/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ /** * stepper.cpp - A singleton object to execute motion plans using stepper motors * Marlin Firmware * * Derived from Grbl * Copyright (c) 2009-2011 Simen Svale Skogsrud * * Grbl is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Grbl is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Grbl. If not, see <http://www.gnu.org/licenses/>. */ /* The timer calculations of this module informed by the 'RepRap cartesian firmware' by Zack Smith and Philipp Tiefenbacher. */ #include "Marlin.h" #include "stepper.h" #include "endstops.h" #include "planner.h" #if MB(ALLIGATOR) #include "dac_dac084s085.h" #endif #include "temperature.h" #include "ultralcd.h" #include "language.h" #include "cardreader.h" #ifdef ARDUINO_ARCH_AVR #include "speed_lookuptable.h" #endif #if HAS_DIGIPOTSS #include <SPI.h> #endif Stepper stepper; // Singleton // public: #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL) extern bool ubl_lcd_map_control; #endif block_t* Stepper::current_block = NULL; // A pointer to the block currently being traced #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) bool Stepper::abort_on_endstop_hit = false; #endif #if ENABLED(Z_DUAL_ENDSTOPS) bool Stepper::performing_homing = false; #endif #if HAS_MOTOR_CURRENT_PWM uint32_t Stepper::motor_current_setting[3]; // Initialized by settings.load() #endif // private: uint8_t Stepper::last_direction_bits = 0; // The next stepping-bits to be output uint16_t Stepper::cleaning_buffer_counter = 0; #if ENABLED(Z_DUAL_ENDSTOPS) bool Stepper::locked_z_motor = false; bool Stepper::locked_z2_motor = false; #endif long Stepper::counter_X = 0, Stepper::counter_Y = 0, Stepper::counter_Z = 0, Stepper::counter_E = 0; volatile uint32_t Stepper::step_events_completed = 0; // The number of step events executed in the current block #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) constexpr HAL_TIMER_TYPE ADV_NEVER = HAL_TIMER_TYPE_MAX; HAL_TIMER_TYPE Stepper::nextMainISR = 0, Stepper::nextAdvanceISR = ADV_NEVER, Stepper::eISR_Rate = ADV_NEVER; #if ENABLED(LIN_ADVANCE) volatile int Stepper::e_steps[E_STEPPERS]; int Stepper::final_estep_rate, Stepper::current_estep_rate[E_STEPPERS], Stepper::current_adv_steps[E_STEPPERS]; #else long Stepper::e_steps[E_STEPPERS], Stepper::final_advance = 0, Stepper::old_advance = 0, Stepper::advance_rate, Stepper::advance; #endif /** * See https://github.com/MarlinFirmware/Marlin/issues/5699#issuecomment-309264382 * * This fix isn't perfect and may lose steps - but better than locking up completely * in future the planner should slow down if advance stepping rate would be too high */ FORCE_INLINE uint16_t adv_rate(const int steps, const uint16_t timer, const uint8_t loops) { if (steps) { const uint16_t rate = (timer * loops) / abs(steps); //return constrain(rate, 1, ADV_NEVER - 1) return rate ? rate : 1; } return ADV_NEVER; } #endif // ADVANCE || LIN_ADVANCE long Stepper::acceleration_time, Stepper::deceleration_time; volatile long Stepper::count_position[NUM_AXIS] = { 0 }; volatile signed char Stepper::count_direction[NUM_AXIS] = { 1, 1, 1, 1 }; #if ENABLED(MIXING_EXTRUDER) long Stepper::counter_m[MIXING_STEPPERS]; #endif HAL_TIMER_TYPE Stepper::acc_step_rate; // needed for deceleration start point uint8_t Stepper::step_loops, Stepper::step_loops_nominal; HAL_TIMER_TYPE Stepper::OCR1A_nominal; volatile long Stepper::endstops_trigsteps[XYZ]; #if ENABLED(X_DUAL_STEPPER_DRIVERS) #define X_APPLY_DIR(v,Q) do{ X_DIR_WRITE(v); X2_DIR_WRITE((v) != INVERT_X2_VS_X_DIR); }while(0) #define X_APPLY_STEP(v,Q) do{ X_STEP_WRITE(v); X2_STEP_WRITE(v); }while(0) #elif ENABLED(DUAL_X_CARRIAGE) #define X_APPLY_DIR(v,ALWAYS) \ if (extruder_duplication_enabled || ALWAYS) { \ X_DIR_WRITE(v); \ X2_DIR_WRITE(v); \ } \ else { \ if (current_block->active_extruder) X2_DIR_WRITE(v); else X_DIR_WRITE(v); \ } #define X_APPLY_STEP(v,ALWAYS) \ if (extruder_duplication_enabled || ALWAYS) { \ X_STEP_WRITE(v); \ X2_STEP_WRITE(v); \ } \ else { \ if (current_block->active_extruder) X2_STEP_WRITE(v); else X_STEP_WRITE(v); \ } #else #define X_APPLY_DIR(v,Q) X_DIR_WRITE(v) #define X_APPLY_STEP(v,Q) X_STEP_WRITE(v) #endif #if ENABLED(Y_DUAL_STEPPER_DRIVERS) #define Y_APPLY_DIR(v,Q) do{ Y_DIR_WRITE(v); Y2_DIR_WRITE((v) != INVERT_Y2_VS_Y_DIR); }while(0) #define Y_APPLY_STEP(v,Q) do{ Y_STEP_WRITE(v); Y2_STEP_WRITE(v); }while(0) #else #define Y_APPLY_DIR(v,Q) Y_DIR_WRITE(v) #define Y_APPLY_STEP(v,Q) Y_STEP_WRITE(v) #endif #if ENABLED(Z_DUAL_STEPPER_DRIVERS) #define Z_APPLY_DIR(v,Q) do{ Z_DIR_WRITE(v); Z2_DIR_WRITE(v); }while(0) #if ENABLED(Z_DUAL_ENDSTOPS) #define Z_APPLY_STEP(v,Q) \ if (performing_homing) { \ if (Z_HOME_DIR < 0) { \ if (!(TEST(endstops.old_endstop_bits, Z_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ if (!(TEST(endstops.old_endstop_bits, Z2_MIN) && (count_direction[Z_AXIS] < 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ } \ else { \ if (!(TEST(endstops.old_endstop_bits, Z_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z_motor) Z_STEP_WRITE(v); \ if (!