/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ /** * endstops.cpp - A singleton object to manage endstops */ #include "Marlin.h" #include "cardreader.h" #include "endstops.h" #include "temperature.h" #include "stepper.h" #include "ultralcd.h" // TEST_ENDSTOP: test the old and the current status of an endstop #define TEST_ENDSTOP(ENDSTOP) (TEST(current_endstop_bits & old_endstop_bits, ENDSTOP)) Endstops endstops; // public: bool Endstops::enabled = true, Endstops::enabled_globally = #if ENABLED(ENDSTOPS_ALWAYS_ON_DEFAULT) (true) #else (false) #endif ; volatile char Endstops::endstop_hit_bits; // use X_MIN, Y_MIN, Z_MIN and Z_MIN_PROBE as BIT value #if ENABLED(Z_DUAL_ENDSTOPS) uint16_t #else byte #endif Endstops::current_endstop_bits = 0, Endstops::old_endstop_bits = 0; #if HAS_BED_PROBE volatile bool Endstops::z_probe_enabled = false; #endif /** * Class and Instance Methods */ void Endstops::init() { #if HAS_X_MIN #if ENABLED(ENDSTOPPULLUP_XMIN) SET_INPUT_PULLUP(X_MIN_PIN); #else SET_INPUT(X_MIN_PIN); #endif #endif #if HAS_Y_MIN #if ENABLED(ENDSTOPPULLUP_YMIN) SET_INPUT_PULLUP(Y_MIN_PIN); #else SET_INPUT(Y_MIN_PIN); #endif #endif #if HAS_Z_MIN #if ENABLED(ENDSTOPPULLUP_ZMIN) SET_INPUT_PULLUP(Z_MIN_PIN); #else SET_INPUT(Z_MIN_PIN); #endif #endif #if HAS_Z2_MIN #if ENABLED(ENDSTOPPULLUP_ZMIN) SET_INPUT_PULLUP(Z2_MIN_PIN); #else SET_INPUT(Z2_MIN_PIN); #endif #endif #if HAS_X_MAX #if ENABLED(ENDSTOPPULLUP_XMAX) SET_INPUT_PULLUP(X_MAX_PIN); #else SET_INPUT(X_MAX_PIN); #endif #endif #if HAS_Y_MAX #if ENABLED(ENDSTOPPULLUP_YMAX) SET_INPUT_PULLUP(Y_MAX_PIN); #else SET_INPUT(Y_MAX_PIN); #endif #endif #if HAS_Z_MAX #if ENABLED(ENDSTOPPULLUP_ZMAX) SET_INPUT_PULLUP(Z_MAX_PIN); #else SET_INPUT(Z_MAX_PIN); #endif #endif #if HAS_Z2_MAX #if ENABLED(ENDSTOPPULLUP_ZMAX) SET_INPUT_PULLUP(Z2_MAX_PIN); #else SET_INPUT(Z2_MAX_PIN); #endif #endif #if ENABLED(Z_MIN_PROBE_ENDSTOP) #if ENABLED(ENDSTOPPULLUP_ZMIN_PROBE) SET_INPUT_PULLUP(Z_MIN_PROBE_PIN); #else SET_INPUT(Z_MIN_PROBE_PIN); #endif #endif } // Endstops::init void Endstops::report_state() { if (endstop_hit_bits) { #if ENABLED(ULTRA_LCD) char chrX = ' ', chrY = ' ', chrZ = ' ', chrP = ' '; #define _SET_STOP_CHAR(A,C) (chr## A = C) #else #define _SET_STOP_CHAR(A,C) ; #endif #define _ENDSTOP_HIT_ECHO(A,C) do{ \ SERIAL_ECHOPAIR(" " STRINGIFY(A) ":", stepper.triggered_position_mm(A ##_AXIS)); \ _SET_STOP_CHAR(A,C); }while(0) #define _ENDSTOP_HIT_TEST(A,C) \ if (TEST(endstop_hit_bits, A ##_MIN) || TEST(endstop_hit_bits, A ##_MAX)) \ _ENDSTOP_HIT_ECHO(A,C) SERIAL_ECHO_START; SERIAL_ECHOPGM(MSG_ENDSTOPS_HIT); _ENDSTOP_HIT_TEST(X, 'X'); _ENDSTOP_HIT_TEST(Y, 'Y'); _ENDSTOP_HIT_TEST(Z, 'Z'); #if ENABLED(Z_MIN_PROBE_ENDSTOP) #define P_AXIS Z_AXIS if (TEST(endstop_hit_bits, Z_MIN_PROBE)) _ENDSTOP_HIT_ECHO(P, 'P'); #endif SERIAL_EOL; #if ENABLED(ULTRA_LCD) lcd_status_printf_P(0, PSTR(MSG_LCD_ENDSTOPS " %c %c %c %c"), chrX, chrY, chrZ, chrP); #endif hit_on_purpose(); #if ENABLED(ABORT_ON_ENDSTOP_HIT_FEATURE_ENABLED) && ENABLED(SDSUPPORT) if (stepper.abort_on_endstop_hit) { card.sdprinting = false; card.closefile(); quickstop_stepper(); thermalManager.disable_all_heaters(); // switch off all heaters. } #endif } } // Endstops::report_state void Endstops::M119() { SERIAL_PROTOCOLLNPGM(MSG_M119_REPORT); #if HAS_X_MIN SERIAL_PROTOCOLPGM(MSG_X_MIN); SERIAL_PROTOCOLLN(((READ(X_MIN_PIN)^X_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_X_MAX SERIAL_PROTOCOLPGM(MSG_X_MAX); SERIAL_PROTOCOLLN(((READ(X_MAX_PIN)^X_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Y_MIN SERIAL_PROTOCOLPGM(MSG_Y_MIN); SERIAL_PROTOCOLLN(((READ(Y_MIN_PIN)^Y_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Y_MAX SERIAL_PROTOCOLPGM(MSG_Y_MAX); SERIAL_PROTOCOLLN(((READ(Y_MAX_PIN)^Y_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z_MIN SERIAL_PROTOCOLPGM(MSG_Z_MIN); SERIAL_PROTOCOLLN(((READ(Z_MIN_PIN)^Z_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z2_MIN SERIAL_PROTOCOLPGM(MSG_Z2_MIN); SERIAL_PROTOCOLLN(((READ(Z2_MIN_PIN)^Z2_MIN_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z_MAX SERIAL_PROTOCOLPGM(MSG_Z_MAX); SERIAL_PROTOCOLLN(((READ(Z_MAX_PIN)^Z_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if HAS_Z2_MAX SERIAL_PROTOCOLPGM(MSG_Z2_MAX); SERIAL_PROTOCOLLN(((READ(Z2_MAX_PIN)^Z2_MAX_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if ENABLED(Z_MIN_PROBE_ENDSTOP) SERIAL_PROTOCOLPGM(MSG_Z_PROBE); SERIAL_PROTOCOLLN(((READ(Z_MIN_PROBE_PIN)^Z_MIN_PROBE_ENDSTOP_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif #if ENABLED(FILAMENT_RUNOUT_SENSOR) SERIAL_PROTOCOLPGM(MSG_FILAMENT_RUNOUT_SENSOR); SERIAL_PROTOCOLLN(((READ(FIL_RUNOUT_PIN)^FIL_RUNOUT_INVERTING) ? MSG_ENDSTOP_HIT : MSG_ENDSTOP_OPEN)); #endif } // Endstops::M119 #if ENABLED(Z_DUAL_ENDSTOPS) // Pass the result of the endstop test void Endstops::test_dual_z_endstops(const EndstopEnum es1, const EndstopEnum es2) { byte z_test = TEST_ENDSTOP(es1) | (TEST_ENDSTOP(es2) << 1); // bit 0 for Z, bit 1 for Z2 if (z_test && stepper.current_block->steps[Z_AXIS] > 0) { SBI(endstop_hit_bits, Z_MIN); if (!stepper.performing_homing || (z_test == 0x3)) //if not performing home or if both endstops were trigged during homing... stepper.kill_current_block(); } } #endif // Check endstops - Called from ISR! void Endstops::update() { #define _ENDSTOP(AXIS, MINMAX) AXIS ##_## MINMAX #define _ENDSTOP_PIN(AXIS, MINMAX) AXIS ##_## MINMAX ##_PIN #define _ENDSTOP_INVERTING(AXIS, MINMAX) AXIS ##_## MINMAX ##_ENDSTOP_INVERTING #define _ENDSTOP_HIT(AXIS) SBI(endstop_hit_bits, _ENDSTOP(AXIS, MIN)) // UPDATE_ENDSTOP_BIT: set the current endstop bits for an endstop to its status #define UPDATE_ENDSTOP_BIT(AXIS, MINMAX) SET_BIT(current_endstop_bits, _ENDSTOP(AXIS, MINMAX), (READ(_ENDSTOP_PIN(AXIS, MINMAX)) != _ENDSTOP_INVERTING(AXIS, MINMAX))) // COPY_BIT: copy the value of SRC_BIT to DST_BIT in DST #define COPY_BIT(DST, SRC_BIT, DST_BIT) SET_BIT(DST, DST_BIT, TEST(DST, SRC_BIT)) #define UPDATE_ENDSTOP(AXIS,MINMAX) do { \ UPDATE_ENDSTOP_BIT(AXIS, MINMAX); \ if (TEST_ENDSTOP(_ENDSTOP(AXIS, MINMAX)) && stepper.current_block->steps[_AXIS(AXIS)] > 0) { \ _ENDSTOP_HIT(AXIS); \ stepper.endstop_triggered(_AXIS(AXIS)); \ } \ } while(0) #if ENABLED(G38_PROBE_TARGET) && PIN_EXISTS(Z_MIN_PROBE) && !(CORE_IS_XY || CORE_IS_XZ) // If G38 command then check Z_MIN_PROBE for every axis and every direction if (G38_move) { UPDATE_ENDSTOP_BIT(Z, MIN_PROBE); if (TEST_ENDSTOP(_ENDSTOP(Z, MIN_PROBE))) { if (stepper.current_block->steps[_AXIS(X)] > 0) {_ENDSTOP_HIT(X); stepper.endstop_triggered(_AXIS(X));} else if (stepper.current_block->steps[_AXIS(Y)] > 0) {_ENDSTOP_HIT(Y); stepper.endstop_triggered(_AXIS(Y));} else if (stepper.current_block->steps[_AXIS(Z)] > 0) {_ENDSTOP_HIT(Z); stepper.endstop_triggered(_AXIS(Z));} G38_endstop_hit = true; } } #endif #if CORE_IS_XY || CORE_IS_XZ #if ENABLED(COREYX) || ENABLED(COREZX) #define CORE_X_CMP != #define CORE_X_NOT ! #else #define CORE_X_CMP == #define CORE_X_NOT #endif // Head direction in -X axis for CoreXY and CoreXZ bots. // If steps differ, both axes are moving. // If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z, handled below) // If DeltaA == DeltaB, the movement is only in the 1st axis (X) if (stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2] || stepper.motor_direction(CORE_AXIS_1) CORE_X_CMP stepper.motor_direction(CORE_AXIS_2)) { if (CORE_X_NOT stepper.motor_direction(X_HEAD)) #else if (stepper.motor_direction(X_AXIS)) // stepping along -X axis (regular Cartesian bot) #endif { // -direction #if ENABLED(DUAL_X_CARRIAGE) // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR < 0) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR < 0)) #endif { #if HAS_X_MIN UPDATE_ENDSTOP(X, MIN); #endif } } else { // +direction #if ENABLED(DUAL_X_CARRIAGE) // with 2 x-carriages, endstops are only checked in the homing direction for the active extruder if ((stepper.current_block->active_extruder == 0 && X_HOME_DIR > 0) || (stepper.current_block->active_extruder != 0 && X2_HOME_DIR > 0)) #endif { #if HAS_X_MAX UPDATE_ENDSTOP(X, MAX); #endif } } #if CORE_IS_XY || CORE_IS_XZ } #endif // Handle swapped vs. typical Core axis order #if