX_PROBE_Y) { out_of_range_error(PSTR("Y")); return; } #endif } #if ENABLED(DELTA) if (sqrt(X_probe_location * X_probe_location + Y_probe_location * Y_probe_location) > DELTA_PROBEABLE_RADIUS) { SERIAL_PROTOCOLPGM("? (X,Y) location outside of probeable radius.\n"); return; } #endif bool seen_L = code_seen('L'); if (seen_L) { n_legs = code_value_short(); if (n_legs < 0 || n_legs > 15) { SERIAL_PROTOCOLPGM("?Number of legs in movement not plausible (0-15).\n"); return; } if (n_legs == 1) n_legs = 2; } if (code_seen('S')) { schizoid_flag++; if (!seen_L) n_legs = 7; } /** * Now get everything to the specified probe point So we can safely do a * probe to get us close to the bed. If the Z-Axis is far from the bed, * we don't want to use that as a starting point for each probe. */ if (verbose_level > 2) SERIAL_PROTOCOLPGM("Positioning the probe...\n"); #if ENABLED(DELTA) // we don't do bed level correction in M48 because we want the raw data when we probe reset_bed_level(); #else // we don't do bed level correction in M48 because we want the raw data when we probe plan_bed_level_matrix.set_to_identity(); #endif if (Z_start_location < Z_RAISE_BEFORE_PROBING * 2.0) do_blocking_move_to_z(Z_start_location); do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER); /** * OK, do the initial probe to get us close to the bed. * Then retrace the right amount and use that in subsequent probes */ setup_for_endstop_move(); probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, deploy_probe_for_each_reading ? ProbeDeployAndStow : ProbeDeploy, verbose_level); raise_z_after_probing(); for (uint8_t n = 0; n < n_samples; n++) { randomSeed(millis()); delay(500); if (n_legs) { float radius, angle = random(0.0, 360.0); int dir = (random(0, 10) > 5.0) ? -1 : 1; // clockwise or counter clockwise radius = random( #if ENABLED(DELTA) DELTA_PROBEABLE_RADIUS / 8, DELTA_PROBEABLE_RADIUS / 3 #else 5, X_MAX_LENGTH / 8 #endif ); if (verbose_level > 3) { SERIAL_ECHOPAIR("Starting radius: ", radius); SERIAL_ECHOPAIR(" angle: ", angle); delay(100); if (dir > 0) SERIAL_ECHO(" Direction: Counter Clockwise \n"); else SERIAL_ECHO(" Direction: Clockwise \n"); delay(100); } for (uint8_t l = 0; l < n_legs - 1; l++) { double delta_angle; if (schizoid_flag) // The points of a 5 point star are 72 degrees apart. We need to // skip a point and go to the next one on the star. delta_angle = dir * 2.0 * 72.0; else // If we do this line, we are just trying to move further // around the circle. delta_angle = dir * (float) random(25, 45); angle += delta_angle; while (angle > 360.0) // We probably do not need to keep the angle between 0 and 2*PI, but the angle -= 360.0; // Arduino documentation says the trig functions should not be given values while (angle < 0.0) // outside of this range. It looks like they behave correctly with angle += 360.0; // numbers outside of the range, but just to be safe we clamp them. X_current = X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER + cos(RADIANS(angle)) * radius; Y_current = Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER + sin(RADIANS(angle)) * radius; #if DISABLED(DELTA) X_current = constrain(X_current, X_MIN_POS, X_MAX_POS); Y_current = constrain(Y_current, Y_MIN_POS, Y_MAX_POS); #else // If we have gone out too far, we can do a simple fix and scale the numbers // back in closer to the origin. while (sqrt(X_current * X_current + Y_current * Y_current) > DELTA_PROBEABLE_RADIUS) { X_current /= 1.25; Y_current /= 1.25; if (verbose_level > 3) { SERIAL_ECHOPAIR("Pulling point towards center:", X_current); SERIAL_ECHOPAIR(", ", Y_current); SERIAL_EOL; delay(50); } } #endif if (verbose_level > 3) { SERIAL_PROTOCOL("Going to:"); SERIAL_ECHOPAIR("x: ", X_current); SERIAL_ECHOPAIR("y: ", Y_current); SERIAL_ECHOPAIR(" z: ", current_position[Z_AXIS]); SERIAL_EOL; delay(55); } do_blocking_move_to_xy(X_current, Y_current); } // n_legs loop } // n_legs /** * We don't really have to do this move, but if we don't we can see a * funny shift in the Z Height because the user might not have the * Z_RAISE_BEFORE_PROBING height identical to the Z_RAISE_BETWEEN_PROBING * height. This gets us back to the probe location at the same height that * we have been running around the circle at. */ do_blocking_move_to_xy(X_probe_location - X_PROBE_OFFSET_FROM_EXTRUDER, Y_probe_location - Y_PROBE_OFFSET_FROM_EXTRUDER); if (deploy_probe_for_each_reading) sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeDeployAndStow, verbose_level); else { if (n == n_samples - 1) sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStow, verbose_level); else sample_set[n] = probe_pt(X_probe_location, Y_probe_location, Z_RAISE_BEFORE_PROBING, ProbeStay, verbose_level); } /** * Get the current mean for the data points we have so far */ sum = 0.0; for (uint8_t j = 0; j <= n; j++) sum += sample_set[j]; mean = sum / (n + 1); /** * Now, use that mean to calculate the standard deviation for the * data points we have so far */ sum = 0.0; for (uint8_t j = 0; j <= n; j++) { float ss = sample_set[j] - mean; sum += ss * ss; } sigma = sqrt(sum / (n + 1)); if (verbose_level > 1) { SERIAL_PROTOCOL(n + 1); SERIAL_PROTOCOLPGM(" of "); SERIAL_PROTOCOL((int)n_samples); SERIAL_PROTOCOLPGM(" z: "); SERIAL_PROTOCOL_F(current_position[Z_AXIS], 6); delay(50); if (verbose_level > 2) { SERIAL_PROTOCOLPGM(" mean: "); SERIAL_PROTOCOL_F(mean, 6); SERIAL_PROTOCOLPGM(" sigma: "); SERIAL_PROTOCOL_F(sigma, 6); } } if (verbose_level > 0) SERIAL_EOL; delay(50); do_blocking_move_to_z(current_position[Z_AXIS] + Z_RAISE_BETWEEN_PROBINGS); } // End of probe loop code // raise_z_after_probing(); if (verbose_level > 0) { SERIAL_PROTOCOLPGM("Mean: "); SERIAL_PROTOCOL_F(mean, 6); SERIAL_EOL; delay(25); } SERIAL_PROTOCOLPGM("Standard Deviation: "); SERIAL_PROTOCOL_F(sigma, 6); SERIAL_EOL; SERIAL_EOL; delay(25); clean_up_after_endstop_move(); gcode_M114(); // Send end position to RepetierHost } #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST /** * M75: Start print timer */ inline void gcode_M75() { print_job_timer.start(); } /** * M76: Pause print timer */ inline void gcode_M76() { print_job_timer.pause(); } /** * M77: Stop print timer */ inline void gcode_M77() { print_job_timer.stop(); } /** * M104: Set hot end temperature */ inline void gcode_M104() { if (setTargetedHotend(104)) return; if (DEBUGGING(DRYRUN)) return; if (code_seen('S')) { float temp = code_value(); setTargetHotend(temp, target_extruder); #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset); #endif /** * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot * stand by mode, for instance in a dual extruder setup, without affecting * the running print timer. */ if (temp <= (EXTRUDE_MINTEMP)/2) { print_job_timer.stop(); LCD_MESSAGEPGM(WELCOME_MSG); } /** * We do not check if the timer is already running because this check will * be done for us inside the Stopwatch::start() method thus a running timer * will not restart. */ else print_job_timer.start(); if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING); } } #if HAS_TEMP_HOTEND || HAS_TEMP_BED void print_heaterstates() { #if HAS_TEMP_HOTEND SERIAL_PROTOCOLPGM(" T:"); SERIAL_PROTOCOL_F(degHotend(target_extruder), 1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(degTargetHotend(target_extruder), 1); #endif #if HAS_TEMP_BED SERIAL_PROTOCOLPGM(" B:"); SERIAL_PROTOCOL_F(degBed(), 1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(degTargetBed(), 1); #endif #if EXTRUDERS > 1 for (int8_t e = 0; e < EXTRUDERS; ++e) { SERIAL_PROTOCOLPGM(" T"); SERIAL_PROTOCOL(e); SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOL_F(degHotend(e), 1); SERIAL_PROTOCOLPGM(" /"); SERIAL_PROTOCOL_F(degTargetHotend(e), 1); } #endif #if HAS_TEMP_BED SERIAL_PROTOCOLPGM(" B@:"); #ifdef BED_WATTS SERIAL_PROTOCOL(((BED_WATTS) * getHeaterPower(-1)) / 127); SERIAL_PROTOCOLCHAR('W'); #else SERIAL_PROTOCOL(getHeaterPower(-1)); #endif #endif SERIAL_PROTOCOLPGM(" @:"); #ifdef EXTRUDER_WATTS SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(target_extruder)) / 127); SERIAL_PROTOCOLCHAR('W'); #else SERIAL_PROTOCOL(getHeaterPower(target_extruder)); #endif #if EXTRUDERS > 1 for (int8_t e = 0; e < EXTRUDERS; ++e) { SERIAL_PROTOCOLPGM(" @"); SERIAL_PROTOCOL(e); SERIAL_PROTOCOLCHAR(':'); #ifdef EXTRUDER_WATTS SERIAL_PROTOCOL(((EXTRUDER_WATTS) * getHeaterPower(e)) / 127); SERIAL_PROTOCOLCHAR('W'); #else SERIAL_PROTOCOL(getHeaterPower(e)); #endif } #endif #if ENABLED(SHOW_TEMP_ADC_VALUES) #if HAS_TEMP_BED SERIAL_PROTOCOLPGM(" ADC B:"); SERIAL_PROTOCOL_F(degBed(), 1); SERIAL_PROTOCOLPGM("C->"); SERIAL_PROTOCOL_F(rawBedTemp() / OVERSAMPLENR, 0); #endif for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) { SERIAL_PROTOCOLPGM(" T"); SERIAL_PROTOCOL(cur_extruder); SERIAL_PROTOCOLCHAR(':'); SERIAL_PROTOCOL_F(degHotend(cur_extruder), 1); SERIAL_PROTOCOLPGM("C->"); SERIAL_PROTOCOL_F(rawHotendTemp(cur_extruder) / OVERSAMPLENR, 0); } #endif } #endif /** * M105: Read hot end and bed temperature */ inline void gcode_M105() { if (setTargetedHotend(105)) return; #if HAS_TEMP_HOTEND || HAS_TEMP_BED SERIAL_PROTOCOLPGM(MSG_OK); print_heaterstates(); #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS); #endif SERIAL_EOL; } #if FAN_COUNT > 0 /** * M106: Set Fan Speed * * S<int> Speed between 0-255 * P<index> Fan index, if more than one fan */ inline void gcode_M106() { uint16_t s = code_seen('S') ? code_value_short() : 255, p = code_seen('P') ? code_value_short() : 0; NOMORE(s, 255); if (p < FAN_COUNT) fanSpeeds[p] = s; } /** * M107: Fan Off */ inline void gcode_M107() { uint16_t p = code_seen('P') ? code_value_short() : 0; if (p < FAN_COUNT) fanSpeeds[p] = 0; } #endif // FAN_COUNT > 0 /** * M109: Sxxx Wait for extruder(s) to reach temperature. Waits only when heating. * Rxxx Wait for extruder(s) to reach temperature. Waits when heating and cooling. */ inline void gcode_M109() { if (setTargetedHotend(109)) return; if (DEBUGGING(DRYRUN)) return; bool no_wait_for_cooling = code_seen('S'); if (no_wait_for_cooling || code_seen('R')) { float temp = code_value(); setTargetHotend(temp, target_extruder); #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && target_extruder == 0) setTargetHotend1(temp == 0.0 ? 0.0 : temp + duplicate_extruder_temp_offset); #endif /** * We use half EXTRUDE_MINTEMP here to allow nozzles to be put into hot * stand by mode, for instance in a dual extruder setup, without affecting * the running print timer. */ if (temp <= (EXTRUDE_MINTEMP)/2) { print_job_timer.stop(); LCD_MESSAGEPGM(WELCOME_MSG); } /** * We do not check if the timer is already running because this check will * be done for us inside the Stopwatch::start() method thus a running timer * will not restart. */ else print_job_timer.start(); if (temp > degHotend(target_extruder)) LCD_MESSAGEPGM(MSG_HEATING); } #if ENABLED(AUTOTEMP) autotemp_enabled = code_seen('F'); if (autotemp_enabled) autotemp_factor = code_value(); if (code_seen('S')) autotemp_min = code_value(); if (code_seen('B')) autotemp_max = code_value(); #endif bool wants_to_cool = isCoolingHotend(target_extruder); // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher> if (no_wait_for_cooling && wants_to_cool) return; // Prevents a wait-forever situation if R is misused i.e. M109 R0 // Try to calculate a ballpark safe margin by halving EXTRUDE_MINTEMP if (wants_to_cool && degTargetHotend(target_extruder) < (EXTRUDE_MINTEMP)/2) return; #ifdef TEMP_RESIDENCY_TIME millis_t residency_start_ms = 0; // Loop until the temperature has stabilized #define TEMP_CONDITIONS (!residency_start_ms || PENDING(now, residency_start_ms + (TEMP_RESIDENCY_TIME) * 1000UL)) #else // Loop until the temperature is very close target #define TEMP_CONDITIONS (wants_to_cool ? isCoolingHotend(target_extruder) : isHeatingHotend(target_extruder)) #endif //TEMP_RESIDENCY_TIME cancel_heatup = false; millis_t now, next_temp_ms = 0; do { now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting next_temp_ms = now + 1000UL; #if HAS_TEMP_HOTEND || HAS_TEMP_BED print_heaterstates(); #endif #ifdef TEMP_RESIDENCY_TIME SERIAL_PROTOCOLPGM(" W:"); if (residency_start_ms) { long rem = (((TEMP_RESIDENCY_TIME) * 1000UL) - (now - residency_start_ms)) / 1000UL; SERIAL_PROTOCOLLN(rem); } else { SERIAL_PROTOCOLLNPGM("?"); } #else SERIAL_EOL; #endif } idle(); refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out #ifdef TEMP_RESIDENCY_TIME float temp_diff = fabs(degTargetHotend(target_extruder) - degHotend(target_extruder)); if (!residency_start_ms) { // Start the TEMP_RESIDENCY_TIME timer when we reach target temp for the first time. if (temp_diff < TEMP_WINDOW) residency_start_ms = millis(); } else if (temp_diff > TEMP_HYSTERESIS) { // Restart the timer whenever the temperature falls outside the hysteresis. residency_start_ms = millis(); } #endif //TEMP_RESIDENCY_TIME } while (!cancel_heatup && TEMP_CONDITIONS); LCD_MESSAGEPGM(MSG_HEATING_COMPLETE); } #if HAS_TEMP_BED /** * M190: Sxxx Wait for bed current temp to reach target temp. Waits only when heating * Rxxx Wait for bed current temp to reach target temp. Waits when heating and cooling */ inline void gcode_M190() { if (DEBUGGING(DRYRUN)) return; LCD_MESSAGEPGM(MSG_BED_HEATING); bool no_wait_for_cooling = code_seen('S'); if (no_wait_for_cooling || code_seen('R')) setTargetBed(code_value()); bool wants_to_cool = isCoolingBed(); // Exit if S<lower>, continue if S<higher>, R<lower>, or R<higher> if (no_wait_for_cooling && wants_to_cool) return; cancel_heatup = false; millis_t next_temp_ms = 0; // Wait for temperature to come close enough do { millis_t now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up. next_temp_ms = now + 1000UL; print_heaterstates(); SERIAL_EOL; } idle(); refresh_cmd_timeout(); // to prevent stepper_inactive_time from running out } while (!cancel_heatup && (wants_to_cool ? isCoolingBed() : isHeatingBed())); LCD_MESSAGEPGM(MSG_BED_DONE); } #endif // HAS_TEMP_BED /** * M110: Set Current Line Number */ inline void gcode_M110() { if (code_seen('N')) gcode_N = code_value_long(); } /** * M111: Set the debug level */ inline void gcode_M111() { marlin_debug_flags = code_seen('S') ? code_value_short() : DEBUG_NONE; const static char str_debug_1[] PROGMEM = MSG_DEBUG_ECHO; const static char str_debug_2[] PROGMEM = MSG_DEBUG_INFO; const static char str_debug_4[] PROGMEM = MSG_DEBUG_ERRORS; const static char str_debug_8[] PROGMEM = MSG_DEBUG_DRYRUN; const static char str_debug_16[] PROGMEM = MSG_DEBUG_COMMUNICATION; #if ENABLED(DEBUG_LEVELING_FEATURE) const static char str_debug_32[] PROGMEM = MSG_DEBUG_LEVELING; #endif const static char* const debug_strings[] PROGMEM = { str_debug_1, str_debug_2, str_debug_4, str_debug_8, str_debug_16, #if ENABLED(DEBUG_LEVELING_FEATURE) str_debug_32 #endif }; SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_DEBUG_PREFIX); if (marlin_debug_flags) { uint8_t comma = 0; for (uint8_t i = 0; i < COUNT(debug_strings); i++) { if (TEST(marlin_debug_flags, i)) { if (comma++) SERIAL_CHAR(','); serialprintPGM((char*)pgm_read_word(&(debug_strings[i]))); } } } else { SERIAL_ECHOPGM(MSG_DEBUG_OFF); } SERIAL_EOL; } /** * M112: Emergency Stop */ inline void gcode_M112() { kill(PSTR(MSG_KILLED)); } #if ENABLED(HOST_KEEPALIVE_FEATURE) /** * M113: Get or set Host Keepalive interval (0 to disable) * * S<seconds> Optional. Set the keepalive interval. */ inline void gcode_M113() { if (code_seen('S')) { host_keepalive_interval = (uint8_t)code_value_short(); NOMORE(host_keepalive_interval, 60); } else { SERIAL_ECHO_START; SERIAL_ECHOPAIR("M113 S", (unsigned long)host_keepalive_interval); SERIAL_EOL; } } #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 /** * M126: Heater 1 valve open */ inline void gcode_M126() { ValvePressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; } /** * M127: Heater 1 valve close */ inline void gcode_M127() { ValvePressure = 0; } #endif #if HAS_HEATER_2 /** * M128: Heater 2 valve open */ inline void gcode_M128() { EtoPPressure = code_seen('S') ? constrain(code_value(), 0, 255) : 255; } /** * M129: Heater 2 valve close */ inline void gcode_M129() { EtoPPressure = 0; } #endif #endif //BARICUDA /** * M140: Set bed temperature */ inline void gcode_M140() { if (DEBUGGING(DRYRUN)) return; if (code_seen('S')) setTargetBed(code_value()); } #if ENABLED(ULTIPANEL) /** * M145: Set the heatup state for a material in the LCD menu * S<material> (0=PLA, 1=ABS) * H<hotend temp> * B<bed temp> * F<fan speed> */ inline void gcode_M145() { int8_t material = code_seen('S') ? code_value_short() : 0; if (material < 0 || material > 1) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_MATERIAL_INDEX); } else { int v; switch (material) { case 0: if (code_seen('H')) { v = code_value_short(); plaPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15); } if (code_seen('F')) { v = code_value_short(); plaPreheatFanSpeed = constrain(v, 0, 255); } #if TEMP_SENSOR_BED != 0 if (code_seen('B')) { v = code_value_short(); plaPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15); } #endif break; case 1: if (code_seen('H')) { v = code_value_short(); absPreheatHotendTemp = constrain(v, EXTRUDE_MINTEMP, HEATER_0_MAXTEMP - 15); } if (code_seen('F')) { v = code_value_short(); absPreheatFanSpeed = constrain(v, 0, 255); } #if TEMP_SENSOR_BED != 0 if (code_seen('B')) { v = code_value_short(); absPreheatHPBTemp = constrain(v, BED_MINTEMP, BED_MAXTEMP - 15); } #endif break; } } } #endif #if HAS_POWER_SWITCH /** * M80: Turn on Power Supply */ inline void gcode_M80() { OUT_WRITE(PS_ON_PIN, PS_ON_AWAKE); //GND /** * If you have a switch on suicide pin, this is useful * if you want to start another print with suicide feature after * a print without suicide... */ #if HAS_SUICIDE OUT_WRITE(SUICIDE_PIN, HIGH); #endif #if ENABLED(ULTIPANEL) powersupply = true; LCD_MESSAGEPGM(WELCOME_MSG); lcd_update(); #endif } #endif // HAS_POWER_SWITCH /** * M81: Turn off Power, including Power Supply, if there is one. * * This code should ALWAYS be available for EMERGENCY SHUTDOWN! */ inline void gcode_M81() { disable_all_heaters(); finishAndDisableSteppers(); #if FAN_COUNT > 0 #if FAN_COUNT > 1 for (uint8_t i = 0; i < FAN_COUNT; i++) fanSpeeds[i] = 0; #else fanSpeeds[0] = 0; #endif #endif delay(1000); // Wait 1 second before switching off #if HAS_SUICIDE st_synchronize(); suicide(); #elif HAS_POWER_SWITCH OUT_WRITE(PS_ON_PIN, PS_ON_ASLEEP); #endif #if ENABLED(ULTIPANEL) #if HAS_POWER_SWITCH powersupply = false; #endif LCD_MESSAGEPGM(MACHINE_NAME " " MSG_OFF "."); lcd_update(); #endif } /** * M82: Set E codes absolute (default) */ inline void gcode_M82() { axis_relative_modes[E_AXIS] = false; } /** * M83: Set E codes relative while in Absolute Coordinates (G90) mode */ inline void gcode_M83() { axis_relative_modes[E_AXIS] = true; } /** * M18, M84: Disable all stepper motors */ inline void gcode_M18_M84() { if (code_seen('S')) { stepper_inactive_time = code_value() * 1000UL; } else { bool all_axis = !((code_seen(axis_codes[X_AXIS])) || (code_seen(axis_codes[Y_AXIS])) || (code_seen(axis_codes[Z_AXIS])) || (code_seen(axis_codes[E_AXIS]))); if (all_axis) { finishAndDisableSteppers(); } else { st_synchronize(); if (code_seen('X')) disable_x(); if (code_seen('Y')) disable_y(); if (code_seen('Z')) disable_z(); #if ((E0_ENABLE_PIN != X_ENABLE_PIN) && (E1_ENABLE_PIN != Y_ENABLE_PIN)) // Only enable on boards that have seperate ENABLE_PINS if (code_seen('E')) { disable_e0(); disable_e1(); disable_e2(); disable_e3(); } #endif } } } /** * M85: Set inactivity shutdown timer with parameter S<seconds>. To disable set zero (default) */ inline void gcode_M85() { if (code_seen('S')) max_inactive_time = code_value() * 1000UL; } /** * M92: Set axis steps-per-unit for one or more axes, X, Y, Z, and E. * (Follows the same syntax as G92) */ inline void gcode_M92() { for (int8_t i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) { if (i == E_AXIS) { float value = code_value(); if (value < 20.0) { float factor = axis_steps_per_unit[i] / value; // increase e constants if M92 E14 is given for netfab. max_e_jerk *= factor; max_feedrate[i] *= factor; axis_steps_per_sqr_second[i] *= factor; } axis_steps_per_unit[i] = value; } else { axis_steps_per_unit[i] = code_value(); } } } } /** * M114: Output current position to serial port */ inline void gcode_M114() { SERIAL_PROTOCOLPGM("X:"); SERIAL_PROTOCOL(current_position[X_AXIS]); SERIAL_PROTOCOLPGM(" Y:"); SERIAL_PROTOCOL(current_position[Y_AXIS]); SERIAL_PROTOCOLPGM(" Z:"); SERIAL_PROTOCOL(current_position[Z_AXIS]); SERIAL_PROTOCOLPGM(" E:"); SERIAL_PROTOCOL(current_position[E_AXIS]); CRITICAL_SECTION_START; extern volatile long count_position[NUM_AXIS]; long xpos = count_position[X_AXIS], ypos = count_position[Y_AXIS], zpos = count_position[Z_AXIS]; CRITICAL_SECTION_END; #if ENABLED(COREXY) || ENABLED(COREXZ) SERIAL_PROTOCOLPGM(MSG_COUNT_A); #else SERIAL_PROTOCOLPGM(MSG_COUNT_X); #endif SERIAL_PROTOCOL(xpos); #if ENABLED(COREXY) SERIAL_PROTOCOLPGM(" B:"); #else SERIAL_PROTOCOLPGM(" Y:"); #endif SERIAL_PROTOCOL(ypos); #if ENABLED(COREXZ) SERIAL_PROTOCOLPGM(" C:"); #else SERIAL_PROTOCOLPGM(" Z:"); #endif SERIAL_PROTOCOL(zpos); SERIAL_EOL; #if ENABLED(SCARA) SERIAL_PROTOCOLPGM("SCARA Theta:"); SERIAL_PROTOCOL(delta[X_AXIS]); SERIAL_PROTOCOLPGM(" Psi+Theta:"); SERIAL_PROTOCOL(delta[Y_AXIS]); SERIAL_EOL; SERIAL_PROTOCOLPGM("SCARA Cal - Theta:"); SERIAL_PROTOCOL(delta[X_AXIS] + home_offset[X_AXIS]); SERIAL_PROTOCOLPGM(" Psi+Theta (90):"); SERIAL_PROTOCOL(delta[Y_AXIS] - delta[X_AXIS] - 90 + home_offset[Y_AXIS]); SERIAL_EOL; SERIAL_PROTOCOLPGM("SCARA step Cal - Theta:"); SERIAL_PROTOCOL(delta[X_AXIS] / 90 * axis_steps_per_unit[X_AXIS]); SERIAL_PROTOCOLPGM(" Psi+Theta:"); SERIAL_PROTOCOL((delta[Y_AXIS] - delta[X_AXIS]) / 90 * axis_steps_per_unit[Y_AXIS]); SERIAL_EOL; SERIAL_EOL; #endif } /** * M115: Capabilities string */ inline void gcode_M115() { SERIAL_PROTOCOLPGM(MSG_M115_REPORT); } /** * M117: Set LCD Status Message */ inline void gcode_M117() { lcd_setstatus(current_command_args); } /** * M119: Output endstop states to serial output */ inline void gcode_M119() { SERIAL_PROTOCOLLN(MSG_M119_REPORT); #if HAS_X_MIN SERIAL_PROTOCOLPGM(MSG_X_MIN); SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_X_MAX SERIAL_PROTOCOLPGM(MSG_X_MAX); SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Y_MIN SERIAL_PROTOCOLPGM(MSG_Y_MIN); SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Y_MAX SERIAL_PROTOCOLPGM(MSG_Y_MAX); SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z_MIN SERIAL_PROTOCOLPGM(MSG_Z_MIN); SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z_MAX SERIAL_PROTOCOLPGM(MSG_Z_MAX); SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z2_MAX SERIAL_PROTOCOLPGM(MSG_Z2_MAX); SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z_PROBE SERIAL_PROTOCOLPGM(MSG_Z_PROBE); SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif } /** * M120: Enable endstops and set non-homing endstop state to "enabled" */ inline void gcode_M120() { enable_endstops_globally(true); } /** * M121: Disable endstops and set non-homing endstop state to "disabled" */ inline void gcode_M121() { enable_endstops_globally(false); } #if ENABLED(BLINKM) /** * M150: Set Status LED Color - Use R-U-B for R-G-B */ inline void gcode_M150() { SendColors( code_seen('R') ? (byte)code_value_short() : 0, code_seen('U') ? (byte)code_value_short() : 0, code_seen('B') ? (byte)code_value_short() : 0 ); } #endif // BLINKM #if ENABLED(EXPERIMENTAL_I2CBUS) /** * M155: Send data to a I2C slave device * * This is a PoC, the formating and arguments for the GCODE will * change to be more compatible, the current proposal is: * * M155 A<slave device address base 10> ; Sets the I2C slave address the data will be sent to * * M155 B<byte-1 value in base 10> * M155 B<byte-2 value in base 10> * M155 B<byte-3 value in base 10> * * M155 S1 ; Send the buffered data and reset the buffer * M155 R1 ; Reset the buffer without sending data * */ inline void gcode_M155() { // Set the target address if (code_seen('A')) i2c.address((uint8_t) code_value_short()); // Add a new byte to the buffer else if (code_seen('B')) i2c.addbyte((int) code_value_short()); // Flush the buffer to the bus else if (code_seen('S')) i2c.send(); // Reset and rewind the buffer else if (code_seen('R')) i2c.reset(); } /** * M156: Request X bytes from I2C slave device * * Usage: M156 A<slave device address base 10> B<number of bytes> */ inline void gcode_M156() { uint8_t addr = code_seen('A') ? code_value_short() : 0; int bytes = code_seen('B') ? code_value_short() : 0; if (addr && bytes) { i2c.address(addr); i2c.reqbytes(bytes); } } #endif //EXPERIMENTAL_I2CBUS /** * M200: Set filament diameter and set E axis units to cubic millimeters * * T<extruder> - Optional extruder number. Current extruder if omitted. * D<mm> - Diameter of the filament. Use "D0" to set units back to millimeters. */ inline void gcode_M200() { if (setTargetedHotend(200)) return; if (code_seen('D')) { float diameter = code_value(); // setting any extruder filament size disables volumetric on the assumption that // slicers either generate in extruder values as cubic mm or as as filament feeds // for all extruders volumetric_enabled = (diameter != 0.0); if (volumetric_enabled) { filament_size[target_extruder] = diameter; // make sure all extruders have some sane value for the filament size for (int i = 0; i < EXTRUDERS; i++) if (! filament_size[i]) filament_size[i] = DEFAULT_NOMINAL_FILAMENT_DIA; } } else { //reserved for setting filament diameter via UFID or filament measuring device return; } calculate_volumetric_multipliers(); } /** * M201: Set max acceleration in units/s^2 for print moves (M201 X1000 Y1000) */ inline void gcode_M201() { for (int8_t