(TEST(endstops.old_endstop_bits, Z2_MAX) && (count_direction[Z_AXIS] > 0)) && !locked_z2_motor) Z2_STEP_WRITE(v); \ } \ } \ else { \ Z_STEP_WRITE(v); \ Z2_STEP_WRITE(v); \ } #else #define Z_APPLY_STEP(v,Q) do{ Z_STEP_WRITE(v); Z2_STEP_WRITE(v); }while(0) #endif #else #define Z_APPLY_DIR(v,Q) Z_DIR_WRITE(v) #define Z_APPLY_STEP(v,Q) Z_STEP_WRITE(v) #endif #if DISABLED(MIXING_EXTRUDER) #define E_APPLY_STEP(v,Q) E_STEP_WRITE(v) #endif /** * __________________________ * /| |\ _________________ ^ * / | | \ /| |\ | * / | | \ / | | \ s * / | | | | | \ p * / | | | | | \ e * +-----+------------------------+---+--+---------------+----+ e * | BLOCK 1 | BLOCK 2 | d * * time -----> * * The trapezoid is the shape the speed curve over time. It starts at block->initial_rate, accelerates * first block->accelerate_until step_events_completed, then keeps going at constant speed until * step_events_completed reaches block->decelerate_after after which it decelerates until the trapezoid generator is reset. * The slope of acceleration is calculated using v = u + at where t is the accumulated timer values of the steps so far. */ void Stepper::wake_up() { // TCNT1 = 0; ENABLE_STEPPER_DRIVER_INTERRUPT(); } /** * Set the stepper direction of each axis * * COREXY: X_AXIS=A_AXIS and Y_AXIS=B_AXIS * COREXZ: X_AXIS=A_AXIS and Z_AXIS=C_AXIS * COREYZ: Y_AXIS=B_AXIS and Z_AXIS=C_AXIS */ void Stepper::set_directions() { #define SET_STEP_DIR(AXIS) \ if (motor_direction(AXIS ##_AXIS)) { \ AXIS ##_APPLY_DIR(INVERT_## AXIS ##_DIR, false); \ count_direction[AXIS ##_AXIS] = -1; \ } \ else { \ AXIS ##_APPLY_DIR(!INVERT_## AXIS ##_DIR, false); \ count_direction[AXIS ##_AXIS] = 1; \ } #if HAS_X_DIR SET_STEP_DIR(X); // A #endif #if HAS_Y_DIR SET_STEP_DIR(Y); // B #endif #if HAS_Z_DIR SET_STEP_DIR(Z); // C #endif #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) if (motor_direction(E_AXIS)) { REV_E_DIR(); count_direction[E_AXIS] = -1; } else { NORM_E_DIR(); count_direction[E_AXIS] = 1; } #endif // !ADVANCE && !LIN_ADVANCE } #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) extern volatile uint8_t e_hit; #endif /** * Stepper Driver Interrupt * * Directly pulses the stepper motors at high frequency. * * AVR : * Timer 1 runs at a base frequency of 2MHz, with this ISR using OCR1A compare mode. * * OCR1A Frequency * 1 2 MHz * 50 40 KHz * 100 20 KHz - capped max rate * 200 10 KHz - nominal max rate * 2000 1 KHz - sleep rate * 4000 500 Hz - init rate */ HAL_STEP_TIMER_ISR { HAL_timer_isr_prologue(STEP_TIMER_NUM); #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) Stepper::advance_isr_scheduler(); #else Stepper::isr(); #endif } void Stepper::isr() { HAL_TIMER_TYPE ocr_val; #define ENDSTOP_NOMINAL_OCR_VAL 3000 // check endstops every 1.5ms to guarantee two stepper ISRs within 5ms for BLTouch #define OCR_VAL_TOLERANCE 1000 // First max delay is 2.0ms, last min delay is 0.5ms, all others 1.5ms #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars) DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR DISABLE_STEPPER_DRIVER_INTERRUPT(); #if !defined(CPU_32_BIT) sei(); #endif #endif #define _SPLIT(L) (ocr_val = (HAL_TIMER_TYPE)L) #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) #define SPLIT(L) _SPLIT(L) #else // sample endstops in between step pulses static uint32_t step_remaining = 0; #define SPLIT(L) do { \ _SPLIT(L); \ if (ENDSTOPS_ENABLED && L > ENDSTOP_NOMINAL_OCR_VAL) { \ const uint16_t remainder = (uint16_t)L % (ENDSTOP_NOMINAL_OCR_VAL); \ ocr_val = (remainder < OCR_VAL_TOLERANCE) ? ENDSTOP_NOMINAL_OCR_VAL + remainder : ENDSTOP_NOMINAL_OCR_VAL; \ step_remaining = (uint16_t)L - ocr_val; \ } \ }while(0) if (step_remaining && ENDSTOPS_ENABLED) { // Just check endstops - not yet time for a step endstops.update(); if (step_remaining > ENDSTOP_NOMINAL_OCR_VAL) { step_remaining -= ENDSTOP_NOMINAL_OCR_VAL; ocr_val = ENDSTOP_NOMINAL_OCR_VAL; } else { ocr_val = step_remaining; step_remaining = 0; // last one before the ISR that does the step } _NEXT_ISR(ocr_val); #ifdef CPU_32_BIT //todo: HAL? #else NOLESS(OCR1A, TCNT1 + 16); #endif HAL_ENABLE_ISRs(); // re-enable ISRs return; } #endif if (cleaning_buffer_counter) { --cleaning_buffer_counter; current_block = NULL; planner.discard_current_block(); #ifdef SD_FINISHED_RELEASECOMMAND if (!cleaning_buffer_counter && (SD_FINISHED_STEPPERRELEASE)) enqueue_and_echo_commands_P(PSTR(SD_FINISHED_RELEASECOMMAND)); #endif _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 10000); // Run at max speed - 10 KHz HAL_ENABLE_ISRs(); // re-enable ISRs return; } // If there is no current block, attempt to pop one from the buffer if (!current_block) { // Anything in the buffer? current_block = planner.get_current_block(); if (current_block) { trapezoid_generator_reset(); // Initialize Bresenham counters to 1/2 the ceiling counter_X = counter_Y = counter_Z = counter_E = -(current_block->step_event_count >> 1); #if ENABLED(MIXING_EXTRUDER) MIXING_STEPPERS_LOOP(i) counter_m[i] = -(current_block->mix_event_count[i] >> 1); #endif step_events_completed = 0; #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) e_hit = 2; // Needed for the case an endstop is already triggered before the new move begins. // No 'change' can be detected. #endif #if ENABLED(Z_LATE_ENABLE) if (current_block->steps[Z_AXIS] > 0) { enable_Z(); _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz HAL_ENABLE_ISRs(); // re-enable ISRs return; } #endif // #if ENABLED(ADVANCE) // e_steps[TOOL_E_INDEX] = 0; // #endif } else { _NEXT_ISR(HAL_STEPPER_TIMER_RATE / 1000); // Run at slow speed - 1 KHz HAL_ENABLE_ISRs(); // re-enable ISRs return; } } // Update endstops state, if enabled #if ENABLED(ENDSTOP_INTERRUPTS_FEATURE) if (e_hit && ENDSTOPS_ENABLED) { endstops.update(); e_hit--; } #else if (ENDSTOPS_ENABLED) endstops.update(); #endif // Take multiple steps per interrupt (For high speed moves) bool all_steps_done = false; for (uint8_t i = step_loops; i--;) { #if ENABLED(LIN_ADVANCE) counter_E += current_block->steps[E_AXIS]; if (counter_E > 0) { counter_E -= current_block->step_event_count; #if DISABLED(MIXING_EXTRUDER) // Don't step E here for mixing extruder count_position[E_AXIS] += count_direction[E_AXIS]; motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX]; #endif } #if ENABLED(MIXING_EXTRUDER) // Step mixing steppers proportionally const bool dir = motor_direction(E_AXIS); MIXING_STEPPERS_LOOP(j) { counter_m[j] += current_block->steps[E_AXIS]; if (counter_m[j] > 0) { counter_m[j] -= current_block->mix_event_count[j]; dir ? --e_steps[j] : ++e_steps[j]; } } #endif #elif ENABLED(ADVANCE) // Always count the unified E axis counter_E += current_block->steps[E_AXIS]; if (counter_E > 0) { counter_E -= current_block->step_event_count; #if DISABLED(MIXING_EXTRUDER) // Don't step E here for mixing extruder motor_direction(E_AXIS) ? --e_steps[TOOL_E_INDEX] : ++e_steps[TOOL_E_INDEX]; #endif } #if ENABLED(MIXING_EXTRUDER) // Step mixing steppers proportionally const bool dir = motor_direction(E_AXIS); MIXING_STEPPERS_LOOP(j) { counter_m[j] += current_block->steps[E_AXIS]; if (counter_m[j] > 0) { counter_m[j] -= current_block->mix_event_count[j]; dir ? --e_steps[j] : ++e_steps[j]; } } #endif // MIXING_EXTRUDER #endif // ADVANCE or LIN_ADVANCE #define _COUNTER(AXIS) counter_## AXIS #define _APPLY_STEP(AXIS) AXIS ##_APPLY_STEP #define _INVERT_STEP_PIN(AXIS) INVERT_## AXIS ##_STEP_PIN // Advance the Bresenham counter; start a pulse if the axis needs a step #define PULSE_START(AXIS) \ _COUNTER(AXIS) += current_block->steps[_AXIS(AXIS)]; \ if (_COUNTER(AXIS) > 0) { _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS),0); } // Stop an active pulse, reset the Bresenham counter, update the position #define PULSE_STOP(AXIS) \ if (_COUNTER(AXIS) > 0) { \ _COUNTER(AXIS) -= current_block->step_event_count; \ count_position[_AXIS(AXIS)] += count_direction[_AXIS(AXIS)]; \ _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS),0); \ } /** * Estimate the number of cycles that the stepper logic already takes * up between the start and stop of the X stepper pulse. * * Currently this uses very modest estimates of around 5 cycles. * True values may be derived by careful testing. * * Once any delay is added, the cost of the delay code itself * may be subtracted from this value to get a more accurate delay. * Delays under 20 cycles (1.25µs) will be very accurate, using NOPs. * Longer delays use a loop. The resolution is 8 cycles. */ #if HAS_X_STEP #define _CYCLE_APPROX_1 5 #else #define _CYCLE_APPROX_1 0 #endif #if ENABLED(X_DUAL_STEPPER_DRIVERS) #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 + 4 #else #define _CYCLE_APPROX_2 _CYCLE_APPROX_1 #endif #if HAS_Y_STEP #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 + 5 #else #define _CYCLE_APPROX_3 _CYCLE_APPROX_2 #endif #if ENABLED(Y_DUAL_STEPPER_DRIVERS) #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 + 4 #else #define _CYCLE_APPROX_4 _CYCLE_APPROX_3 #endif #if HAS_Z_STEP #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 + 5 #else #define _CYCLE_APPROX_5 _CYCLE_APPROX_4 #endif #if ENABLED(Z_DUAL_STEPPER_DRIVERS) #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 + 4 #else #define _CYCLE_APPROX_6 _CYCLE_APPROX_5 #endif #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if ENABLED(MIXING_EXTRUDER) #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + (MIXING_STEPPERS) * 6 #else #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 + 5 #endif #else #define _CYCLE_APPROX_7 _CYCLE_APPROX_6 #endif #define CYCLES_EATEN_XYZE _CYCLE_APPROX_7 #define EXTRA_CYCLES_XYZE (STEP_PULSE_CYCLES - (CYCLES_EATEN_XYZE)) /** * If a minimum pulse time was specified get the timer 0 value. * * TCNT0 has an 8x prescaler, so it increments every 8 cycles. * That's every 0.5µs on 16MHz and every 0.4µs on 20MHz. * 20 counts of TCNT0 -by itself- is a good pulse delay. * 10µs = 160 or 200 cycles. */ #if EXTRA_CYCLES_XYZE > 20 uint32_t pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM); #endif #if HAS_X_STEP PULSE_START(X); #endif #if HAS_Y_STEP PULSE_START(Y); #endif #if HAS_Z_STEP PULSE_START(Z); #endif // For non-advance use linear interpolation for E also #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if ENABLED(MIXING_EXTRUDER) // Keep updating the single E axis counter_E += current_block->steps[E_AXIS]; // Tick the counters used for this mix MIXING_STEPPERS_LOOP(j) { // Step mixing steppers (proportionally) counter_m[j] += current_block->steps[E_AXIS]; // Step when the counter goes over zero if (counter_m[j] > 0) En_STEP_WRITE(j, !INVERT_E_STEP_PIN); } #else // !MIXING_EXTRUDER