ENABLED(COREYX) || ENABLED(COREZY) || ENABLED(COREZX) #define CORE_YZ_CMP == #define CORE_YZ_NOT ! #elif CORE_IS_XY || CORE_IS_YZ || CORE_IS_XZ #define CORE_YZ_CMP != #define CORE_YZ_NOT #endif #if CORE_IS_XY || CORE_IS_YZ // Head direction in -Y axis for CoreXY / CoreYZ bots. // If steps differ, both axes are moving // If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y) // If DeltaA == -DeltaB, the movement is only in the 2nd axis (Y or Z) if (stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2] || stepper.motor_direction(CORE_AXIS_1) CORE_YZ_CMP stepper.motor_direction(CORE_AXIS_2)) { if (CORE_YZ_NOT stepper.motor_direction(Y_HEAD)) #else if (stepper.motor_direction(Y_AXIS)) // -direction #endif { // -direction #if HAS_Y_MIN UPDATE_ENDSTOP(Y, MIN); #endif } else { // +direction #if HAS_Y_MAX UPDATE_ENDSTOP(Y, MAX); #endif } #if CORE_IS_XY || CORE_IS_YZ } #endif #if CORE_IS_XZ || CORE_IS_YZ // Head direction in -Z axis for CoreXZ or CoreYZ bots. // If steps differ, both axes are moving // If DeltaA == DeltaB, the movement is only in the 1st axis (X or Y, already handled above) // If DeltaA == -DeltaB, the movement is only in the 2nd axis (Z) if (stepper.current_block->steps[CORE_AXIS_1] != stepper.current_block->steps[CORE_AXIS_2] || stepper.motor_direction(CORE_AXIS_1) CORE_YZ_CMP stepper.motor_direction(CORE_AXIS_2)) { if (CORE_YZ_NOT stepper.motor_direction(Z_HEAD)) #else if (stepper.motor_direction(Z_AXIS)) #endif { // Z -direction. Gantry down, bed up. #if HAS_Z_MIN #if ENABLED(Z_DUAL_ENDSTOPS) UPDATE_ENDSTOP_BIT(Z, MIN); #if HAS_Z2_MIN UPDATE_ENDSTOP_BIT(Z2, MIN); #else COPY_BIT(current_endstop_bits, Z_MIN, Z2_MIN); #endif test_dual_z_endstops(Z_MIN, Z2_MIN); #else // !Z_DUAL_ENDSTOPS #if ENABLED(Z_MIN_PROBE_USES_Z_MIN_ENDSTOP_PIN) if (z_probe_enabled) UPDATE_ENDSTOP(Z, MIN); #else UPDATE_ENDSTOP(Z, MIN); #endif #endif // !Z_DUAL_ENDSTOPS #endif // HAS_Z_MIN // When closing the gap check the enabled probe #if ENABLED(Z_MIN_PROBE_ENDSTOP) if (z_probe_enabled) { UPDATE_ENDSTOP(Z, MIN_PROBE); if (TEST_ENDSTOP(Z_MIN_PROBE)) SBI(endstop_hit_bits, Z_MIN_PROBE); } #endif } else { // Z +direction. Gantry up, bed down. #if HAS_Z_MAX // Check both Z dual endstops #if ENABLED(Z_DUAL_ENDSTOPS) UPDATE_ENDSTOP_BIT(Z, MAX); #if HAS_Z2_MAX UPDATE_ENDSTOP_BIT(Z2, MAX); #else COPY_BIT(current_endstop_bits, Z_MAX, Z2_MAX); #endif test_dual_z_endstops(Z_MAX, Z2_MAX); // If this pin is not hijacked for the bed probe // then it belongs to the Z endstop #elif DISABLED(Z_MIN_PROBE_ENDSTOP) || Z_MAX_PIN != Z_MIN_PROBE_PIN UPDATE_ENDSTOP(Z, MAX); #endif // !Z_MIN_PROBE_PIN... #endif // Z_MAX_PIN } #if CORE_IS_XZ || CORE_IS_YZ } #endif old_endstop_bits = current_endstop_bits; } // Endstops::update()