i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) { max_acceleration_units_per_sq_second[i] = code_value(); } } // steps per sq second need to be updated to agree with the units per sq second (as they are what is used in the planner) reset_acceleration_rates(); } #if 0 // Not used for Sprinter/grbl gen6 inline void gcode_M202() { for (int8_t i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) axis_travel_steps_per_sqr_second[i] = code_value() * axis_steps_per_unit[i]; } } #endif /** * M203: Set maximum feedrate that your machine can sustain (M203 X200 Y200 Z300 E10000) in mm/sec */ inline void gcode_M203() { for (int8_t i = 0; i < NUM_AXIS; i++) { if (code_seen(axis_codes[i])) { max_feedrate[i] = code_value(); } } } /** * M204: Set Accelerations in mm/sec^2 (M204 P1200 R3000 T3000) * * P = Printing moves * R = Retract only (no X, Y, Z) moves * T = Travel (non printing) moves * * Also sets minimum segment time in ms (B20000) to prevent buffer under-runs and M20 minimum feedrate */ inline void gcode_M204() { if (code_seen('S')) { // Kept for legacy compatibility. Should NOT BE USED for new developments. travel_acceleration = acceleration = code_value(); SERIAL_ECHOPAIR("Setting Print and Travel Acceleration: ", acceleration); SERIAL_EOL; } if (code_seen('P')) { acceleration = code_value(); SERIAL_ECHOPAIR("Setting Print Acceleration: ", acceleration); SERIAL_EOL; } if (code_seen('R')) { retract_acceleration = code_value(); SERIAL_ECHOPAIR("Setting Retract Acceleration: ", retract_acceleration); SERIAL_EOL; } if (code_seen('T')) { travel_acceleration = code_value(); SERIAL_ECHOPAIR("Setting Travel Acceleration: ", travel_acceleration); SERIAL_EOL; } } /** * M205: Set Advanced Settings * * S = Min Feed Rate (mm/s) * T = Min Travel Feed Rate (mm/s) * B = Min Segment Time (µs) * X = Max XY Jerk (mm/s/s) * Z = Max Z Jerk (mm/s/s) * E = Max E Jerk (mm/s/s) */ inline void gcode_M205() { if (code_seen('S')) minimumfeedrate = code_value(); if (code_seen('T')) mintravelfeedrate = code_value(); if (code_seen('B')) minsegmenttime = code_value(); if (code_seen('X')) max_xy_jerk = code_value(); if (code_seen('Z')) max_z_jerk = code_value(); if (code_seen('E')) max_e_jerk = code_value(); } static void set_home_offset(AxisEnum axis, float v) { min_pos[axis] = base_min_pos(axis) + v; max_pos[axis] = base_max_pos(axis) + v; current_position[axis] += v - home_offset[axis]; home_offset[axis] = v; } /** * M206: Set Additional Homing Offset (X Y Z). SCARA aliases T=X, P=Y */ inline void gcode_M206() { for (int8_t i = X_AXIS; i <= Z_AXIS; i++) if (code_seen(axis_codes[i])) set_home_offset((AxisEnum)i, code_value()); #if ENABLED(SCARA) if (code_seen('T')) set_home_offset(X_AXIS, code_value()); // Theta if (code_seen('P')) set_home_offset(Y_AXIS, code_value()); // Psi #endif sync_plan_position(); } #if ENABLED(DELTA) /** * M665: Set delta configurations * * L = diagonal rod * R = delta radius * S = segments per second * A = Alpha (Tower 1) diagonal rod trim * B = Beta (Tower 2) diagonal rod trim * C = Gamma (Tower 3) diagonal rod trim */ inline void gcode_M665() { if (code_seen('L')) delta_diagonal_rod = code_value(); if (code_seen('R')) delta_radius = code_value(); if (code_seen('S')) delta_segments_per_second = code_value(); if (code_seen('A')) delta_diagonal_rod_trim_tower_1 = code_value(); if (code_seen('B')) delta_diagonal_rod_trim_tower_2 = code_value(); if (code_seen('C')) delta_diagonal_rod_trim_tower_3 = code_value(); recalc_delta_settings(delta_radius, delta_diagonal_rod); } /** * M666: Set delta endstop adjustment */ inline void gcode_M666() { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM(">>> gcode_M666"); } #endif for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { if (code_seen(axis_codes[i])) { endstop_adj[i] = code_value(); #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPGM("endstop_adj["); SERIAL_ECHO(axis_codes[i]); SERIAL_ECHOPAIR("] = ", endstop_adj[i]); SERIAL_EOL; } #endif } } #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM("<<< gcode_M666"); } #endif } #elif ENABLED(Z_DUAL_ENDSTOPS) // !DELTA && ENABLED(Z_DUAL_ENDSTOPS) /** * M666: For Z Dual Endstop setup, set z axis offset to the z2 axis. */ inline void gcode_M666() { if (code_seen('Z')) z_endstop_adj = code_value(); SERIAL_ECHOPAIR("Z Endstop Adjustment set to (mm):", z_endstop_adj); SERIAL_EOL; } #endif // !DELTA && Z_DUAL_ENDSTOPS #if ENABLED(FWRETRACT) /** * M207: Set firmware retraction values * * S[+mm] retract_length * W[+mm] retract_length_swap (multi-extruder) * F[mm/min] retract_feedrate * Z[mm] retract_zlift */ inline void gcode_M207() { if (code_seen('S')) retract_length = code_value(); if (code_seen('F')) retract_feedrate = code_value() / 60; if (code_seen('Z')) retract_zlift = code_value(); #if EXTRUDERS > 1 if (code_seen('W')) retract_length_swap = code_value(); #endif } /** * M208: Set firmware un-retraction values * * S[+mm] retract_recover_length (in addition to M207 S*) * W[+mm] retract_recover_length_swap (multi-extruder) * F[mm/min] retract_recover_feedrate */ inline void gcode_M208() { if (code_seen('S')) retract_recover_length = code_value(); if (code_seen('F')) retract_recover_feedrate = code_value() / 60; #if EXTRUDERS > 1 if (code_seen('W')) retract_recover_length_swap = code_value(); #endif } /** * M209: Enable automatic retract (M209 S1) * detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. */ inline void gcode_M209() { if (code_seen('S')) { int t = code_value_short(); switch (t) { case 0: autoretract_enabled = false; break; case 1: autoretract_enabled = true; break; default: unknown_command_error(); return; } for (int i = 0; i < EXTRUDERS; i++) retracted[i] = false; } } #endif // FWRETRACT #if EXTRUDERS > 1 /** * M218 - set hotend offset (in mm) * * T<tool> * X<xoffset> * Y<yoffset> * Z<zoffset> - Available with DUAL_X_CARRIAGE */ inline void gcode_M218() { if (setTargetedHotend(218)) return; if (code_seen('X')) extruder_offset[X_AXIS][target_extruder] = code_value(); if (code_seen('Y')) extruder_offset[Y_AXIS][target_extruder] = code_value(); #if ENABLED(DUAL_X_CARRIAGE) if (code_seen('Z')) extruder_offset[Z_AXIS][target_extruder] = code_value(); #endif SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); for (int e = 0; e < EXTRUDERS; e++) { SERIAL_CHAR(' '); SERIAL_ECHO(extruder_offset[X_AXIS][e]); SERIAL_CHAR(','); SERIAL_ECHO(extruder_offset[Y_AXIS][e]); #if ENABLED(DUAL_X_CARRIAGE) SERIAL_CHAR(','); SERIAL_ECHO(extruder_offset[Z_AXIS][e]); #endif } SERIAL_EOL; } #endif // EXTRUDERS > 1 /** * M220: Set speed percentage factor, aka "Feed Rate" (M220 S95) */ inline void gcode_M220() { if (code_seen('S')) feedrate_multiplier = code_value(); } /** * M221: Set extrusion percentage (M221 T0 S95) */ inline void gcode_M221() { if (code_seen('S')) { int sval = code_value(); if (setTargetedHotend(221)) return; extruder_multiplier[target_extruder] = sval; } } /** * M226: Wait until the specified pin reaches the state required (M226 P<pin> S<state>) */ inline void gcode_M226() { if (code_seen('P')) { int pin_number = code_value(); int pin_state = code_seen('S') ? code_value() : -1; // required pin state - default is inverted if (pin_state >= -1 && pin_state <= 1) { for (uint8_t i = 0; i < COUNT(sensitive_pins); i++) { if (sensitive_pins[i] == pin_number) { pin_number = -1; break; } } if (pin_number > -1) { int target = LOW; st_synchronize(); pinMode(pin_number, INPUT); switch (pin_state) { case 1: target = HIGH; break; case 0: target = LOW; break; case -1: target = !digitalRead(pin_number); break; } while (digitalRead(pin_number) != target) idle(); } // pin_number > -1 } // pin_state -1 0 1 } // code_seen('P') } #if HAS_SERVOS /** * M280: Get or set servo position. P<index> S<angle> */ inline void gcode_M280() { int servo_index = code_seen('P') ? code_value_short() : -1; int servo_position = 0; if (code_seen('S')) { servo_position = code_value_short(); if (servo_index >= 0 && servo_index < NUM_SERVOS) servo[servo_index].move(servo_position); else { SERIAL_ERROR_START; SERIAL_ERROR("Servo "); SERIAL_ERROR(servo_index); SERIAL_ERRORLN(" out of range"); } } else if (servo_index >= 0) { SERIAL_ECHO_START; SERIAL_ECHO(" Servo "); SERIAL_ECHO(servo_index); SERIAL_ECHO(": "); SERIAL_ECHOLN(servo[servo_index].read()); } } #endif // HAS_SERVOS #if HAS_BUZZER /** * M300: Play beep sound S<frequency Hz> P<duration ms> */ inline void gcode_M300() { uint16_t beepS = code_seen('S') ? code_value_short() : 110; uint32_t beepP = code_seen('P') ? code_value_long() : 1000; if (beepP > 5000) beepP = 5000; // limit to 5 seconds buzz(beepP, beepS); } #endif // HAS_BUZZER #if ENABLED(PIDTEMP) /** * M301: Set PID parameters P I D (and optionally C, L) * * P[float] Kp term * I[float] Ki term (unscaled) * D[float] Kd term (unscaled) * * With PID_ADD_EXTRUSION_RATE: * * C[float] Kc term * L[float] LPQ length */ inline void gcode_M301() { // multi-extruder PID patch: M301 updates or prints a single extruder's PID values // default behaviour (omitting E parameter) is to update for extruder 0 only int e = code_seen('E') ? code_value() : 0; // extruder being updated if (e < EXTRUDERS) { // catch bad input value if (code_seen('P')) PID_PARAM(Kp, e) = code_value(); if (code_seen('I')) PID_PARAM(Ki, e) = scalePID_i(code_value()); if (code_seen('D')) PID_PARAM(Kd, e) = scalePID_d(code_value()); #if ENABLED(PID_ADD_EXTRUSION_RATE) if (code_seen('C')) PID_PARAM(Kc, e) = code_value(); if (code_seen('L')) lpq_len = code_value(); NOMORE(lpq_len, LPQ_MAX_LEN); #endif updatePID(); SERIAL_ECHO_START; #if ENABLED(PID_PARAMS_PER_EXTRUDER) SERIAL_ECHO(" e:"); // specify extruder in serial output SERIAL_ECHO(e); #endif // PID_PARAMS_PER_EXTRUDER SERIAL_ECHO(" p:"); SERIAL_ECHO(PID_PARAM(Kp, e)); SERIAL_ECHO(" i:"); SERIAL_ECHO(unscalePID_i(PID_PARAM(Ki, e))); SERIAL_ECHO(" d:"); SERIAL_ECHO(unscalePID_d(PID_PARAM(Kd, e))); #if ENABLED(PID_ADD_EXTRUSION_RATE) SERIAL_ECHO(" c:"); //Kc does not have scaling applied above, or in resetting defaults SERIAL_ECHO(PID_PARAM(Kc, e)); #endif SERIAL_EOL; } else { SERIAL_ERROR_START; SERIAL_ERRORLN(MSG_INVALID_EXTRUDER); } } #endif // PIDTEMP #if ENABLED(PIDTEMPBED) inline void gcode_M304() { if (code_seen('P')) bedKp = code_value(); if (code_seen('I')) bedKi = scalePID_i(code_value()); if (code_seen('D')) bedKd = scalePID_d(code_value()); updatePID(); SERIAL_ECHO_START; SERIAL_ECHO(" p:"); SERIAL_ECHO(bedKp); SERIAL_ECHO(" i:"); SERIAL_ECHO(unscalePID_i(bedKi)); SERIAL_ECHO(" d:"); SERIAL_ECHOLN(unscalePID_d(bedKd)); } #endif // PIDTEMPBED #if defined(CHDK) || HAS_PHOTOGRAPH /** * M240: Trigger a camera by emulating a Canon RC-1 * See http://www.doc-diy.net/photo/rc-1_hacked/ */ inline void gcode_M240() { #ifdef CHDK OUT_WRITE(CHDK, HIGH); chdkHigh = millis(); chdkActive = true; #elif HAS_PHOTOGRAPH const uint8_t NUM_PULSES = 16; const float PULSE_LENGTH = 0.01524; for (int i = 0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } delay(7.33); for (int i = 0; i < NUM_PULSES; i++) { WRITE(PHOTOGRAPH_PIN, HIGH); _delay_ms(PULSE_LENGTH); WRITE(PHOTOGRAPH_PIN, LOW); _delay_ms(PULSE_LENGTH); } #endif // !CHDK && HAS_PHOTOGRAPH } #endif // CHDK || PHOTOGRAPH_PIN #if ENABLED(HAS_LCD_CONTRAST) /** * M250: Read and optionally set the LCD contrast */ inline void gcode_M250() { if (code_seen('C')) lcd_setcontrast(code_value_short() & 0x3F); SERIAL_PROTOCOLPGM("lcd contrast value: "); SERIAL_PROTOCOL(lcd_contrast); SERIAL_EOL; } #endif // HAS_LCD_CONTRAST #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) void set_extrude_min_temp(float temp) { extrude_min_temp = temp; } /** * M302: Allow cold extrudes, or set the minimum extrude S<temperature>. */ inline void gcode_M302() { set_extrude_min_temp(code_seen('S') ? code_value() : 0); } #endif // PREVENT_DANGEROUS_EXTRUDE /** * M303: PID relay autotune * * S<temperature> sets the target temperature. (default 150C) * E<extruder> (-1 for the bed) (default 0) * C<cycles> * U<bool> with a non-zero value will apply the result to current settings */ inline void gcode_M303() { int e = code_seen('E') ? code_value_short() : 0; int c = code_seen('C') ? code_value_short() : 5; bool u = code_seen('U') && code_value_short() != 0; float temp = code_seen('S') ? code_value() : (e < 0 ? 