PULSE_START(E); #endif #endif // !ADVANCE && !LIN_ADVANCE // For minimum pulse time wait before stopping pulses #if EXTRA_CYCLES_XYZE > 20 while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_current_count(STEP_TIMER_NUM) - pulse_start) * (STEPPER_TIMER_PRESCALE)) { /* nada */ } pulse_start = HAL_timer_get_current_count(STEP_TIMER_NUM); #elif EXTRA_CYCLES_XYZE > 0 DELAY_NOPS(EXTRA_CYCLES_XYZE); #endif #if HAS_X_STEP PULSE_STOP(X); #endif #if HAS_Y_STEP PULSE_STOP(Y); #endif #if HAS_Z_STEP PULSE_STOP(Z); #endif #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #if ENABLED(MIXING_EXTRUDER) // Always step the single E axis if (counter_E > 0) { counter_E -= current_block->step_event_count; count_position[E_AXIS] += count_direction[E_AXIS]; } MIXING_STEPPERS_LOOP(j) { if (counter_m[j] > 0) { counter_m[j] -= current_block->mix_event_count[j]; En_STEP_WRITE(j, INVERT_E_STEP_PIN); } } #else // !MIXING_EXTRUDER PULSE_STOP(E); #endif #endif // !ADVANCE && !LIN_ADVANCE if (++step_events_completed >= current_block->step_event_count) { all_steps_done = true; break; } // For minimum pulse time wait after stopping pulses also #if EXTRA_CYCLES_XYZE > 20 if (i) while (EXTRA_CYCLES_XYZE > (uint32_t)(HAL_timer_get_current_count(STEP_TIMER_NUM) - pulse_start) * (STEPPER_TIMER_PRESCALE)) { /* nada */ } #elif EXTRA_CYCLES_XYZE > 0 if (i) DELAY_NOPS(EXTRA_CYCLES_XYZE); #endif } // steps_loop #if ENABLED(LIN_ADVANCE) if (current_block->use_advance_lead) { const int delta_adv_steps = current_estep_rate[TOOL_E_INDEX] - current_adv_steps[TOOL_E_INDEX]; current_adv_steps[TOOL_E_INDEX] += delta_adv_steps; #if ENABLED(MIXING_EXTRUDER) // Mixing extruders apply advance lead proportionally MIXING_STEPPERS_LOOP(j) e_steps[j] += delta_adv_steps * current_block->step_event_count / current_block->mix_event_count[j]; #else // For most extruders, advance the single E stepper e_steps[TOOL_E_INDEX] += delta_adv_steps; #endif } #endif #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) // If we have esteps to execute, fire the next advance_isr "now" if (e_steps[TOOL_E_INDEX]) nextAdvanceISR = 0; #endif // Calculate new timer value if (step_events_completed <= (uint32_t)current_block->accelerate_until) { #ifdef CPU_32_BIT MultiU32X24toH32(acc_step_rate, acceleration_time, current_block->acceleration_rate); #else MultiU24X32toH16(acc_step_rate, acceleration_time, current_block->acceleration_rate); #endif acc_step_rate += current_block->initial_rate; // upper limit NOMORE(acc_step_rate, current_block->nominal_rate); // step_rate to timer interval const HAL_TIMER_TYPE timer = calc_timer(acc_step_rate); SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL _NEXT_ISR(ocr_val); acceleration_time += timer; #if ENABLED(LIN_ADVANCE) if (current_block->use_advance_lead) { #if ENABLED(MIXING_EXTRUDER) MIXING_STEPPERS_LOOP(j) current_estep_rate[j] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17; #else current_estep_rate[TOOL_E_INDEX] = ((uint32_t)acc_step_rate * current_block->abs_adv_steps_multiplier8) >> 17; #endif } #elif ENABLED(ADVANCE) advance += advance_rate * step_loops; //NOLESS(advance, current_block->advance); const long advance_whole = advance >> 8, advance_factor = advance_whole - old_advance; // Do E steps + advance steps #if ENABLED(MIXING_EXTRUDER) // ...for mixing steppers proportionally MIXING_STEPPERS_LOOP(j) e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j]; #else // ...for the active extruder e_steps[TOOL_E_INDEX] += advance_factor; #endif old_advance = advance_whole; #endif // ADVANCE or LIN_ADVANCE #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) // TODO: HAL eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops); #endif } else if (step_events_completed > (uint32_t)current_block->decelerate_after) { HAL_TIMER_TYPE step_rate; #ifdef CPU_32_BIT MultiU32X24toH32(step_rate, deceleration_time, current_block->acceleration_rate); #else MultiU24X32toH16(step_rate, deceleration_time, current_block->acceleration_rate); #endif if (step_rate < acc_step_rate) { // Still decelerating? step_rate = acc_step_rate - step_rate; NOLESS(step_rate, current_block->final_rate); } else step_rate = current_block->final_rate; // step_rate to timer interval const HAL_TIMER_TYPE timer = calc_timer(step_rate); SPLIT(timer); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL _NEXT_ISR(ocr_val); deceleration_time += timer; #if ENABLED(LIN_ADVANCE) if (current_block->use_advance_lead) { #if ENABLED(MIXING_EXTRUDER) MIXING_STEPPERS_LOOP(j) current_estep_rate[j] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8 * current_block->step_event_count / current_block->mix_event_count[j]) >> 17; #else current_estep_rate[TOOL_E_INDEX] = ((uint32_t)step_rate * current_block->abs_adv_steps_multiplier8) >> 17; #endif } #elif ENABLED(ADVANCE) advance -= advance_rate * step_loops; NOLESS(advance, final_advance); // Do E steps + advance steps const long advance_whole = advance >> 8, advance_factor = advance_whole - old_advance; #if ENABLED(MIXING_EXTRUDER) MIXING_STEPPERS_LOOP(j) e_steps[j] += advance_factor * current_block->step_event_count / current_block->mix_event_count[j]; #else e_steps[TOOL_E_INDEX] += advance_factor; #endif old_advance = advance_whole; #endif // ADVANCE or LIN_ADVANCE #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], timer, step_loops); #endif } else { #if ENABLED(LIN_ADVANCE) if (current_block->use_advance_lead) current_estep_rate[TOOL_E_INDEX] = final_estep_rate; eISR_Rate = adv_rate(e_steps[TOOL_E_INDEX], OCR1A_nominal, step_loops_nominal); #endif SPLIT(OCR1A_nominal); // split step into multiple ISRs if larger than ENDSTOP_NOMINAL_OCR_VAL _NEXT_ISR(ocr_val); // ensure we're running at the correct step rate, even if we just came off an acceleration step_loops = step_loops_nominal; } #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) #ifdef CPU_32_BIT // Make sure stepper interrupt does not monopolise CPU by adjusting count to give about 8 us room uint32_t stepper_timer_count = HAL_timer_get_count(STEP_TIMER_NUM); uint32_t stepper_timer_current_count = HAL_timer_get_current_count(STEP_TIMER_NUM) + 8 * HAL_TICKS_PER_US; HAL_timer_set_count(STEP_TIMER_NUM, stepper_timer_count < stepper_timer_current_count ? stepper_timer_current_count : stepper_timer_count); #else NOLESS(OCR1A, TCNT1 + 16); #endif #endif // If current block is finished, reset pointer if (all_steps_done) { current_block = NULL; planner.discard_current_block(); } #if DISABLED(ADVANCE) && DISABLED(LIN_ADVANCE) HAL_ENABLE_ISRs(); // re-enable ISRs #endif } #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) #define CYCLES_EATEN_E (E_STEPPERS * 5) #define EXTRA_CYCLES_E (STEP_PULSE_CYCLES - (CYCLES_EATEN_E)) // Timer interrupt for E. e_steps is set in the main routine; void Stepper::advance_isr() { nextAdvanceISR = eISR_Rate; #if ENABLED(MK2_MULTIPLEXER) // Even-numbered steppers are reversed #define SET_E_STEP_DIR(INDEX) \ if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? !INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0) : INVERT_E## INDEX ##_DIR ^ TEST(INDEX, 0)) #else #define SET_E_STEP_DIR(INDEX) \ if (e_steps[INDEX]) E## INDEX ##_DIR_WRITE(e_steps[INDEX] < 0 ? INVERT_E## INDEX ##_DIR : !INVERT_E## INDEX ##_DIR) #endif #define START_E_PULSE(INDEX) \ if (e_steps[INDEX]) E## INDEX ##_STEP_WRITE(!INVERT_E_STEP_PIN) #define STOP_E_PULSE(INDEX) \ if (e_steps[INDEX]) { \ e_steps[INDEX] < 0 ? ++e_steps[INDEX] : --e_steps[INDEX]; \ E## INDEX ##_STEP_WRITE(INVERT_E_STEP_PIN); \ } SET_E_STEP_DIR(0); #if E_STEPPERS > 1 SET_E_STEP_DIR(1); #if E_STEPPERS > 2 SET_E_STEP_DIR(2); #if E_STEPPERS > 3 SET_E_STEP_DIR(3); #if E_STEPPERS > 4 SET_E_STEP_DIR(4); #endif #endif #endif #endif // Step all E steppers that have steps for (uint8_t i = step_loops; i--;) { #if EXTRA_CYCLES_E > 20 uint32_t pulse_start = TCNT0; #endif START_E_PULSE(0); #if E_STEPPERS > 1 START_E_PULSE(1); #if E_STEPPERS > 2 START_E_PULSE(2); #if E_STEPPERS > 3 START_E_PULSE(3); #if E_STEPPERS > 4 START_E_PULSE(4); #endif #endif #endif #endif // For minimum pulse time wait before stopping pulses #if EXTRA_CYCLES_E > 20 while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ } pulse_start = TCNT0; #elif EXTRA_CYCLES_E > 0 DELAY_NOPS(EXTRA_CYCLES_E); #endif STOP_E_PULSE(0); #if E_STEPPERS > 1 STOP_E_PULSE(1); #if E_STEPPERS > 2 STOP_E_PULSE(2); #if E_STEPPERS > 3 STOP_E_PULSE(3); #if E_STEPPERS > 4 STOP_E_PULSE(4); #endif #endif #endif #endif // For minimum pulse time wait before looping #if EXTRA_CYCLES_E > 20 if (i) while (EXTRA_CYCLES_E > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ } #elif EXTRA_CYCLES_E > 0 if (i) DELAY_NOPS(EXTRA_CYCLES_E); #endif } // steps_loop } void Stepper::advance_isr_scheduler() { // Disable Timer0 ISRs and enable global ISR again to capture UART events (incoming chars) DISABLE_TEMPERATURE_INTERRUPT(); // Temperature ISR DISABLE_STEPPER_DRIVER_INTERRUPT(); sei(); // Run main stepping ISR if flagged if (!nextMainISR) isr(); // Run Advance stepping ISR if flagged if (!nextAdvanceISR) advance_isr(); // Is the next advance ISR scheduled before the next main ISR? if (nextAdvanceISR <= nextMainISR) { // Set up the next interrupt OCR1A = nextAdvanceISR; // New interval for the next main ISR if (nextMainISR) nextMainISR -= nextAdvanceISR; // Will call Stepper::advance_isr on the next interrupt nextAdvanceISR = 0; } else { // The next main ISR comes first OCR1A = nextMainISR; // New interval for the next advance ISR, if any if (nextAdvanceISR && nextAdvanceISR != ADV_NEVER) nextAdvanceISR -= nextMainISR; // Will call Stepper::isr on the next interrupt nextMainISR = 0; } // Don't run the ISR faster than possible NOLESS(OCR1A, TCNT1 + 16); // Restore original ISR settings HAL_ENABLE_ISRs(); } #endif // ADVANCE or LIN_ADVANCE void Stepper::init() { // Init Digipot Motor Current #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM digipot_init(); #endif #if MB(ALLIGATOR) const float motor_current[] = MOTOR_CURRENT; unsigned int digipot_motor = 0; for (uint8_t i = 0; i < 3 + EXTRUDERS; i++) { digipot_motor = 255 * (motor_current[i] / 2.5); dac084s085::setValue(i, digipot_motor); } #endif//MB(ALLIGATOR) // Init Microstepping Pins #if HAS_MICROSTEPS microstep_init(); #endif // Init TMC Steppers #if ENABLED(HAVE_TMCDRIVER) tmc_init(); #endif // Init TMC2130 Steppers #if ENABLED(HAVE_TMC2130) tmc2130_init(); #endif // Init L6470 Steppers #if ENABLED(HAVE_L6470DRIVER) L6470_init(); #endif // Init