/*
  planner.h - buffers movement commands and manages the acceleration profile plan
  Part of Grbl

  Copyright (c) 2009-2011 Simen Svale Skogsrud

  Grbl is free software: you can redistribute it and/or modify
  it under the terms of the GNU General Public License as published by
  the Free Software Foundation, either version 3 of the License, or
  (at your option) any later version.

  Grbl is distributed in the hope that it will be useful,
  but WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  GNU General Public License for more details.

  You should have received a copy of the GNU General Public License
  along with Grbl.  If not, see <http://www.gnu.org/licenses/>.
*/

// This module is to be considered a sub-module of stepper.c. Please don't include 
// this file from any other module.

#ifndef PLANNER_H
#define PLANNER_H

#include "Marlin.h"

// This struct is used when buffering the setup for each linear movement "nominal" values are as specified in 
// the source g-code and may never actually be reached if acceleration management is active.
typedef struct {
  // Fields used by the bresenham algorithm for tracing the line
  long steps[NUM_AXIS];                     // Step count along each axis
  unsigned long step_event_count;           // The number of step events required to complete this block
  long accelerate_until;                    // The index of the step event on which to stop acceleration
  long decelerate_after;                    // The index of the step event on which to start decelerating
  long acceleration_rate;                   // The acceleration rate used for acceleration calculation
  unsigned char direction_bits;             // The direction bit set for this block (refers to *_DIRECTION_BIT in config.h)
  unsigned char active_extruder;            // Selects the active extruder
  #ifdef ADVANCE
    long advance_rate;
    volatile long initial_advance;
    volatile long final_advance;
    float advance;
  #endif

  // Fields used by the motion planner to manage acceleration
  // float speed_x, speed_y, speed_z, speed_e;          // Nominal mm/sec for each axis
  float nominal_speed;                               // The nominal speed for this block in mm/sec 
  float entry_speed;                                 // Entry speed at previous-current junction in mm/sec
  float max_entry_speed;                             // Maximum allowable junction entry speed in mm/sec
  float millimeters;                                 // The total travel of this block in mm
  float acceleration;                                // acceleration mm/sec^2
  unsigned char recalculate_flag;                    // Planner flag to recalculate trapezoids on entry junction
  unsigned char nominal_length_flag;                 // Planner flag for nominal speed always reached

  // Settings for the trapezoid generator
  unsigned long nominal_rate;                        // The nominal step rate for this block in step_events/sec 
  unsigned long initial_rate;                        // The jerk-adjusted step rate at start of block  
  unsigned long final_rate;                          // The minimal rate at exit
  unsigned long acceleration_st;                     // acceleration steps/sec^2
  unsigned long fan_speed;
  #ifdef BARICUDA
    unsigned long valve_pressure;
    unsigned long e_to_p_pressure;
  #endif
  volatile char busy;
} block_t;

#define BLOCK_MOD(n) ((n)&(BLOCK_BUFFER_SIZE-1))

// Initialize the motion plan subsystem      
void plan_init();

void check_axes_activity();

// Get the number of buffered moves
extern volatile unsigned char block_buffer_head;
extern volatile unsigned char block_buffer_tail;
FORCE_INLINE uint8_t movesplanned() { return BLOCK_MOD(block_buffer_head - block_buffer_tail + BLOCK_BUFFER_SIZE); }

#if defined(ENABLE_AUTO_BED_LEVELING) || defined(MESH_BED_LEVELING)

  #if defined(ENABLE_AUTO_BED_LEVELING)
    #include "vector_3.h"

    // Transform required to compensate for bed level
    extern matrix_3x3 plan_bed_level_matrix;

    /**
     * Get the position applying the bed level matrix
     */
    vector_3 plan_get_position();
  #endif  // ENABLE_AUTO_BED_LEVELING

  /**
   * Add a new linear movement to the buffer. x, y, z are the signed, absolute target position in
   * millimeters. Feed rate specifies the (target) speed of the motion.
   */
  void plan_buffer_line(float x, float y, float z, const float &e, float feed_rate, const uint8_t &extruder);

  /**
   * Set the planner positions. Used for G92 instructions.
   * Multiplies by axis_steps_per_unit[] to set stepper positions.
   * Clears previous speed values.
   */
  void plan_set_position(float x, float y, float z, const float &e);

#else

  void plan_buffer_line(const float &x, const float &y, const float &z, const float &e, float feed_rate, const uint8_t &extruder);
  void plan_set_position(const float &x, const float &y, const float &z, const float &e);

#endif // ENABLE_AUTO_BED_LEVELING || MESH_BED_LEVELING

void plan_set_e_position(const float &e);

extern unsigned long minsegmenttime;
extern float max_feedrate[NUM_AXIS]; // set the max speeds
extern float axis_steps_per_unit[NUM_AXIS];
extern unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software
extern float minimumfeedrate;
extern float acceleration;         // Normal acceleration mm/s^2  THIS IS THE DEFAULT ACCELERATION for all moves. M204 SXXXX
extern float retract_acceleration; //  mm/s^2   filament pull-pack and push-forward  while standing still in the other axis M204 TXXXX
extern float travel_acceleration;  // Travel acceleration mm/s^2  THIS IS THE DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX
extern float max_xy_jerk; //speed than can be stopped at once, if i understand correctly.
extern float max_z_jerk;
extern float max_e_jerk;
extern float mintravelfeedrate;
extern unsigned long axis_steps_per_sqr_second[NUM_AXIS];

#ifdef AUTOTEMP
  extern bool autotemp_enabled;
  extern float autotemp_max;
  extern float autotemp_min;
  extern float autotemp_factor;
#endif

extern block_t block_buffer[BLOCK_BUFFER_SIZE];            // A ring buffer for motion instructions
extern volatile unsigned char block_buffer_head;           // Index of the next block to be pushed
extern volatile unsigned char block_buffer_tail; 

// Returns true if the buffer has a queued block, false otherwise
FORCE_INLINE bool blocks_queued() { return (block_buffer_head != block_buffer_tail); }

// Called when the current block is no longer needed. Discards
// the block and makes the memory available for new blocks.
FORCE_INLINE void plan_discard_current_block() {
  if (blocks_queued())
    block_buffer_tail = BLOCK_MOD(block_buffer_tail + 1);
}

// Gets the current block. Returns NULL if buffer empty
FORCE_INLINE block_t *plan_get_current_block() {
  if (blocks_queued()) {
    block_t *block = &block_buffer[block_buffer_tail];
    block->busy = true;
    return block;
  }
  else
    return NULL;
}

#ifdef PREVENT_DANGEROUS_EXTRUDE
  void set_extrude_min_temp(float temp);
#endif

void reset_acceleration_rates();

#endif //PLANNER_H