70.0 : 150.0); if (e >= 0 && e < EXTRUDERS) target_extruder = e; KEEPALIVE_STATE(NOT_BUSY); // don't send "busy: processing" messages during autotune output PID_autotune(temp, e, c, u); KEEPALIVE_STATE(IN_HANDLER); } #if ENABLED(SCARA) bool SCARA_move_to_cal(uint8_t delta_x, uint8_t delta_y) { //SoftEndsEnabled = false; // Ignore soft endstops during calibration //SERIAL_ECHOLN(" Soft endstops disabled "); if (IsRunning()) { //gcode_get_destination(); // For X Y Z E F delta[X_AXIS] = delta_x; delta[Y_AXIS] = delta_y; calculate_SCARA_forward_Transform(delta); destination[X_AXIS] = delta[X_AXIS] / axis_scaling[X_AXIS]; destination[Y_AXIS] = delta[Y_AXIS] / axis_scaling[Y_AXIS]; prepare_move(); //ok_to_send(); return true; } return false; } /** * M360: SCARA calibration: Move to cal-position ThetaA (0 deg calibration) */ inline bool gcode_M360() { SERIAL_ECHOLN(" Cal: Theta 0 "); return SCARA_move_to_cal(0, 120); } /** * M361: SCARA calibration: Move to cal-position ThetaB (90 deg calibration - steps per degree) */ inline bool gcode_M361() { SERIAL_ECHOLN(" Cal: Theta 90 "); return SCARA_move_to_cal(90, 130); } /** * M362: SCARA calibration: Move to cal-position PsiA (0 deg calibration) */ inline bool gcode_M362() { SERIAL_ECHOLN(" Cal: Psi 0 "); return SCARA_move_to_cal(60, 180); } /** * M363: SCARA calibration: Move to cal-position PsiB (90 deg calibration - steps per degree) */ inline bool gcode_M363() { SERIAL_ECHOLN(" Cal: Psi 90 "); return SCARA_move_to_cal(50, 90); } /** * M364: SCARA calibration: Move to cal-position PSIC (90 deg to Theta calibration position) */ inline bool gcode_M364() { SERIAL_ECHOLN(" Cal: Theta-Psi 90 "); return SCARA_move_to_cal(45, 135); } /** * M365: SCARA calibration: Scaling factor, X, Y, Z axis */ inline void gcode_M365() { for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { if (code_seen(axis_codes[i])) { axis_scaling[i] = code_value(); } } } #endif // SCARA #if ENABLED(EXT_SOLENOID) void enable_solenoid(uint8_t num) { switch (num) { case 0: OUT_WRITE(SOL0_PIN, HIGH); break; #if HAS_SOLENOID_1 case 1: OUT_WRITE(SOL1_PIN, HIGH); break; #endif #if HAS_SOLENOID_2 case 2: OUT_WRITE(SOL2_PIN, HIGH); break; #endif #if HAS_SOLENOID_3 case 3: OUT_WRITE(SOL3_PIN, HIGH); break; #endif default: SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_INVALID_SOLENOID); break; } } void enable_solenoid_on_active_extruder() { enable_solenoid(active_extruder); } void disable_all_solenoids() { OUT_WRITE(SOL0_PIN, LOW); OUT_WRITE(SOL1_PIN, LOW); OUT_WRITE(SOL2_PIN, LOW); OUT_WRITE(SOL3_PIN, LOW); } /** * M380: Enable solenoid on the active extruder */ inline void gcode_M380() { enable_solenoid_on_active_extruder(); } /** * M381: Disable all solenoids */ inline void gcode_M381() { disable_all_solenoids(); } #endif // EXT_SOLENOID /** * M400: Finish all moves */ inline void gcode_M400() { st_synchronize(); } #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(Z_PROBE_SLED) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) /** * M401: Engage Z Servo endstop if available */ inline void gcode_M401() { #if HAS_SERVO_ENDSTOPS raise_z_for_servo(); #endif deploy_z_probe(); } /** * M402: Retract Z Servo endstop if enabled */ inline void gcode_M402() { #if HAS_SERVO_ENDSTOPS raise_z_for_servo(); #endif stow_z_probe(false); } #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED #if ENABLED(FILAMENT_WIDTH_SENSOR) /** * M404: Display or set the nominal filament width (3mm, 1.75mm ) W<3.0> */ inline void gcode_M404() { if (code_seen('W')) { filament_width_nominal = code_value(); } else { SERIAL_PROTOCOLPGM("Filament dia (nominal mm):"); SERIAL_PROTOCOLLN(filament_width_nominal); } } /** * M405: Turn on filament sensor for control */ inline void gcode_M405() { if (code_seen('D')) meas_delay_cm = code_value(); NOMORE(meas_delay_cm, MAX_MEASUREMENT_DELAY); if (filwidth_delay_index2 == -1) { // Initialize the ring buffer if not done since startup int temp_ratio = widthFil_to_size_ratio(); for (uint8_t i = 0; i < COUNT(measurement_delay); ++i) measurement_delay[i] = temp_ratio - 100; // Subtract 100 to scale within a signed byte filwidth_delay_index1 = filwidth_delay_index2 = 0; } filament_sensor = true; //SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); //SERIAL_PROTOCOL(filament_width_meas); //SERIAL_PROTOCOLPGM("Extrusion ratio(%):"); //SERIAL_PROTOCOL(extruder_multiplier[active_extruder]); } /** * M406: Turn off filament sensor for control */ inline void gcode_M406() { filament_sensor = false; } /** * M407: Get measured filament diameter on serial output */ inline void gcode_M407() { SERIAL_PROTOCOLPGM("Filament dia (measured mm):"); SERIAL_PROTOCOLLN(filament_width_meas); } #endif // FILAMENT_WIDTH_SENSOR /** * M410: Quickstop - Abort all planned moves * * This will stop the carriages mid-move, so most likely they * will be out of sync with the stepper position after this. */ inline void gcode_M410() { quickStop(); } #if ENABLED(MESH_BED_LEVELING) /** * M420: Enable/Disable Mesh Bed Leveling */ inline void gcode_M420() { if (code_seen('S') && code_has_value()) mbl.active = !!code_value_short(); } /** * M421: Set a single Mesh Bed Leveling Z coordinate */ inline void gcode_M421() { float x = 0, y = 0, z = 0; bool err = false, hasX, hasY, hasZ; if ((hasX = code_seen('X'))) x = code_value(); if ((hasY = code_seen('Y'))) y = code_value(); if ((hasZ = code_seen('Z'))) z = code_value(); if (!hasX || !hasY || !hasZ) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_M421_REQUIRES_XYZ); err = true; } if (x >= MESH_NUM_X_POINTS || y >= MESH_NUM_Y_POINTS) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_MESH_INDEX_OOB); err = true; } if (!err) mbl.set_z(mbl.select_x_index(x), mbl.select_y_index(y), z); } #endif /** * M428: Set home_offset based on the distance between the * current_position and the nearest "reference point." * If an axis is past center its endstop position * is the reference-point. Otherwise it uses 0. This allows * the Z offset to be set near the bed when using a max endstop. * * M428 can't be used more than 2cm away from 0 or an endstop. * * Use M206 to set these values directly. */ inline void gcode_M428() { bool err = false; for (int8_t i = X_AXIS; i <= Z_AXIS; i++) { if (axis_homed[i]) { float base = (current_position[i] > (min_pos[i] + max_pos[i]) / 2) ? base_home_pos(i) : 0, diff = current_position[i] - base; if (diff > -20 && diff < 20) { set_home_offset((AxisEnum)i, home_offset[i] - diff); } else { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_M428_TOO_FAR); LCD_ALERTMESSAGEPGM("Err: Too far!"); #if HAS_BUZZER buzz(200, 40); #endif err = true; break; } } } if (!err) { sync_plan_position(); LCD_ALERTMESSAGEPGM(MSG_HOME_OFFSETS_APPLIED); #if HAS_BUZZER buzz(200, 659); buzz(200, 698); #endif } } /** * M500: Store settings in EEPROM */ inline void gcode_M500() { Config_StoreSettings(); } /** * M501: Read settings from EEPROM */ inline void gcode_M501() { Config_RetrieveSettings(); } /** * M502: Revert to default settings */ inline void gcode_M502() { Config_ResetDefault(); } /** * M503: print settings currently in memory */ inline void gcode_M503() { Config_PrintSettings(code_seen('S') && code_value() == 0); } #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) /** * M540: Set whether SD card print should abort on endstop hit (M540 S<0|1>) */ inline void gcode_M540() { if (code_seen('S')) abort_on_endstop_hit = (code_value() > 0); } #endif // ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET inline void gcode_SET_Z_PROBE_OFFSET() { SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_ZPROBE_ZOFFSET); SERIAL_CHAR(' '); if (code_seen('Z')) { float value = code_value(); if (Z_PROBE_OFFSET_RANGE_MIN <= value && value <= Z_PROBE_OFFSET_RANGE_MAX) { zprobe_zoffset = value; SERIAL_ECHO(zprobe_zoffset); } else { SERIAL_ECHOPGM(MSG_Z_MIN); SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MIN); SERIAL_ECHOPGM(MSG_Z_MAX); SERIAL_ECHO(Z_PROBE_OFFSET_RANGE_MAX); } } else { SERIAL_ECHOPAIR(": ", zprobe_zoffset); } SERIAL_EOL; } #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET #if ENABLED(FILAMENTCHANGEENABLE) /** * M600: Pause for filament change * * E[distance] - Retract the filament this far (negative value) * Z[distance] - Move the Z axis by this distance * X[position] - Move to this X position, with Y * Y[position] - Move to this Y position, with X * L[distance] - Retract distance for removal (manual reload) * * Default values are used for omitted arguments. * */ inline void gcode_M600() { if (degHotend(active_extruder) < extrude_min_temp) { SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_TOO_COLD_FOR_M600); return; } float lastpos[NUM_AXIS]; #if ENABLED(DELTA) float fr60 = feedrate / 60; #endif for (int i = 0; i < NUM_AXIS; i++) lastpos[i] = destination[i] = current_position[i]; #if ENABLED(DELTA) #define RUNPLAN calculate_delta(destination); \ plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder); #else #define RUNPLAN line_to_destination(); #endif //retract by E if (code_seen('E')) destination[E_AXIS] += code_value(); #ifdef FILAMENTCHANGE_FIRSTRETRACT else destination[E_AXIS] += FILAMENTCHANGE_FIRSTRETRACT; #endif RUNPLAN; //lift Z if (code_seen('Z')) destination[Z_AXIS] += code_value(); #ifdef FILAMENTCHANGE_ZADD else destination[Z_AXIS] += FILAMENTCHANGE_ZADD; #endif RUNPLAN; //move xy if (code_seen('X')) destination[X_AXIS] = code_value(); #ifdef FILAMENTCHANGE_XPOS else destination[X_AXIS] = FILAMENTCHANGE_XPOS; #endif if (code_seen('Y')) destination[Y_AXIS] = code_value(); #ifdef FILAMENTCHANGE_YPOS else destination[Y_AXIS] = FILAMENTCHANGE_YPOS; #endif RUNPLAN; if (code_seen('L')) destination[E_AXIS] += code_value(); #ifdef FILAMENTCHANGE_FINALRETRACT else destination[E_AXIS] += FILAMENTCHANGE_FINALRETRACT; #endif RUNPLAN; //finish moves st_synchronize(); //disable extruder steppers so filament can be removed disable_e0(); disable_e1(); disable_e2(); disable_e3(); delay(100); LCD_ALERTMESSAGEPGM(MSG_FILAMENTCHANGE); #if DISABLED(AUTO_FILAMENT_CHANGE) millis_t next_tick = 0; #endif KEEPALIVE_STATE(PAUSED_FOR_USER); while (!lcd_clicked()) { #if DISABLED(AUTO_FILAMENT_CHANGE) millis_t ms = millis(); if (ELAPSED(ms, next_tick)) { lcd_quick_feedback(); next_tick = ms + 2500UL; // feedback every 2.5s while waiting } idle(true); #else current_position[E_AXIS] += AUTO_FILAMENT_CHANGE_LENGTH; destination[E_AXIS] = current_position[E_AXIS]; line_to_destination(AUTO_FILAMENT_CHANGE_FEEDRATE); st_synchronize(); #endif } // while(!lcd_clicked) KEEPALIVE_STATE(IN_HANDLER); lcd_quick_feedback(); // click sound feedback #if ENABLED(AUTO_FILAMENT_CHANGE) current_position[E_AXIS] = 0; st_synchronize(); #endif //return to normal if (code_seen('L')) destination[E_AXIS] -= code_value(); #ifdef FILAMENTCHANGE_FINALRETRACT else destination[E_AXIS] -= FILAMENTCHANGE_FINALRETRACT; #endif current_position[E_AXIS] = destination[E_AXIS]; //the long retract of L is compensated by manual filament feeding plan_set_e_position(current_position[E_AXIS]); RUNPLAN; //should do nothing lcd_reset_alert_level(); #if ENABLED(DELTA) // Move XYZ to starting position, then E calculate_delta(lastpos); plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], destination[E_AXIS], fr60, active_extruder); plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], lastpos[E_AXIS], fr60, active_extruder); #else // Move XY to starting position, then Z, then E destination[X_AXIS] = lastpos[X_AXIS]; destination[Y_AXIS] = lastpos[Y_AXIS]; line_to_destination(); destination[Z_AXIS] = lastpos[Z_AXIS]; line_to_destination(); destination[E_AXIS] = lastpos[E_AXIS]; line_to_destination(); #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) filrunoutEnqueued = false; #endif } #endif // FILAMENTCHANGEENABLE #if ENABLED(DUAL_X_CARRIAGE) /** * M605: Set dual x-carriage movement mode * * M605 S0: Full control mode. The slicer has full control over x-carriage movement * M605 S1: Auto-park mode. The inactive head will auto park/unpark without slicer involvement * M605 S2 [Xnnn] [Rmmm]: Duplication mode. The second extruder will duplicate the first with nnn * millimeters x-offset and an optional differential hotend temperature of * mmm degrees. E.g., with "M605 S2 X100 R2" the second extruder will duplicate * the first with a spacing of 100mm in the x direction and 2 degrees hotter. * * Note: the X axis should be homed after changing dual x-carriage mode. */ inline void gcode_M605() { st_synchronize(); if (code_seen('S')) dual_x_carriage_mode = code_value(); switch (dual_x_carriage_mode) { case DXC_DUPLICATION_MODE: if (code_seen('X')) duplicate_extruder_x_offset = max(code_value(), X2_MIN_POS - x_home_pos(0)); if (code_seen('R')) duplicate_extruder_temp_offset = code_value(); SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_HOTEND_OFFSET); SERIAL_CHAR(' '); SERIAL_ECHO(extruder_offset[X_AXIS][0]); SERIAL_CHAR(','); SERIAL_ECHO(extruder_offset[Y_AXIS][0]); SERIAL_CHAR(' '); SERIAL_ECHO(duplicate_extruder_x_offset); SERIAL_CHAR(','); SERIAL_ECHOLN(extruder_offset[Y_AXIS][1]); break; case DXC_FULL_CONTROL_MODE: case DXC_AUTO_PARK_MODE: break; default: dual_x_carriage_mode = DEFAULT_DUAL_X_CARRIAGE_MODE; break; } active_extruder_parked = false; extruder_duplication_enabled = false; delayed_move_time = 0; } #endif // DUAL_X_CARRIAGE /** * M907: Set digital trimpot motor current using axis codes X, Y, Z, E, B, S */ inline void gcode_M907() { #if HAS_DIGIPOTSS for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_current(i, code_value()); if (code_seen('B')) digipot_current(4, code_value()); if (code_seen('S')) for (int i = 0; i <= 4; i++) digipot_current(i, code_value()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) if (code_seen('X')) digipot_current(0, code_value()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) if (code_seen('Z')) digipot_current(1, code_value()); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) if (code_seen('E')) digipot_current(2, code_value()); #endif #if ENABLED(DIGIPOT_I2C) // this one uses actual amps in floating point for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) digipot_i2c_set_current(i, code_value()); // for each additional extruder (named B,C,D,E..., channels 4,5,6,7...) for (int i = NUM_AXIS; i < DIGIPOT_I2C_NUM_CHANNELS; i++) if (code_seen('B' + i - (NUM_AXIS))) digipot_i2c_set_current(i, code_value()); #endif #if ENABLED(DAC_STEPPER_CURRENT) if (code_seen('S')) { float dac_percent = code_value(); for (uint8_t i = 0; i <= 4; i++) dac_current_percent(i, dac_percent); } for (uint8_t i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) dac_current_percent(i, code_value()); #endif } #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT) /** * M908: Control digital trimpot directly (M908 P<pin> S<current>) */ inline void gcode_M908() { #if HAS_DIGIPOTSS digitalPotWrite( code_seen('P') ? code_value() : 0, code_seen('S') ? code_value() : 0 ); #endif #ifdef DAC_STEPPER_CURRENT dac_current_raw( code_seen('P') ? code_value_long() : -1, code_seen('S') ? code_value_short() : 0 ); #endif } #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF inline void gcode_M909() { dac_print_values(); } inline void gcode_M910() { dac_commit_eeprom(); } #endif #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT #if HAS_MICROSTEPS // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. inline void gcode_M350() { if (code_seen('S')) for (int i = 0; i <= 4; i++) microstep_mode(i, code_value()); for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_mode(i, (uint8_t)code_value()); if (code_seen('B')) microstep_mode(4, code_value()); microstep_readings(); } /** * M351: Toggle MS1 MS2 pins directly with axis codes X Y Z E B * S# determines MS1 or MS2, X# sets the pin high/low. */ inline void gcode_M351() { if (code_seen('S')) switch (code_value_short()) { case 1: for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, code_value(), -1); if (code_seen('B')) microstep_ms(4, code_value(), -1); break; case 2: for (int i = 0; i < NUM_AXIS; i++) if (code_seen(axis_codes[i])) microstep_ms(i, -1, code_value()); if (code_seen('B')) microstep_ms(4, -1, code_value()); break; } microstep_readings(); } #endif // HAS_MICROSTEPS /** * M999: Restart after being stopped */ inline void gcode_M999() { Running = true; lcd_reset_alert_level(); // gcode_LastN = Stopped_gcode_LastN; FlushSerialRequestResend(); } /** * T0-T3: Switch tool, usually switching extruders * * F[mm/min] Set the movement feedrate */ inline void gcode_T(uint8_t tmp_extruder) { if (tmp_extruder >= EXTRUDERS) { SERIAL_ECHO_START; SERIAL_CHAR('T'); SERIAL_PROTOCOL_F(tmp_extruder, DEC); SERIAL_ECHOLN(MSG_INVALID_EXTRUDER); } else { target_extruder = tmp_extruder; #if EXTRUDERS > 1 bool make_move = false; #endif if (code_seen('F')) { #if EXTRUDERS > 1 make_move = true; #endif float next_feedrate = code_value(); if (next_feedrate > 0.0) feedrate = next_feedrate; } #if EXTRUDERS > 1 if (tmp_extruder != active_extruder) { // Save current position to return to after applying extruder offset set_destination_to_current(); #if ENABLED(DUAL_X_CARRIAGE) if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE && IsRunning() && (delayed_move_time || current_position[X_AXIS] != x_home_pos(active_extruder))) { // Park old head: 1) raise 2) move to park position 3) lower plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT, current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS] + TOOLCHANGE_PARK_ZLIFT, current_position[E_AXIS], max_feedrate[X_AXIS], active_extruder); plan_buffer_line(x_home_pos(active_extruder), current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); st_synchronize(); } // apply Y & Z extruder offset (x offset is already used in determining home pos) current_position[Y_AXIS] -= extruder_offset[Y_AXIS][active_extruder] - extruder_offset[Y_AXIS][tmp_extruder]; current_position[Z_AXIS] -= extruder_offset[Z_AXIS][active_extruder] - extruder_offset[Z_AXIS][tmp_extruder]; active_extruder = tmp_extruder; // This function resets the max/min values - the current position may be overwritten below. set_axis_is_at_home(X_AXIS); if (dual_x_carriage_mode == DXC_FULL_CONTROL_MODE) { current_position[X_AXIS] = inactive_extruder_x_pos; inactive_extruder_x_pos = destination[X_AXIS]; } else if (dual_x_carriage_mode == DXC_DUPLICATION_MODE) { active_extruder_parked = (active_extruder == 0); // this triggers the second extruder to move into the duplication position if (active_extruder == 0 || active_extruder_parked) current_position[X_AXIS] = inactive_extruder_x_pos; else current_position[X_AXIS] = destination[X_AXIS] + duplicate_extruder_x_offset; inactive_extruder_x_pos = destination[X_AXIS]; extruder_duplication_enabled = false; } else { // record raised toolhead position for use by unpark memcpy(raised_parked_position, current_position, sizeof(raised_parked_position)); raised_parked_position[Z_AXIS] += TOOLCHANGE_UNPARK_ZLIFT; active_extruder_parked = true; delayed_move_time = 0; } #else // !DUAL_X_CARRIAGE #if ENABLED(AUTO_BED_LEVELING_FEATURE) // Offset extruder, make sure to apply the bed level rotation matrix vector_3 tmp_offset_vec = vector_3(extruder_offset[X_AXIS][tmp_extruder], extruder_offset[Y_AXIS][tmp_extruder], 0), act_offset_vec = vector_3(extruder_offset[X_AXIS][active_extruder], extruder_offset[Y_AXIS][active_extruder], 0), offset_vec = tmp_offset_vec - act_offset_vec; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOLNPGM(">>> gcode_T"); tmp_offset_vec.debug("tmp_offset_vec"); act_offset_vec.debug("act_offset_vec"); offset_vec.debug("offset_vec (BEFORE)"); DEBUG_POS("BEFORE rotation", current_position); } #endif offset_vec.apply_rotation(plan_bed_level_matrix.transpose(plan_bed_level_matrix)); current_position[X_AXIS] += offset_vec.x; current_position[Y_AXIS] += offset_vec.y; current_position[Z_AXIS] += offset_vec.z; #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { offset_vec.debug("offset_vec (AFTER)"); DEBUG_POS("AFTER rotation", current_position); SERIAL_ECHOLNPGM("<<< gcode_T"); } #endif #else // !AUTO_BED_LEVELING_FEATURE // Offset extruder (only by XY) for (int i=X_AXIS; i<=Y_AXIS; i++) current_position[i] += extruder_offset[i][tmp_extruder] - extruder_offset[i][active_extruder]; #endif // !AUTO_BED_LEVELING_FEATURE // Set the new active extruder and position active_extruder = tmp_extruder; #endif // !DUAL_X_CARRIAGE #if ENABLED(DELTA) sync_plan_position_delta(); #else sync_plan_position(); #endif // Move to the old position if 'F' was in the parameters if (make_move && IsRunning()) prepare_move(); } #if ENABLED(EXT_SOLENOID) st_synchronize(); disable_all_solenoids(); enable_solenoid_on_active_extruder(); #endif // EXT_SOLENOID #endif // EXTRUDERS > 1 SERIAL_ECHO_START; SERIAL_ECHO(MSG_ACTIVE_EXTRUDER); SERIAL_PROTOCOLLN((int)active_extruder); } } /** * Process a single command and dispatch it to its handler * This is called from the main loop() */ void process_next_command() { current_command = command_queue[cmd_queue_index_r]; if (DEBUGGING(ECHO)) { SERIAL_ECHO_START; SERIAL_ECHOLN(current_command); } // Sanitize the current command: // - Skip leading spaces // - Bypass N[-0-9][0-9]*[ ]* // - Overwrite * with nul to mark the end while (*current_command == ' ') ++current_command; if (*current_command == 'N' && NUMERIC_SIGNED(current_command[1])) { current_command += 2; // skip N[-0-9] while (NUMERIC(*current_command)) ++current_command; // skip [0-9]* while (*current_command == ' ') ++current_command; // skip [ ]* } char* starpos = strchr(current_command, '*'); // * should always be the last parameter if (starpos) while (*starpos == ' ' || *starpos == '*') *starpos-- = '\0'; // nullify '*' and ' ' char *cmd_ptr = current_command; // Get the command code, which must be G, M, or T char command_code = *cmd_ptr++; // Skip spaces to get the numeric part while (*cmd_ptr == ' ') cmd_ptr++; uint16_t codenum = 0; // define ahead of goto // Bail early if there's no code bool code_is_good = NUMERIC(*cmd_ptr); if (!code_is_good) goto ExitUnknownCommand; // Get and skip the code number do { codenum = (codenum * 10) + (*cmd_ptr - '0'); cmd_ptr++; } while (NUMERIC(*cmd_ptr)); // Skip all spaces to get to the first argument, or nul while (*cmd_ptr == ' ') cmd_ptr++; // The command's arguments (if any) start here, for sure! current_command_args = cmd_ptr; KEEPALIVE_STATE(IN_HANDLER); // Handle a known G, M, or T switch (command_code) { case 'G': switch (codenum) { // G0, G1 case 0: case 1: gcode_G0_G1(); break; // G2, G3 #if DISABLED(SCARA) case 2: // G2 - CW ARC case 3: // G3 - CCW ARC gcode_G2_G3(codenum == 2); break; #endif // G4 Dwell case 4: gcode_G4(); break; #if ENABLED(FWRETRACT) case 10: // G10: retract case 11: // G11: retract_recover gcode_G10_G11(codenum == 10); break; #endif //FWRETRACT case 28: // G28: Home all axes, one at a time gcode_G28(); break; #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING) case 29: // G29 Detailed Z probe, probes the bed at 3 or more points. gcode_G29(); break; #endif #if ENABLED(AUTO_BED_LEVELING_FEATURE) #if DISABLED(Z_PROBE_SLED) case 30: // G30 Single Z probe gcode_G30(); break; #else // Z_PROBE_SLED case 31: // G31: dock the sled case 32: // G32: undock the sled dock_sled(codenum == 31); break; #endif // Z_PROBE_SLED #endif // AUTO_BED_LEVELING_FEATURE case 90: // G90 relative_mode = false; break; case 91: // G91 relative_mode = true; break; case 92: // G92 gcode_G92(); break; } break; case 'M': switch (codenum) { #if ENABLED(ULTIPANEL) case 0: // M0 - Unconditional stop - Wait for user button press on LCD case 1: // M1 - Conditional stop - Wait for user button press on LCD gcode_M0_M1(); break; #endif // ULTIPANEL case 17: gcode_M17(); break; #if ENABLED(SDSUPPORT) case 20: // M20 - list SD card gcode_M20(); break; case 21: // M21 - init SD card gcode_M21(); break; case 22: //M22 - release SD card gcode_M22(); break; case 23: //M23 - Select file gcode_M23(); break; case 24: //M24 - Start SD print gcode_M24(); break; case 25: //M25 - Pause SD print gcode_M25(); break; case 26: //M26 - Set SD index gcode_M26(); break; case 27: //M27 - Get SD status gcode_M27(); break; case 28: //M28 - Start SD write gcode_M28(); break; case 29: //M29 - Stop SD write gcode_M29(); break; case 30: //M30 <filename> Delete File gcode_M30(); break; case 32: //M32 - Select file and start SD print gcode_M32(); break; #if ENABLED(LONG_FILENAME_HOST_SUPPORT) case 33: //M33 - Get the long full path to a file or folder gcode_M33(); break; #endif // LONG_FILENAME_HOST_SUPPORT case 928: //M928 - Start SD write gcode_M928(); break; #endif //SDSUPPORT case 31: //M31 take time since the start of the SD print or an M109 command gcode_M31(); break; case 42: //M42 -Change pin status via gcode gcode_M42(); break; #if ENABLED(AUTO_BED_LEVELING_FEATURE) && ENABLED(Z_MIN_PROBE_REPEATABILITY_TEST) case 48: // M48 Z probe repeatability gcode_M48(); break; #endif // AUTO_BED_LEVELING_FEATURE && Z_MIN_PROBE_REPEATABILITY_TEST case 75: // Start print timer gcode_M75(); break; case 76: // Pause print timer gcode_M76(); break; case 77: // Stop print timer gcode_M77(); break; #if ENABLED(M100_FREE_MEMORY_WATCHER) case 100: gcode_M100(); break; #endif case 104: // M104 gcode_M104(); break; case 110: // M110: Set Current Line Number gcode_M110(); break; case 111: // M111: Set debug level gcode_M111(); break; case 112: // M112: Emergency Stop gcode_M112(); break; #if ENABLED(HOST_KEEPALIVE_FEATURE) case 113: // M113: Set Host Keepalive interval gcode_M113(); break; #endif case 140: // M140: Set bed temp gcode_M140(); break; case 105: // M105: Read current temperature gcode_M105(); KEEPALIVE_STATE(NOT_BUSY); return; // "ok" already printed case 109: // M109: Wait for temperature gcode_M109(); break; #if HAS_TEMP_BED case 190: // M190: Wait for bed heater to reach target gcode_M190(); break; #endif // HAS_TEMP_BED #if FAN_COUNT > 0 case 106: // M106: Fan On gcode_M106(); break; case 107: // M107: Fan Off gcode_M107(); break; #endif // FAN_COUNT > 0 #if ENABLED(BARICUDA) // PWM for HEATER_1_PIN #if HAS_HEATER_1 case 126: // M126: valve open gcode_M126(); break; case 127: // M127: valve closed gcode_M127(); break; #endif // HAS_HEATER_1 // PWM for HEATER_2_PIN #if HAS_HEATER_2 case 128: // M128: valve open gcode_M128(); break; case 129: // M129: valve closed gcode_M129(); break; #endif // HAS_HEATER_2 #endif // BARICUDA #if HAS_POWER_SWITCH case 80: // M80: Turn on Power Supply gcode_M80(); break; #endif // HAS_POWER_SWITCH case 81: // M81: Turn off Power, including Power Supply, if possible gcode_M81(); break; case 82: gcode_M82(); break; case 83: gcode_M83(); break; case 18: // (for compatibility) case 84: // M84 gcode_M18_M84(); break; case 85: // M85 gcode_M85(); break; case 92: // M92: Set the steps-per-unit for one or more axes gcode_M92(); break; case 115: // M115: Report capabilities gcode_M115(); break; case 117: // M117: Set LCD message text, if possible gcode_M117(); break; case 114: // M114: Report current position gcode_M114(); break; case 120: // M120: Enable endstops gcode_M120(); break; case 121: // M121: Disable endstops gcode_M121(); break; case 119: // M119: Report endstop states gcode_M119(); break; #if ENABLED(ULTIPANEL) case 145: // M145: Set material heatup parameters gcode_M145(); break; #endif #if ENABLED(BLINKM) case 150: // M150 gcode_M150(); break; #endif //BLINKM #if ENABLED(EXPERIMENTAL_I2CBUS) case 155: gcode_M155(); break; case 156: gcode_M156(); break; #endif //EXPERIMENTAL_I2CBUS case 200: // M200 D<millimeters> set filament diameter and set E axis units to cubic millimeters (use S0 to set back to millimeters). gcode_M200(); break; case 201: // M201 gcode_M201(); break; #if 0 // Not used for Sprinter/grbl gen6 case 202: // M202 gcode_M202(); break; #endif case 203: // M203 max feedrate mm/sec gcode_M203(); break; case 204: // M204 acclereration S normal moves T filmanent only moves gcode_M204(); break; case 205: //M205 advanced settings: minimum travel speed S=while printing T=travel only, B=minimum segment time X= maximum xy jerk, Z=maximum Z jerk gcode_M205(); break; case 206: // M206 additional homing offset gcode_M206(); break; #if ENABLED(DELTA) case 665: // M665 set delta configurations L<diagonal_rod> R<delta_radius> S<segments_per_sec> gcode_M665(); break; #endif #if ENABLED(DELTA) || ENABLED(Z_DUAL_ENDSTOPS) case 666: // M666 set delta / dual endstop adjustment gcode_M666(); break; #endif #if ENABLED(FWRETRACT) case 207: //M207 - set retract length S[positive mm] F[feedrate mm/min] Z[additional zlift/hop] gcode_M207(); break; case 208: // M208 - set retract recover length S[positive mm surplus to the M207 S*] F[feedrate mm/min] gcode_M208(); break; case 209: // M209 - S<1=true/0=false> enable automatic retract detect if the slicer did not support G10/11: every normal extrude-only move will be classified as retract depending on the direction. gcode_M209(); break; #endif // FWRETRACT #if EXTRUDERS > 1 case 218: // M218 - set hotend offset (in mm), T<extruder_number> X<offset_on_X> Y<offset_on_Y> gcode_M218(); break; #endif case 220: // M220 S<factor in percent>- set speed factor override percentage gcode_M220(); break; case 221: // M221 S<factor in percent>- set extrude factor override percentage gcode_M221(); break; case 226: // M226 P<pin number> S<pin state>- Wait until the specified pin reaches the state required gcode_M226(); break; #if HAS_SERVOS case 280: // M280 - set servo position absolute. P: servo index, S: angle or microseconds gcode_M280(); break; #endif // HAS_SERVOS #if HAS_BUZZER case 300: // M300 - Play beep tone gcode_M300(); break; #endif // HAS_BUZZER #if ENABLED(PIDTEMP) case 301: // M301 gcode_M301(); break; #endif // PIDTEMP #if ENABLED(PIDTEMPBED) case 304: // M304 gcode_M304(); break; #endif // PIDTEMPBED #if defined(CHDK) || HAS_PHOTOGRAPH case 240: // M240 Triggers a camera by emulating a Canon RC-1 : http://www.doc-diy.net/photo/rc-1_hacked/ gcode_M240(); break; #endif // CHDK || PHOTOGRAPH_PIN #if ENABLED(HAS_LCD_CONTRAST) case 250: // M250 Set LCD contrast value: C<value> (value 0..63) gcode_M250(); break; #endif // HAS_LCD_CONTRAST #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) case 302: // allow cold extrudes, or set the minimum extrude temperature gcode_M302(); break; #endif // PREVENT_DANGEROUS_EXTRUDE case 303: // M303 PID autotune gcode_M303(); break; #if ENABLED(SCARA) case 360: // M360 SCARA Theta pos1 if (gcode_M360()) return; break; case 361: // M361 SCARA Theta pos2 if (gcode_M361()) return; break; case 362: // M362 SCARA Psi pos1 if (gcode_M362()) return; break; case 363: // M363 SCARA Psi pos2 if (gcode_M363()) return; break; case 364: // M364 SCARA Psi pos3 (90 deg to Theta) if (gcode_M364()) return; break; case 365: // M365 Set SCARA scaling for X Y Z gcode_M365(); break; #endif // SCARA case 400: // M400 finish all moves gcode_M400(); break; #if ENABLED(AUTO_BED_LEVELING_FEATURE) && (HAS_SERVO_ENDSTOPS || ENABLED(Z_PROBE_ALLEN_KEY)) && DISABLED(Z_PROBE_SLED) case 401: gcode_M401(); break; case 402: gcode_M402(); break; #endif // AUTO_BED_LEVELING_FEATURE && (HAS_SERVO_ENDSTOPS || Z_PROBE_ALLEN_KEY) && !Z_PROBE_SLED #if ENABLED(FILAMENT_WIDTH_SENSOR) case 404: //M404 Enter the nominal filament width (3mm, 1.75mm ) N<3.0> or display nominal filament width gcode_M404(); break; case 405: //M405 Turn on filament sensor for control gcode_M405(); break; case 406: //M406 Turn off filament sensor for control gcode_M406(); break; case 407: //M407 Display measured filament diameter gcode_M407(); break; #endif // ENABLED(FILAMENT_WIDTH_SENSOR) case 410: // M410 quickstop - Abort all the planned moves. gcode_M410(); break; #if ENABLED(MESH_BED_LEVELING) case 420: // M420 Enable/Disable Mesh Bed Leveling gcode_M420(); break; case 421: // M421 Set a Mesh Bed Leveling Z coordinate gcode_M421(); break; #endif case 428: // M428 Apply current_position to home_offset gcode_M428(); break; case 500: // M500 Store settings in EEPROM gcode_M500(); break; case 501: // M501 Read settings from EEPROM gcode_M501(); break; case 502: // M502 Revert to default settings gcode_M502(); break; case 503: // M503 print settings currently in memory gcode_M503(); break; #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) case 540: gcode_M540(); break; #endif #ifdef CUSTOM_M_CODE_SET_Z_PROBE_OFFSET case CUSTOM_M_CODE_SET_Z_PROBE_OFFSET: gcode_SET_Z_PROBE_OFFSET(); break; #endif // CUSTOM_M_CODE_SET_Z_PROBE_OFFSET #if ENABLED(FILAMENTCHANGEENABLE) case 600: //Pause for filament change X[pos] Y[pos] Z[relative lift] E[initial retract] L[later retract distance for removal] gcode_M600(); break; #endif // FILAMENTCHANGEENABLE #if ENABLED(DUAL_X_CARRIAGE) case 605: gcode_M605(); break; #endif // DUAL_X_CARRIAGE case 907: // M907 Set digital trimpot motor current using axis codes. gcode_M907(); break; #if HAS_DIGIPOTSS || ENABLED(DAC_STEPPER_CURRENT) case 908: // M908 Control digital trimpot directly. gcode_M908(); break; #if ENABLED(DAC_STEPPER_CURRENT) // As with Printrbot RevF case 909: // M909 Print digipot/DAC current value gcode_M909(); break; case 910: // M910 Commit digipot/DAC value to external EEPROM gcode_M910(); break; #endif #endif // HAS_DIGIPOTSS || DAC_STEPPER_CURRENT #if HAS_MICROSTEPS case 350: // M350 Set microstepping mode. Warning: Steps per unit remains unchanged. S code sets stepping mode for all drivers. gcode_M350(); break; case 351: // M351 Toggle MS1 MS2 pins directly, S# determines MS1 or MS2, X# sets the pin high/low. gcode_M351(); break; #endif // HAS_MICROSTEPS case 999: // M999: Restart after being Stopped gcode_M999(); break; } break; case 'T': gcode_T(codenum); break; default: code_is_good = false; } KEEPALIVE_STATE(NOT_BUSY); ExitUnknownCommand: // Still unknown command? Throw an error if (!code_is_good) unknown_command_error(); ok_to_send(); } void FlushSerialRequestResend() { //char command_queue[cmd_queue_index_r][100]="Resend:"; MYSERIAL.flush(); SERIAL_PROTOCOLPGM(MSG_RESEND); SERIAL_PROTOCOLLN(gcode_LastN + 1); ok_to_send(); } void ok_to_send() { refresh_cmd_timeout(); if (!send_ok[cmd_queue_index_r]) return; SERIAL_PROTOCOLPGM(MSG_OK); #if ENABLED(ADVANCED_OK) char* p = command_queue[cmd_queue_index_r]; if (*p == 'N') { SERIAL_PROTOCOL(' '); SERIAL_ECHO(*p++); while (NUMERIC_SIGNED(*p)) SERIAL_ECHO(*p++); } SERIAL_PROTOCOLPGM(" P"); SERIAL_PROTOCOL(int(BLOCK_BUFFER_SIZE - movesplanned() - 1)); SERIAL_PROTOCOLPGM(" B"); SERIAL_PROTOCOL(BUFSIZE - commands_in_queue); #endif SERIAL_EOL; } void clamp_to_software_endstops(float target[3]) { if (min_software_endstops) { NOLESS(target[X_AXIS], min_pos[X_AXIS]); NOLESS(target[Y_AXIS], min_pos[Y_AXIS]); float negative_z_offset = 0; #if ENABLED(AUTO_BED_LEVELING_FEATURE) if (zprobe_zoffset < 0) negative_z_offset += zprobe_zoffset; if (home_offset[Z_AXIS] < 0) { #if ENABLED(DEBUG_LEVELING_FEATURE) if (DEBUGGING(LEVELING)) { SERIAL_ECHOPAIR("> clamp_to_software_endstops > Add home_offset[Z_AXIS]:", home_offset[Z_AXIS]); SERIAL_EOL; } #endif negative_z_offset += home_offset[Z_AXIS]; } #endif NOLESS(target[Z_AXIS], min_pos[Z_AXIS] + negative_z_offset); } if (max_software_endstops) { NOMORE(target[X_AXIS], max_pos[X_AXIS]); NOMORE(target[Y_AXIS], max_pos[Y_AXIS]); NOMORE(target[Z_AXIS], max_pos[Z_AXIS]); } } #if ENABLED(DELTA) void recalc_delta_settings(float radius, float diagonal_rod) { delta_tower1_x = -SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); // front left tower delta_tower1_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_1); delta_tower2_x = SIN_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); // front right tower delta_tower2_y = -COS_60 * (radius + DELTA_RADIUS_TRIM_TOWER_2); delta_tower3_x = 0.0; // back middle tower delta_tower3_y = (radius + DELTA_RADIUS_TRIM_TOWER_3); delta_diagonal_rod_2_tower_1 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_1); delta_diagonal_rod_2_tower_2 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_2); delta_diagonal_rod_2_tower_3 = sq(diagonal_rod + delta_diagonal_rod_trim_tower_3); } void calculate_delta(float cartesian[3]) { delta[TOWER_1] = sqrt(delta_diagonal_rod_2_tower_1 - sq(delta_tower1_x - cartesian[X_AXIS]) - sq(delta_tower1_y - cartesian[Y_AXIS]) ) + cartesian[Z_AXIS]; delta[TOWER_2] = sqrt(delta_diagonal_rod_2_tower_2 - sq(delta_tower2_x - cartesian[X_AXIS]) - sq(delta_tower2_y - cartesian[Y_AXIS]) ) + cartesian[Z_AXIS]; delta[TOWER_3] = sqrt(delta_diagonal_rod_2_tower_3 - sq(delta_tower3_x - cartesian[X_AXIS]) - sq(delta_tower3_y - cartesian[Y_AXIS]) ) + cartesian[Z_AXIS]; /** SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]); SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]); SERIAL_ECHOPGM("delta a="); SERIAL_ECHO(delta[TOWER_1]); SERIAL_ECHOPGM(" b="); SERIAL_ECHO(delta[TOWER_2]); SERIAL_ECHOPGM(" c="); SERIAL_ECHOLN(delta[TOWER_3]); */ } #if ENABLED(AUTO_BED_LEVELING_FEATURE) // Adjust print surface height by linear interpolation over the bed_level array. void adjust_delta(float cartesian[3]) { if (delta_grid_spacing[0] == 0 || delta_grid_spacing[1] == 0) return; // G29 not done! int half = (AUTO_BED_LEVELING_GRID_POINTS - 1) / 2; float h1 = 0.001 - half, h2 = half - 0.001, grid_x = max(h1, min(h2, cartesian[X_AXIS] / delta_grid_spacing[0])), grid_y = max(h1, min(h2, cartesian[Y_AXIS] / delta_grid_spacing[1])); int floor_x = floor(grid_x), floor_y = floor(grid_y); float ratio_x = grid_x - floor_x, ratio_y = grid_y - floor_y, z1 = bed_level[floor_x + half][floor_y + half], z2 = bed_level[floor_x + half][floor_y + half + 1], z3 = bed_level[floor_x + half + 1][floor_y + half], z4 = bed_level[floor_x + half + 1][floor_y + half + 1], left = (1 - ratio_y) * z1 + ratio_y * z2, right = (1 - ratio_y) * z3 + ratio_y * z4, offset = (1 - ratio_x) * left + ratio_x * right; delta[X_AXIS] += offset; delta[Y_AXIS] += offset; delta[Z_AXIS] += offset; /** SERIAL_ECHOPGM("grid_x="); SERIAL_ECHO(grid_x); SERIAL_ECHOPGM(" grid_y="); SERIAL_ECHO(grid_y); SERIAL_ECHOPGM(" floor_x="); SERIAL_ECHO(floor_x); SERIAL_ECHOPGM(" floor_y="); SERIAL_ECHO(floor_y); SERIAL_ECHOPGM(" ratio_x="); SERIAL_ECHO(ratio_x); SERIAL_ECHOPGM(" ratio_y="); SERIAL_ECHO(ratio_y); SERIAL_ECHOPGM(" z1="); SERIAL_ECHO(z1); SERIAL_ECHOPGM(" z2="); SERIAL_ECHO(z2); SERIAL_ECHOPGM(" z3="); SERIAL_ECHO(z3); SERIAL_ECHOPGM(" z4="); SERIAL_ECHO(z4); SERIAL_ECHOPGM(" left="); SERIAL_ECHO(left); SERIAL_ECHOPGM(" right="); SERIAL_ECHO(right); SERIAL_ECHOPGM(" offset="); SERIAL_ECHOLN(offset); */ } #endif // AUTO_BED_LEVELING_FEATURE #endif // DELTA #if ENABLED(MESH_BED_LEVELING) // This function is used to split lines on mesh borders so each segment is only part of one mesh area void mesh_plan_buffer_line(float x, float y, float z, const float e, float feed_rate, const uint8_t& extruder, uint8_t x_splits = 0xff, uint8_t y_splits = 0xff) { if (!mbl.active) { plan_buffer_line(x, y, z, e, feed_rate, extruder); set_current_to_destination(); return; } int pix = mbl.select_x_index(current_position[X_AXIS] - home_offset[X_AXIS]); int piy = mbl.select_y_index(current_position[Y_AXIS] - home_offset[Y_AXIS]); int ix = mbl.select_x_index(x - home_offset[X_AXIS]); int iy = mbl.select_y_index(y - home_offset[Y_AXIS]); pix = min(pix, MESH_NUM_X_POINTS - 2); piy = min(piy, MESH_NUM_Y_POINTS - 2); ix = min(ix, MESH_NUM_X_POINTS - 2); iy = min(iy, MESH_NUM_Y_POINTS - 2); if (pix == ix && piy == iy) { // Start and end on same mesh square plan_buffer_line(x, y, z, e, feed_rate, extruder); set_current_to_destination(); return; } float nx, ny, nz, ne, normalized_dist; if (ix > pix && TEST(x_splits, ix)) { nx = mbl.get_x(ix) + home_offset[X_AXIS]; normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]); ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; CBI(x_splits, ix); } else if (ix < pix && TEST(x_splits, pix)) { nx = mbl.get_x(pix) + home_offset[X_AXIS]; normalized_dist = (nx - current_position[X_AXIS]) / (x - current_position[X_AXIS]); ny = current_position[Y_AXIS] + (y - current_position[Y_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; CBI(x_splits, pix); } else if (iy > piy && TEST(y_splits, iy)) { ny = mbl.get_y(iy) + home_offset[Y_AXIS]; normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; CBI(y_splits, iy); } else if (iy < piy && TEST(y_splits, piy)) { ny = mbl.get_y(piy) + home_offset[Y_AXIS]; normalized_dist = (ny - current_position[Y_AXIS]) / (y - current_position[Y_AXIS]); nx = current_position[X_AXIS] + (x - current_position[X_AXIS]) * normalized_dist; nz = current_position[Z_AXIS] + (z - current_position[Z_AXIS]) * normalized_dist; ne = current_position[E_AXIS] + (e - current_position[E_AXIS]) * normalized_dist; CBI(y_splits, piy); } else { // Already split on a border plan_buffer_line(x, y, z, e, feed_rate, extruder); set_current_to_destination(); return; } // Do the split and look for more borders destination[X_AXIS] = nx; destination[Y_AXIS] = ny; destination[Z_AXIS] = nz; destination[E_AXIS] = ne; mesh_plan_buffer_line(nx, ny, nz, ne, feed_rate, extruder, x_splits, y_splits); destination[X_AXIS] = x; destination[Y_AXIS] = y; destination[Z_AXIS] = z; destination[E_AXIS] = e; mesh_plan_buffer_line(x, y, z, e, feed_rate, extruder, x_splits, y_splits); } #endif // MESH_BED_LEVELING #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) inline void prevent_dangerous_extrude(float& curr_e, float& dest_e) { if (DEBUGGING(DRYRUN)) return; float de = dest_e - curr_e; if (de) { if (degHotend(active_extruder) < extrude_min_temp) { curr_e = dest_e; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); } #if ENABLED(PREVENT_LENGTHY_EXTRUDE) if (labs(de) > EXTRUDE_MAXLENGTH) { curr_e = dest_e; // Behave as if the move really took place, but ignore E part SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); } #endif } } #endif // PREVENT_DANGEROUS_EXTRUDE #if ENABLED(DELTA) || ENABLED(SCARA) inline bool prepare_move_delta(float target[NUM_AXIS]) { float difference[NUM_AXIS]; for (int8_t i = 0; i < NUM_AXIS; i++) difference[i] = target[i] - current_position[i]; float cartesian_mm = sqrt(sq(difference[X_AXIS]) + sq(difference[Y_AXIS]) + sq(difference[Z_AXIS])); if (cartesian_mm < 0.000001) cartesian_mm = abs(difference[E_AXIS]); if (cartesian_mm < 0.000001) return false; float seconds = 6000 * cartesian_mm / feedrate / feedrate_multiplier; int steps = max(1, int(delta_segments_per_second * seconds)); // SERIAL_ECHOPGM("mm="); SERIAL_ECHO(cartesian_mm); // SERIAL_ECHOPGM(" seconds="); SERIAL_ECHO(seconds); // SERIAL_ECHOPGM(" steps="); SERIAL_ECHOLN(steps); for (int s = 1; s <= steps; s++) { float fraction = float(s) / float(steps); for (int8_t i = 0; i < NUM_AXIS; i++) target[i] = current_position[i] + difference[i] * fraction; calculate_delta(target); #if ENABLED(AUTO_BED_LEVELING_FEATURE) adjust_delta(target); #endif //SERIAL_ECHOPGM("target[X_AXIS]="); SERIAL_ECHOLN(target[X_AXIS]); //SERIAL_ECHOPGM("target[Y_AXIS]="); SERIAL_ECHOLN(target[Y_AXIS]); //SERIAL_ECHOPGM("target[Z_AXIS]="); SERIAL_ECHOLN(target[Z_AXIS]); //SERIAL_ECHOPGM("delta[X_AXIS]="); SERIAL_ECHOLN(delta[X_AXIS]); //SERIAL_ECHOPGM("delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); //SERIAL_ECHOPGM("delta[Z_AXIS]="); SERIAL_ECHOLN(delta[Z_AXIS]); plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feedrate / 60 * feedrate_multiplier / 100.0, active_extruder); } return true; } #endif // DELTA || SCARA #if ENABLED(SCARA) inline bool prepare_move_scara(float target[NUM_AXIS]) { return prepare_move_delta(target); } #endif #if ENABLED(DUAL_X_CARRIAGE) inline bool prepare_move_dual_x_carriage() { if (active_extruder_parked) { if (dual_x_carriage_mode == DXC_DUPLICATION_MODE && active_extruder == 0) { // move duplicate extruder into correct duplication position. plan_set_position(inactive_extruder_x_pos, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS]); plan_buffer_line(current_position[X_AXIS] + duplicate_extruder_x_offset, current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[X_AXIS], 1); sync_plan_position(); st_synchronize(); extruder_duplication_enabled = true; active_extruder_parked = false; } else if (dual_x_carriage_mode == DXC_AUTO_PARK_MODE) { // handle unparking of head if (current_position[E_AXIS] == destination[E_AXIS]) { // This is a travel move (with no extrusion) // Skip it, but keep track of the current position // (so it can be used as the start of the next non-travel move) if (delayed_move_time != 0xFFFFFFFFUL) { set_current_to_destination(); NOLESS(raised_parked_position[Z_AXIS], destination[Z_AXIS]); delayed_move_time = millis(); return false; } } delayed_move_time = 0; // unpark extruder: 1) raise, 2) move into starting XY position, 3) lower plan_buffer_line(raised_parked_position[X_AXIS], raised_parked_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], raised_parked_position[Z_AXIS], current_position[E_AXIS], min(max_feedrate[X_AXIS], max_feedrate[Y_AXIS]), active_extruder); plan_buffer_line(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS], current_position[E_AXIS], max_feedrate[Z_AXIS], active_extruder); active_extruder_parked = false; } } return true; } #endif // DUAL_X_CARRIAGE #if DISABLED(DELTA) && DISABLED(SCARA) inline bool prepare_move_cartesian() { // Do not use feedrate_multiplier for E or Z only moves if (current_position[X_AXIS] == destination[X_AXIS] && current_position[Y_AXIS] == destination[Y_AXIS]) { line_to_destination(); } else { #if ENABLED(MESH_BED_LEVELING) mesh_plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS], (feedrate / 60) * (feedrate_multiplier / 100.0), active_extruder); return false; #else line_to_destination(feedrate * feedrate_multiplier / 100.0); #endif } return true; } #endif // !DELTA && !SCARA /** * Prepare a single move and get ready for the next one * * (This may call plan_buffer_line several times to put * smaller moves into the planner for DELTA or SCARA.) */ void prepare_move() { clamp_to_software_endstops(destination); refresh_cmd_timeout(); #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) prevent_dangerous_extrude(current_position[E_AXIS], destination[E_AXIS]); #endif #if ENABLED(SCARA) if (!prepare_move_scara(destination)) return; #elif ENABLED(DELTA) if (!prepare_move_delta(destination)) return; #endif #if ENABLED(DUAL_X_CARRIAGE) if (!prepare_move_dual_x_carriage()) return; #endif #if DISABLED(DELTA) && DISABLED(SCARA) if (!prepare_move_cartesian()) return; #endif set_current_to_destination(); } /** * Plan an arc in 2 dimensions * * The arc is approximated by generating many small linear segments. * The length of each segment is configured in MM_PER_ARC_SEGMENT (Default 1mm) * Arcs should only be made relatively large (over 5mm), as larger arcs with * larger segments will tend to be more efficient. Your slicer should have * options for G2/G3 arc generation. In future these options may be GCode tunable. */ void plan_arc( float target[NUM_AXIS], // Destination position float* offset, // Center of rotation relative to current_position uint8_t clockwise // Clockwise? ) { float radius = hypot(offset[X_AXIS], offset[Y_AXIS]), center_axis0 = current_position[X_AXIS] + offset[X_AXIS], center_axis1 = current_position[Y_AXIS] + offset[Y_AXIS], linear_travel = target[Z_AXIS] - current_position[Z_AXIS], extruder_travel = target[E_AXIS] - current_position[E_AXIS], r_axis0 = -offset[X_AXIS], // Radius vector from center to current location r_axis1 = -offset[Y_AXIS], rt_axis0 = target[X_AXIS] - center_axis0, rt_axis1 = target[Y_AXIS] - center_axis1; // CCW angle of rotation between position and target from the circle center. Only one atan2() trig computation required. float angular_travel = atan2(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1); if (angular_travel < 0) angular_travel += RADIANS(360); if (clockwise) angular_travel -= RADIANS(360); // Make a circle if the angular rotation is 0 if (current_position[X_AXIS] == target[X_AXIS] && current_position[Y_AXIS] == target[Y_AXIS] && angular_travel == 0) angular_travel += RADIANS(360); float mm_of_travel = hypot(angular_travel * radius, fabs(linear_travel)); if (mm_of_travel < 0.001) return; uint16_t segments = floor(mm_of_travel / (MM_PER_ARC_SEGMENT)); if (segments == 0) segments = 1; float theta_per_segment = angular_travel / segments; float linear_per_segment = linear_travel / segments; float extruder_per_segment = extruder_travel / segments; /** * Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector, * and phi is the angle of rotation. Based on the solution approach by Jens Geisler. * r_T = [cos(phi) -sin(phi); * sin(phi) cos(phi] * r ; * * For arc generation, the center of the circle is the axis of rotation and the radius vector is * defined from the circle center to the initial position. Each line segment is formed by successive * vector rotations. This requires only two cos() and sin() computations to form the rotation * matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since * all double numbers are single precision on the Arduino. (True double precision will not have * round off issues for CNC applications.) Single precision error can accumulate to be greater than * tool precision in some cases. Therefore, arc path correction is implemented. * * Small angle approximation may be used to reduce computation overhead further. This approximation * holds for everything, but very small circles and large MM_PER_ARC_SEGMENT values. In other words, * theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large * to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for * numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an * issue for CNC machines with the single precision Arduino calculations. * * This approximation also allows plan_arc to immediately insert a line segment into the planner * without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied * a correction, the planner should have caught up to the lag caused by the initial plan_arc overhead. * This is important when there are successive arc motions. */ // Vector rotation matrix values float cos_T = 1 - 0.5 * theta_per_segment * theta_per_segment; // Small angle approximation float sin_T = theta_per_segment; float arc_target[NUM_AXIS]; float sin_Ti; float cos_Ti; float r_axisi; uint16_t i; int8_t count = 0; // Initialize the linear axis arc_target[Z_AXIS] = current_position[Z_AXIS]; // Initialize the extruder axis arc_target[E_AXIS] = current_position[E_AXIS]; float feed_rate = feedrate * feedrate_multiplier / 60 / 100.0; for (i = 1; i < segments; i++) { // Increment (segments-1) if (count < N_ARC_CORRECTION) { // Apply vector rotation matrix to previous r_axis0 / 1 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T; r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T; r_axis1 = r_axisi; count++; } else { // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments. // Compute exact location by applying transformation matrix from initial radius vector(=-offset). cos_Ti = cos(i * theta_per_segment); sin_Ti = sin(i * theta_per_segment); r_axis0 = -offset[X_AXIS] * cos_Ti + offset[Y_AXIS] * sin_Ti; r_axis1 = -offset[X_AXIS] * sin_Ti - offset[Y_AXIS] * cos_Ti; count = 0; } // Update arc_target location arc_target[X_AXIS] = center_axis0 + r_axis0; arc_target[Y_AXIS] = center_axis1 + r_axis1; arc_target[Z_AXIS] += linear_per_segment; arc_target[E_AXIS] += extruder_per_segment; clamp_to_software_endstops(arc_target); #if ENABLED(DELTA) || ENABLED(SCARA) calculate_delta(arc_target); #if ENABLED(AUTO_BED_LEVELING_FEATURE) adjust_delta(arc_target); #endif plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); #else plan_buffer_line(arc_target[X_AXIS], arc_target[Y_AXIS], arc_target[Z_AXIS], arc_target[E_AXIS], feed_rate, active_extruder); #endif } // Ensure last segment arrives at target location. #if ENABLED(DELTA) || ENABLED(SCARA) calculate_delta(target); #if ENABLED(AUTO_BED_LEVELING_FEATURE) adjust_delta(target); #endif plan_buffer_line(delta[X_AXIS], delta[Y_AXIS], delta[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); #else plan_buffer_line(target[X_AXIS], target[Y_AXIS], target[Z_AXIS], target[E_AXIS], feed_rate, active_extruder); #endif // As far as the parser is concerned, the position is now == target. In reality the // motion control system might still be processing the action and the real tool position // in any intermediate location. set_current_to_destination(); } #if HAS_CONTROLLERFAN void controllerFan() { static millis_t lastMotorOn = 0; // Last time a motor was turned on static millis_t nextMotorCheck = 0; // Last time the state was checked millis_t ms = millis(); if (ELAPSED(ms, nextMotorCheck)) { nextMotorCheck = ms + 2500UL; // Not a time critical function, so only check every 2.5s if (X_ENABLE_READ == X_ENABLE_ON || Y_ENABLE_READ == Y_ENABLE_ON || Z_ENABLE_READ == Z_ENABLE_ON || soft_pwm_bed > 0 || E0_ENABLE_READ == E_ENABLE_ON // If any of the drivers are enabled... #if EXTRUDERS > 1 || E1_ENABLE_READ == E_ENABLE_ON #if HAS_X2_ENABLE || X2_ENABLE_READ == X_ENABLE_ON #endif #if EXTRUDERS > 2 || E2_ENABLE_READ == E_ENABLE_ON #if EXTRUDERS > 3 || E3_ENABLE_READ == E_ENABLE_ON #endif #endif #endif ) { lastMotorOn = ms; //... set time to NOW so the fan will turn on } // Fan off if no steppers have been enabled for CONTROLLERFAN_SECS seconds uint8_t speed = (!lastMotorOn || ELAPSED(ms, lastMotorOn + (CONTROLLERFAN_SECS) * 1000UL)) ? 