Dir Pins #if HAS_X_DIR X_DIR_INIT; #endif #if HAS_X2_DIR X2_DIR_INIT; #endif #if HAS_Y_DIR Y_DIR_INIT; #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_DIR Y2_DIR_INIT; #endif #endif #if HAS_Z_DIR Z_DIR_INIT; #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_DIR Z2_DIR_INIT; #endif #endif #if HAS_E0_DIR E0_DIR_INIT; #endif #if HAS_E1_DIR E1_DIR_INIT; #endif #if HAS_E2_DIR E2_DIR_INIT; #endif #if HAS_E3_DIR E3_DIR_INIT; #endif #if HAS_E4_DIR E4_DIR_INIT; #endif // Init Enable Pins - steppers default to disabled. #if HAS_X_ENABLE X_ENABLE_INIT; if (!X_ENABLE_ON) X_ENABLE_WRITE(HIGH); #if ENABLED(DUAL_X_CARRIAGE) && HAS_X2_ENABLE X2_ENABLE_INIT; if (!X_ENABLE_ON) X2_ENABLE_WRITE(HIGH); #endif #endif #if HAS_Y_ENABLE Y_ENABLE_INIT; if (!Y_ENABLE_ON) Y_ENABLE_WRITE(HIGH); #if ENABLED(Y_DUAL_STEPPER_DRIVERS) && HAS_Y2_ENABLE Y2_ENABLE_INIT; if (!Y_ENABLE_ON) Y2_ENABLE_WRITE(HIGH); #endif #endif #if HAS_Z_ENABLE Z_ENABLE_INIT; if (!Z_ENABLE_ON) Z_ENABLE_WRITE(HIGH); #if ENABLED(Z_DUAL_STEPPER_DRIVERS) && HAS_Z2_ENABLE Z2_ENABLE_INIT; if (!Z_ENABLE_ON) Z2_ENABLE_WRITE(HIGH); #endif #endif #if HAS_E0_ENABLE E0_ENABLE_INIT; if (!E_ENABLE_ON) E0_ENABLE_WRITE(HIGH); #endif #if HAS_E1_ENABLE E1_ENABLE_INIT; if (!E_ENABLE_ON) E1_ENABLE_WRITE(HIGH); #endif #if HAS_E2_ENABLE E2_ENABLE_INIT; if (!E_ENABLE_ON) E2_ENABLE_WRITE(HIGH); #endif #if HAS_E3_ENABLE E3_ENABLE_INIT; if (!E_ENABLE_ON) E3_ENABLE_WRITE(HIGH); #endif #if HAS_E4_ENABLE E4_ENABLE_INIT; if (!E_ENABLE_ON) E4_ENABLE_WRITE(HIGH); #endif // Init endstops and pullups endstops.init(); #define _STEP_INIT(AXIS) AXIS ##_STEP_INIT #define _WRITE_STEP(AXIS, HIGHLOW) AXIS ##_STEP_WRITE(HIGHLOW) #define _DISABLE(AXIS) disable_## AXIS() #define AXIS_INIT(AXIS, PIN) \ _STEP_INIT(AXIS); \ _WRITE_STEP(AXIS, _INVERT_STEP_PIN(PIN)); \ _DISABLE(AXIS) #define E_AXIS_INIT(NUM) AXIS_INIT(E## NUM, E) // Init Step Pins #if HAS_X_STEP #if ENABLED(X_DUAL_STEPPER_DRIVERS) || ENABLED(DUAL_X_CARRIAGE) X2_STEP_INIT; X2_STEP_WRITE(INVERT_X_STEP_PIN); #endif AXIS_INIT(X, X); #endif #if HAS_Y_STEP #if ENABLED(Y_DUAL_STEPPER_DRIVERS) Y2_STEP_INIT; Y2_STEP_WRITE(INVERT_Y_STEP_PIN); #endif AXIS_INIT(Y, Y); #endif #if HAS_Z_STEP #if ENABLED(Z_DUAL_STEPPER_DRIVERS) Z2_STEP_INIT; Z2_STEP_WRITE(INVERT_Z_STEP_PIN); #endif AXIS_INIT(Z, Z); #endif #if HAS_E0_STEP E_AXIS_INIT(0); #endif #if HAS_E1_STEP E_AXIS_INIT(1); #endif #if HAS_E2_STEP E_AXIS_INIT(2); #endif #if HAS_E3_STEP E_AXIS_INIT(3); #endif #if HAS_E4_STEP E_AXIS_INIT(4); #endif #ifdef ARDUINO_ARCH_AVR // waveform generation = 0100 = CTC SET_WGM(1, CTC_OCRnA); // output mode = 00 (disconnected) SET_COMA(1, NORMAL); // Set the timer pre-scaler // Generally we use a divider of 8, resulting in a 2MHz timer // frequency on a 16MHz MCU. If you are going to change this, be // sure to regenerate speed_lookuptable.h with // create_speed_lookuptable.py SET_CS(1, PRESCALER_8); // CS 2 = 1/8 prescaler // Init Stepper ISR to 122 Hz for quick starting OCR1A = 0x4000; TCNT1 = 0; #else // Init Stepper ISR to 122 Hz for quick starting HAL_timer_start (STEP_TIMER_NUM, 122); #endif ENABLE_STEPPER_DRIVER_INTERRUPT(); #if ENABLED(ADVANCE) || ENABLED(LIN_ADVANCE) for (uint8_t i = 0; i < COUNT(e_steps); i++) e_steps[i] = 0; #if ENABLED(LIN_ADVANCE) ZERO(current_adv_steps); #endif #endif // ADVANCE || LIN_ADVANCE endstops.enable(true); // Start with endstops active. After homing they can be disabled sei(); set_directions(); // Init directions to last_direction_bits = 0 } /** * Block until all buffered steps are executed */ void Stepper::synchronize() { while (planner.blocks_queued()) idle(); } /** * Set the stepper positions directly in steps * * The input is based on the typical per-axis XYZ steps. * For CORE machines XYZ needs to be translated to ABC. * * This allows get_axis_position_mm to correctly * derive the current XYZ position later on. */ void Stepper::set_position(const long &a, const long &b, const long &c, const long &e) { synchronize(); // Bad to set stepper counts in the middle of a move CRITICAL_SECTION_START; #if CORE_IS_XY // corexy positioning // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html count_position[A_AXIS] = a + b; count_position[B_AXIS] = CORESIGN(a - b); count_position[Z_AXIS] = c; #elif CORE_IS_XZ // corexz planning count_position[A_AXIS] = a + c; count_position[Y_AXIS] = b; count_position[C_AXIS] = CORESIGN(a - c); #elif CORE_IS_YZ // coreyz planning count_position[X_AXIS] = a; count_position[B_AXIS] = b + c; count_position[C_AXIS] = CORESIGN(b - c); #else // default non-h-bot planning count_position[X_AXIS] = a; count_position[Y_AXIS] = b; count_position[Z_AXIS] = c; #endif count_position[E_AXIS] = e; CRITICAL_SECTION_END; } void Stepper::set_position(const AxisEnum &axis, const long &v) { CRITICAL_SECTION_START; count_position[axis] = v; CRITICAL_SECTION_END; } void Stepper::set_e_position(const long &e) { CRITICAL_SECTION_START; count_position[E_AXIS] = e; CRITICAL_SECTION_END; } /** * Get a stepper's position in steps. */ long Stepper::position(AxisEnum axis) { CRITICAL_SECTION_START; const long count_pos = count_position[axis]; CRITICAL_SECTION_END; return count_pos; } /** * Get an axis position according to stepper position(s) * For CORE machines apply translation from ABC to XYZ. */ float Stepper::get_axis_position_mm(AxisEnum axis) { float axis_steps; #if IS_CORE // Requesting one of the "core" axes? if (axis == CORE_AXIS_1 || axis == CORE_AXIS_2) { CRITICAL_SECTION_START; // ((a1+a2)+(a1-a2))/2 -> (a1+a2+a1-a2)/2 -> (a1+a1)/2 -> a1 // ((a1+a2)-(a1-a2))/2 -> (a1+a2-a1+a2)/2 -> (a2+a2)/2 -> a2 axis_steps = 0.5f * ( axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]) : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2] ); CRITICAL_SECTION_END; } else axis_steps = position(axis); #else axis_steps = position(axis); #endif return axis_steps * planner.steps_to_mm[axis]; } void Stepper::finish_and_disable() { synchronize(); disable_all_steppers(); } void Stepper::quick_stop() { #if ENABLED(AUTO_BED_LEVELING_UBL) && ENABLED(ULTIPANEL) if (!ubl_lcd_map_control) cleaning_buffer_counter = 5000; #else cleaning_buffer_counter = 5000; #endif DISABLE_STEPPER_DRIVER_INTERRUPT(); while (planner.blocks_queued()) planner.discard_current_block(); current_block = NULL; ENABLE_STEPPER_DRIVER_INTERRUPT(); #if ENABLED(ULTRA_LCD) planner.clear_block_buffer_runtime(); #endif } void Stepper::endstop_triggered(AxisEnum axis) { #if IS_CORE endstops_trigsteps[axis] = 0.5f * ( axis == CORE_AXIS_2 ? CORESIGN(count_position[CORE_AXIS_1] - count_position[CORE_AXIS_2]) : count_position[CORE_AXIS_1] + count_position[CORE_AXIS_2] ); #else // !COREXY && !COREXZ && !COREYZ endstops_trigsteps[axis] = count_position[axis]; #endif // !COREXY && !COREXZ && !COREYZ kill_current_block(); } void Stepper::report_positions() { CRITICAL_SECTION_START; const long xpos = count_position[X_AXIS], ypos = count_position[Y_AXIS], zpos = count_position[Z_AXIS]; CRITICAL_SECTION_END; #if CORE_IS_XY || CORE_IS_XZ || IS_SCARA SERIAL_PROTOCOLPGM(MSG_COUNT_A); #else SERIAL_PROTOCOLPGM(MSG_COUNT_X); #endif SERIAL_PROTOCOL(xpos); #if CORE_IS_XY || CORE_IS_YZ || IS_SCARA SERIAL_PROTOCOLPGM(" B:"); #else SERIAL_PROTOCOLPGM(" Y:"); #endif SERIAL_PROTOCOL(ypos); #if CORE_IS_XZ || CORE_IS_YZ SERIAL_PROTOCOLPGM(" C:"); #else SERIAL_PROTOCOLPGM(" Z:"); #endif SERIAL_PROTOCOL(zpos); SERIAL_EOL(); } #if ENABLED(BABYSTEPPING) #if ENABLED(DELTA) #define CYCLES_EATEN_BABYSTEP (2 * 15) #else #define CYCLES_EATEN_BABYSTEP 0 #endif #define EXTRA_CYCLES_BABYSTEP (STEP_PULSE_CYCLES - (CYCLES_EATEN_BABYSTEP)) #define _ENABLE(AXIS) enable_## AXIS() #define _READ_DIR(AXIS) AXIS ##_DIR_READ #define _INVERT_DIR(AXIS) INVERT_## AXIS ##_DIR #define _APPLY_DIR(AXIS, INVERT) AXIS ##_APPLY_DIR(INVERT, true) #if EXTRA_CYCLES_BABYSTEP > 20 #define _SAVE_START const uint32_t pulse_start = TCNT0 #define _PULSE_WAIT while (EXTRA_CYCLES_BABYSTEP > (uint32_t)(TCNT0 - pulse_start) * (INT0_PRESCALER)) { /* nada */ } #else #define _SAVE_START NOOP #if EXTRA_CYCLES_BABYSTEP > 0 #define _PULSE_WAIT DELAY_NOPS(EXTRA_CYCLES_BABYSTEP) #elif STEP_PULSE_CYCLES > 0 #define _PULSE_WAIT NOOP #elif ENABLED(DELTA) #define _PULSE_WAIT delayMicroseconds(2); #else #define _PULSE_WAIT delayMicroseconds(4); #endif #endif #define BABYSTEP_AXIS(AXIS, INVERT) { \ const uint8_t old_dir = _READ_DIR(AXIS); \ _ENABLE(AXIS); \ _SAVE_START; \ _APPLY_DIR(AXIS, _INVERT_DIR(AXIS)^direction^INVERT); \ _APPLY_STEP(AXIS)(!_INVERT_STEP_PIN(AXIS), true); \ _PULSE_WAIT; \ _APPLY_STEP(AXIS)(_INVERT_STEP_PIN(AXIS), true); \ _APPLY_DIR(AXIS, old_dir); \ } // MUST ONLY BE CALLED BY AN ISR, // No other ISR should ever interrupt this! void Stepper::babystep(const AxisEnum axis, const bool direction) { cli(); switch (axis) { #if ENABLED(BABYSTEP_XY) case X_AXIS: BABYSTEP_AXIS(X, false); break; case Y_AXIS: BABYSTEP_AXIS(Y, false); break; #endif case Z_AXIS: { #if DISABLED(DELTA) BABYSTEP_AXIS(Z, BABYSTEP_INVERT_Z); #else // DELTA const bool z_direction = direction ^ BABYSTEP_INVERT_Z; enable_X(); enable_Y(); enable_Z(); const uint8_t old_x_dir_pin = X_DIR_READ, old_y_dir_pin = Y_DIR_READ, old_z_dir_pin = Z_DIR_READ; X_DIR_WRITE(INVERT_X_DIR ^ z_direction); Y_DIR_WRITE(INVERT_Y_DIR ^ z_direction); Z_DIR_WRITE(INVERT_Z_DIR ^ z_direction); _SAVE_START; X_STEP_WRITE(!INVERT_X_STEP_PIN); Y_STEP_WRITE(!INVERT_Y_STEP_PIN); Z_STEP_WRITE(!INVERT_Z_STEP_PIN); _PULSE_WAIT; X_STEP_WRITE(INVERT_X_STEP_PIN); Y_STEP_WRITE(INVERT_Y_STEP_PIN); Z_STEP_WRITE(INVERT_Z_STEP_PIN); // Restore direction bits X_DIR_WRITE(old_x_dir_pin); Y_DIR_WRITE(old_y_dir_pin); Z_DIR_WRITE(old_z_dir_pin); #endif } break; default: break; } sei(); } #endif // BABYSTEPPING /** * Software-controlled Stepper Motor Current */ #if HAS_DIGIPOTSS // From Arduino DigitalPotControl example void Stepper::digitalPotWrite(const int16_t address, const int16_t value) { WRITE(DIGIPOTSS_PIN, LOW); // Take the SS pin low to select the chip SPI.transfer(address); // Send the address and value via SPI SPI.transfer(value); WRITE(DIGIPOTSS_PIN, HIGH); // Take the SS pin high to de-select the chip //delay(10); } #endif // HAS_DIGIPOTSS #if HAS_MOTOR_CURRENT_PWM void Stepper::refresh_motor_power() { for (uint8_t i = 0; i < COUNT(motor_current_setting); ++i) { switch (i) { #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) case 0: #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) case 1: #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) case 