0 : CONTROLLERFAN_SPEED; // allows digital or PWM fan output to be used (see M42 handling) digitalWrite(CONTROLLERFAN_PIN, speed); analogWrite(CONTROLLERFAN_PIN, speed); } } #endif // HAS_CONTROLLERFAN #if ENABLED(SCARA) void calculate_SCARA_forward_Transform(float f_scara[3]) { // Perform forward kinematics, and place results in delta[3] // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 float x_sin, x_cos, y_sin, y_cos; //SERIAL_ECHOPGM("f_delta x="); SERIAL_ECHO(f_scara[X_AXIS]); //SERIAL_ECHOPGM(" y="); SERIAL_ECHO(f_scara[Y_AXIS]); x_sin = sin(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1; x_cos = cos(f_scara[X_AXIS] / SCARA_RAD2DEG) * Linkage_1; y_sin = sin(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2; y_cos = cos(f_scara[Y_AXIS] / SCARA_RAD2DEG) * Linkage_2; //SERIAL_ECHOPGM(" x_sin="); SERIAL_ECHO(x_sin); //SERIAL_ECHOPGM(" x_cos="); SERIAL_ECHO(x_cos); //SERIAL_ECHOPGM(" y_sin="); SERIAL_ECHO(y_sin); //SERIAL_ECHOPGM(" y_cos="); SERIAL_ECHOLN(y_cos); delta[X_AXIS] = x_cos + y_cos + SCARA_offset_x; //theta delta[Y_AXIS] = x_sin + y_sin + SCARA_offset_y; //theta+phi //SERIAL_ECHOPGM(" delta[X_AXIS]="); SERIAL_ECHO(delta[X_AXIS]); //SERIAL_ECHOPGM(" delta[Y_AXIS]="); SERIAL_ECHOLN(delta[Y_AXIS]); } void calculate_delta(float cartesian[3]) { //reverse kinematics. // Perform reversed kinematics, and place results in delta[3] // The maths and first version has been done by QHARLEY . Integrated into masterbranch 06/2014 and slightly restructured by Joachim Cerny in June 2014 float SCARA_pos[2]; static float SCARA_C2, SCARA_S2, SCARA_K1, SCARA_K2, SCARA_theta, SCARA_psi; SCARA_pos[X_AXIS] = cartesian[X_AXIS] * axis_scaling[X_AXIS] - SCARA_offset_x; //Translate SCARA to standard X Y SCARA_pos[Y_AXIS] = cartesian[Y_AXIS] * axis_scaling[Y_AXIS] - SCARA_offset_y; // With scaling factor. #if (Linkage_1 == Linkage_2) SCARA_C2 = ((sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS])) / (2 * (float)L1_2)) - 1; #else SCARA_C2 = (sq(SCARA_pos[X_AXIS]) + sq(SCARA_pos[Y_AXIS]) - (float)L1_2 - (float)L2_2) / 45000; #endif SCARA_S2 = sqrt(1 - sq(SCARA_C2)); SCARA_K1 = Linkage_1 + Linkage_2 * SCARA_C2; SCARA_K2 = Linkage_2 * SCARA_S2; SCARA_theta = (atan2(SCARA_pos[X_AXIS], SCARA_pos[Y_AXIS]) - atan2(SCARA_K1, SCARA_K2)) * -1; SCARA_psi = atan2(SCARA_S2, SCARA_C2); delta[X_AXIS] = SCARA_theta * SCARA_RAD2DEG; // Multiply by 180/Pi - theta is support arm angle delta[Y_AXIS] = (SCARA_theta + SCARA_psi) * SCARA_RAD2DEG; // - equal to sub arm angle (inverted motor) delta[Z_AXIS] = cartesian[Z_AXIS]; /** SERIAL_ECHOPGM("cartesian x="); SERIAL_ECHO(cartesian[X_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHO(cartesian[Y_AXIS]); SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(cartesian[Z_AXIS]); SERIAL_ECHOPGM("scara x="); SERIAL_ECHO(SCARA_pos[X_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHOLN(SCARA_pos[Y_AXIS]); SERIAL_ECHOPGM("delta x="); SERIAL_ECHO(delta[X_AXIS]); SERIAL_ECHOPGM(" y="); SERIAL_ECHO(delta[Y_AXIS]); SERIAL_ECHOPGM(" z="); SERIAL_ECHOLN(delta[Z_AXIS]); SERIAL_ECHOPGM("C2="); SERIAL_ECHO(SCARA_C2); SERIAL_ECHOPGM(" S2="); SERIAL_ECHO(SCARA_S2); SERIAL_ECHOPGM(" Theta="); SERIAL_ECHO(SCARA_theta); SERIAL_ECHOPGM(" Psi="); SERIAL_ECHOLN(SCARA_psi); SERIAL_EOL; */ } #endif // SCARA #if ENABLED(TEMP_STAT_LEDS) static bool red_led = false; static millis_t next_status_led_update_ms = 0; void handle_status_leds(void) { float max_temp = 0.0; if (ELAPSED(millis(), next_status_led_update_ms)) { next_status_led_update_ms += 500; // Update every 0.5s for (int8_t cur_extruder = 0; cur_extruder < EXTRUDERS; ++cur_extruder) max_temp = max(max(max_temp, degHotend(cur_extruder)), degTargetHotend(cur_extruder)); #if HAS_TEMP_BED max_temp = max(max(max_temp, degTargetBed()), degBed()); #endif bool new_led = (max_temp > 55.0) ? true : (max_temp < 54.0) ? false : red_led; if (new_led != red_led) { red_led = new_led; digitalWrite(STAT_LED_RED, new_led ? HIGH : LOW); digitalWrite(STAT_LED_BLUE, new_led ? LOW : HIGH); } } } #endif void enable_all_steppers() { enable_x(); enable_y(); enable_z(); enable_e0(); enable_e1(); enable_e2(); enable_e3(); } void disable_all_steppers() { disable_x(); disable_y(); disable_z(); disable_e0(); disable_e1(); disable_e2(); disable_e3(); } /** * Standard idle routine keeps the machine alive */ void idle( #if ENABLED(FILAMENTCHANGEENABLE) bool no_stepper_sleep/*=false*/ #endif ) { manage_heater(); manage_inactivity( #if ENABLED(FILAMENTCHANGEENABLE) no_stepper_sleep #endif ); host_keepalive(); lcd_update(); } /** * Manage several activities: * - Check for Filament Runout * - Keep the command buffer full * - Check for maximum inactive time between commands * - Check for maximum inactive time between stepper commands * - Check if pin CHDK needs to go LOW * - Check for KILL button held down * - Check for HOME button held down * - Check if cooling fan needs to be switched on * - Check if an idle but hot extruder needs filament extruded (EXTRUDER_RUNOUT_PREVENT) */ void manage_inactivity(bool ignore_stepper_queue/*=false*/) { #if HAS_FILRUNOUT if (IS_SD_PRINTING && !(READ(FILRUNOUT_PIN) ^ FIL_RUNOUT_INVERTING)) filrunout(); #endif if (commands_in_queue < BUFSIZE) get_available_commands(); millis_t ms = millis(); if (max_inactive_time && ELAPSED(ms, previous_cmd_ms + max_inactive_time)) kill(PSTR(MSG_KILLED)); if (stepper_inactive_time && ELAPSED(ms, previous_cmd_ms + stepper_inactive_time) && !ignore_stepper_queue && !blocks_queued()) { #if ENABLED(DISABLE_INACTIVE_X) disable_x(); #endif #if ENABLED(DISABLE_INACTIVE_Y) disable_y(); #endif #if ENABLED(DISABLE_INACTIVE_Z) disable_z(); #endif #if ENABLED(DISABLE_INACTIVE_E) disable_e0(); disable_e1(); disable_e2(); disable_e3(); #endif } #ifdef CHDK // Check if pin should be set to LOW after M240 set it to HIGH if (chdkActive && PENDING(ms, chdkHigh + CHDK_DELAY)) { chdkActive = false; WRITE(CHDK, LOW); } #endif #if HAS_KILL // Check if the kill button was pressed and wait just in case it was an accidental // key kill key press // ------------------------------------------------------------------------------- static int killCount = 0; // make the inactivity button a bit less responsive const int KILL_DELAY = 750; if (!READ(KILL_PIN)) killCount++; else if (killCount > 0) killCount--; // Exceeded threshold and we can confirm that it was not accidental // KILL the machine // ---------------------------------------------------------------- if (killCount >= KILL_DELAY) kill(PSTR(MSG_KILLED)); #endif #if HAS_HOME // Check to see if we have to home, use poor man's debouncer // --------------------------------------------------------- static int homeDebounceCount = 0; // poor man's debouncing count const int HOME_DEBOUNCE_DELAY = 2500; if (!READ(HOME_PIN)) { if (!homeDebounceCount) { enqueue_and_echo_commands_P(PSTR("G28")); LCD_MESSAGEPGM(MSG_AUTO_HOME); } if (homeDebounceCount < HOME_DEBOUNCE_DELAY) homeDebounceCount++; else homeDebounceCount = 0; } #endif #if HAS_CONTROLLERFAN controllerFan(); // Check if fan should be turned on to cool stepper drivers down #endif #if ENABLED(EXTRUDER_RUNOUT_PREVENT) if (ELAPSED(ms, previous_cmd_ms + (EXTRUDER_RUNOUT_SECONDS) * 1000UL)) if (degHotend(active_extruder) > EXTRUDER_RUNOUT_MINTEMP) { bool oldstatus; switch (active_extruder) { case 0: oldstatus = E0_ENABLE_READ; enable_e0(); break; #if EXTRUDERS > 1 case 1: oldstatus = E1_ENABLE_READ; enable_e1(); break; #if EXTRUDERS > 2 case 2: oldstatus = E2_ENABLE_READ; enable_e2(); break; #if EXTRUDERS > 3 case 3: oldstatus = E3_ENABLE_READ; enable_e3(); break; #endif #endif #endif } float oldepos = current_position[E_AXIS], oldedes = destination[E_AXIS]; plan_buffer_line(destination[X_AXIS], destination[Y_AXIS], destination[Z_AXIS], destination[E_AXIS] + (EXTRUDER_RUNOUT_EXTRUDE) * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], (EXTRUDER_RUNOUT_SPEED) / 60. * (EXTRUDER_RUNOUT_ESTEPS) / axis_steps_per_unit[E_AXIS], active_extruder); current_position[E_AXIS] = oldepos; destination[E_AXIS] = oldedes; plan_set_e_position(oldepos); previous_cmd_ms = ms; // refresh_cmd_timeout() st_synchronize(); switch (active_extruder) { case 0: E0_ENABLE_WRITE(oldstatus); break; #if EXTRUDERS > 1 case 1: E1_ENABLE_WRITE(oldstatus); break; #if EXTRUDERS > 2 case 2: E2_ENABLE_WRITE(oldstatus); break; #if EXTRUDERS > 3 case 3: E3_ENABLE_WRITE(oldstatus); break; #endif #endif #endif } } #endif #if ENABLED(DUAL_X_CARRIAGE) // handle delayed move timeout if (delayed_move_time && ELAPSED(ms, delayed_move_time + 1000UL) && IsRunning()) { // travel moves have been received so enact them delayed_move_time = 0xFFFFFFFFUL; // force moves to be done set_destination_to_current(); prepare_move(); } #endif #if ENABLED(TEMP_STAT_LEDS) handle_status_leds(); #endif check_axes_activity(); } void kill(const char* lcd_msg) { #if ENABLED(ULTRA_LCD) lcd_setalertstatuspgm(lcd_msg); #else UNUSED(lcd_msg); #endif cli(); // Stop interrupts disable_all_heaters(); disable_all_steppers(); #if HAS_POWER_SWITCH pinMode(PS_ON_PIN, INPUT); #endif SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_KILLED); // FMC small patch to update the LCD before ending sei(); // enable interrupts for (int i = 5; i--; lcd_update()) delay(200); // Wait a short time cli(); // disable interrupts suicide(); while (1) { #if ENABLED(USE_WATCHDOG) watchdog_reset(); #endif } // Wait for reset } #if ENABLED(FILAMENT_RUNOUT_SENSOR) void filrunout() { if (!filrunoutEnqueued) { filrunoutEnqueued = true; enqueue_and_echo_commands_P(PSTR(FILAMENT_RUNOUT_SCRIPT)); st_synchronize(); } } #endif // FILAMENT_RUNOUT_SENSOR #if ENABLED(FAST_PWM_FAN) void setPwmFrequency(uint8_t pin, int val) { val &= 0x07; switch (digitalPinToTimer(pin)) { #if defined(TCCR0A) case TIMER0A: case TIMER0B: // TCCR0B &= ~(_BV(CS00) | _BV(CS01) | _BV(CS02)); // TCCR0B |= val; break; #endif #if defined(TCCR1A) case TIMER1A: case TIMER1B: // TCCR1B &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); // TCCR1B |= val; break; #endif #if defined(TCCR2) case TIMER2: case TIMER2: TCCR2 &= ~(_BV(CS10) | _BV(CS11) | _BV(CS12)); TCCR2 |= val; break; #endif #if defined(TCCR2A) case TIMER2A: case TIMER2B: TCCR2B &= ~(_BV(CS20) | _BV(CS21) | _BV(CS22)); TCCR2B |= val; break; #endif #if defined(TCCR3A) case TIMER3A: case TIMER3B: case TIMER3C: TCCR3B &= ~(_BV(CS30) | _BV(CS31) | _BV(CS32)); TCCR3B |= val; break; #endif #if defined(TCCR4A) case TIMER4A: case TIMER4B: case TIMER4C: TCCR4B &= ~(_BV(CS40) | _BV(CS41) | _BV(CS42)); TCCR4B |= val; break; #endif #if defined(TCCR5A) case TIMER5A: case TIMER5B: case TIMER5C: TCCR5B &= ~(_BV(CS50) | _BV(CS51) | _BV(CS52)); TCCR5B |= val; break; #endif } } #endif // FAST_PWM_FAN void Stop() { disable_all_heaters(); if (IsRunning()) { Running = false; Stopped_gcode_LastN = gcode_LastN; // Save last g_code for restart SERIAL_ERROR_START; SERIAL_ERRORLNPGM(MSG_ERR_STOPPED); LCD_MESSAGEPGM(MSG_STOPPED); } } /** * Set target_extruder from the T parameter or the active_extruder * * Returns TRUE if the target is invalid */ bool setTargetedHotend(int code) { target_extruder = active_extruder; if (code_seen('T')) { target_extruder = code_value_short(); if (target_extruder >= EXTRUDERS) { SERIAL_ECHO_START; SERIAL_CHAR('M'); SERIAL_ECHO(code); SERIAL_ECHOPGM(" " MSG_INVALID_EXTRUDER " "); SERIAL_ECHOLN((int)target_extruder); return true; } } return false; } float calculate_volumetric_multiplier(float diameter) { if (!volumetric_enabled || diameter == 0) return 1.0; float d2 = diameter * 0.5; return 1.0 / (M_PI * d2 * d2); } void calculate_volumetric_multipliers() { for (int i = 0; i < EXTRUDERS; i++) volumetric_multiplier[i] = calculate_volumetric_multiplier(filament_size[i]); }