2: #endif digipot_current(i, motor_current_setting[i]); default: break; } } } #endif // HAS_MOTOR_CURRENT_PWM #if HAS_DIGIPOTSS || HAS_MOTOR_CURRENT_PWM void Stepper::digipot_current(const uint8_t driver, const int current) { #if HAS_DIGIPOTSS const uint8_t digipot_ch[] = DIGIPOT_CHANNELS; digitalPotWrite(digipot_ch[driver], current); #elif HAS_MOTOR_CURRENT_PWM if (WITHIN(driver, 0, 2)) motor_current_setting[driver] = current; // update motor_current_setting #define _WRITE_CURRENT_PWM(P) analogWrite(MOTOR_CURRENT_PWM_## P ##_PIN, 255L * current / (MOTOR_CURRENT_PWM_RANGE)) switch (driver) { #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) case 0: _WRITE_CURRENT_PWM(XY); break; #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) case 1: _WRITE_CURRENT_PWM(Z); break; #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) case 2: _WRITE_CURRENT_PWM(E); break; #endif } #endif } void Stepper::digipot_init() { #if HAS_DIGIPOTSS static const uint8_t digipot_motor_current[] = DIGIPOT_MOTOR_CURRENT; SPI.begin(); SET_OUTPUT(DIGIPOTSS_PIN); for (uint8_t i = 0; i < COUNT(digipot_motor_current); i++) { //digitalPotWrite(digipot_ch[i], digipot_motor_current[i]); digipot_current(i, digipot_motor_current[i]); } #elif HAS_MOTOR_CURRENT_PWM #if PIN_EXISTS(MOTOR_CURRENT_PWM_XY) SET_OUTPUT(MOTOR_CURRENT_PWM_XY_PIN); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_Z) SET_OUTPUT(MOTOR_CURRENT_PWM_Z_PIN); #endif #if PIN_EXISTS(MOTOR_CURRENT_PWM_E) SET_OUTPUT(MOTOR_CURRENT_PWM_E_PIN); #endif refresh_motor_power(); // Set Timer5 to 31khz so the PWM of the motor power is as constant as possible. (removes a buzzing noise) SET_CS5(PRESCALER_1); #endif } #endif #if HAS_MICROSTEPS /** * Software-controlled Microstepping */ void Stepper::microstep_init() { SET_OUTPUT(X_MS1_PIN); SET_OUTPUT(X_MS2_PIN); #if HAS_Y_MICROSTEPS SET_OUTPUT(Y_MS1_PIN); SET_OUTPUT(Y_MS2_PIN); #endif #if HAS_Z_MICROSTEPS SET_OUTPUT(Z_MS1_PIN); SET_OUTPUT(Z_MS2_PIN); #endif #if HAS_E0_MICROSTEPS SET_OUTPUT(E0_MS1_PIN); SET_OUTPUT(E0_MS2_PIN); #endif #if HAS_E1_MICROSTEPS SET_OUTPUT(E1_MS1_PIN); SET_OUTPUT(E1_MS2_PIN); #endif #if HAS_E2_MICROSTEPS SET_OUTPUT(E2_MS1_PIN); SET_OUTPUT(E2_MS2_PIN); #endif #if HAS_E3_MICROSTEPS SET_OUTPUT(E3_MS1_PIN); SET_OUTPUT(E3_MS2_PIN); #endif #if HAS_E4_MICROSTEPS SET_OUTPUT(E4_MS1_PIN); SET_OUTPUT(E4_MS2_PIN); #endif static const uint8_t microstep_modes[] = MICROSTEP_MODES; for (uint16_t i = 0; i < COUNT(microstep_modes); i++) microstep_mode(i, microstep_modes[i]); } void Stepper::microstep_ms(const uint8_t driver, const int8_t ms1, const int8_t ms2) { if (ms1 >= 0) switch (driver) { case 0: WRITE(X_MS1_PIN, ms1); break; #if HAS_Y_MICROSTEPS case 1: WRITE(Y_MS1_PIN, ms1); break; #endif #if HAS_Z_MICROSTEPS case 2: WRITE(Z_MS1_PIN, ms1); break; #endif #if HAS_E0_MICROSTEPS case 3: WRITE(E0_MS1_PIN, ms1); break; #endif #if HAS_E1_MICROSTEPS case 4: WRITE(E1_MS1_PIN, ms1); break; #endif #if HAS_E2_MICROSTEPS case 5: WRITE(E2_MS1_PIN, ms1); break; #endif #if HAS_E3_MICROSTEPS case 6: WRITE(E3_MS1_PIN, ms1); break; #endif #if HAS_E4_MICROSTEPS case 7: WRITE(E4_MS1_PIN, ms1); break; #endif } if (ms2 >= 0) switch (driver) { case 0: WRITE(X_MS2_PIN, ms2); break; #if HAS_Y_MICROSTEPS case 1: WRITE(Y_MS2_PIN, ms2); break; #endif #if HAS_Z_MICROSTEPS case 2: WRITE(Z_MS2_PIN, ms2); break; #endif #if HAS_E0_MICROSTEPS case 3: WRITE(E0_MS2_PIN, ms2); break; #endif #if HAS_E1_MICROSTEPS case 4: WRITE(E1_MS2_PIN, ms2); break; #endif #if HAS_E2_MICROSTEPS case 5: WRITE(E2_MS2_PIN, ms2); break; #endif #if HAS_E3_MICROSTEPS case 6: WRITE(E3_MS2_PIN, ms2); break; #endif #if HAS_E4_MICROSTEPS case 7: WRITE(E4_MS2_PIN, ms2); break; #endif } } void Stepper::microstep_mode(const uint8_t driver, const uint8_t stepping_mode) { switch (stepping_mode) { case 1: microstep_ms(driver, MICROSTEP1); break; case 2: microstep_ms(driver, MICROSTEP2); break; case 4: microstep_ms(driver, MICROSTEP4); break; case 8: microstep_ms(driver, MICROSTEP8); break; case 16: microstep_ms(driver, MICROSTEP16); break; #if MB(ALLIGATOR) case 32: microstep_ms(driver, MICROSTEP32); break; #endif } } void Stepper::microstep_readings() { SERIAL_PROTOCOLLNPGM("MS1,MS2 Pins"); SERIAL_PROTOCOLPGM("X: "); SERIAL_PROTOCOL(READ(X_MS1_PIN)); SERIAL_PROTOCOLLN(READ(X_MS2_PIN)); #if HAS_Y_MICROSTEPS SERIAL_PROTOCOLPGM("Y: "); SERIAL_PROTOCOL(READ(Y_MS1_PIN)); SERIAL_PROTOCOLLN(READ(Y_MS2_PIN)); #endif #if HAS_Z_MICROSTEPS SERIAL_PROTOCOLPGM("Z: "); SERIAL_PROTOCOL(READ(Z_MS1_PIN)); SERIAL_PROTOCOLLN(READ(Z_MS2_PIN)); #endif #if HAS_E0_MICROSTEPS SERIAL_PROTOCOLPGM("E0: "); SERIAL_PROTOCOL(READ(E0_MS1_PIN)); SERIAL_PROTOCOLLN(READ(E0_MS2_PIN)); #endif #if HAS_E1_MICROSTEPS SERIAL_PROTOCOLPGM("E1: "); SERIAL_PROTOCOL(READ(E1_MS1_PIN)); SERIAL_PROTOCOLLN(READ(E1_MS2_PIN)); #endif #if HAS_E2_MICROSTEPS SERIAL_PROTOCOLPGM("E2: "); SERIAL_PROTOCOL(READ(E2_MS1_PIN)); SERIAL_PROTOCOLLN(READ(E2_MS2_PIN)); #endif #if HAS_E3_MICROSTEPS SERIAL_PROTOCOLPGM("E3: "); SERIAL_PROTOCOL(READ(E3_MS1_PIN)); SERIAL_PROTOCOLLN(READ(E3_MS2_PIN)); #endif #if HAS_E4_MICROSTEPS SERIAL_PROTOCOLPGM("E4: "); SERIAL_PROTOCOL(READ(E4_MS1_PIN)); SERIAL_PROTOCOLLN(READ(E4_MS2_PIN)); #endif } #endif // HAS_MICROSTEPS