/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ /** * planner.cpp - Buffer movement commands and manage the acceleration profile plan * Part of Grbl * * Copyright (c) 2009-2011 Simen Svale Skogsrud * * Grbl is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * Grbl is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Grbl. If not, see <http://www.gnu.org/licenses/>. * * * The ring buffer implementation gleaned from the wiring_serial library by David A. Mellis. * * * Reasoning behind the mathematics in this module (in the key of 'Mathematica'): * * s == speed, a == acceleration, t == time, d == distance * * Basic definitions: * Speed[s_, a_, t_] := s + (a*t) * Travel[s_, a_, t_] := Integrate[Speed[s, a, t], t] * * Distance to reach a specific speed with a constant acceleration: * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, d, t] * d -> (m^2 - s^2)/(2 a) --> estimate_acceleration_distance() * * Speed after a given distance of travel with constant acceleration: * Solve[{Speed[s, a, t] == m, Travel[s, a, t] == d}, m, t] * m -> Sqrt[2 a d + s^2] * * DestinationSpeed[s_, a_, d_] := Sqrt[2 a d + s^2] * * When to start braking (di) to reach a specified destination speed (s2) after accelerating * from initial speed s1 without ever stopping at a plateau: * Solve[{DestinationSpeed[s1, a, di] == DestinationSpeed[s2, a, d - di]}, di] * di -> (2 a d - s1^2 + s2^2)/(4 a) --> intersection_distance() * * IntersectionDistance[s1_, s2_, a_, d_] := (2 a d - s1^2 + s2^2)/(4 a) * */ #include "Marlin.h" #include "planner.h" #include "stepper.h" #include "temperature.h" #include "ultralcd.h" #include "language.h" #if ENABLED(MESH_BED_LEVELING) #include "mesh_bed_leveling.h" #endif //=========================================================================== //============================= public variables ============================ //=========================================================================== millis_t minsegmenttime; float max_feedrate[NUM_AXIS]; // Max speeds in mm per minute float axis_steps_per_unit[NUM_AXIS]; unsigned long max_acceleration_units_per_sq_second[NUM_AXIS]; // Use M201 to override by software float minimumfeedrate; float acceleration; // Normal acceleration mm/s^2 DEFAULT ACCELERATION for all printing moves. M204 SXXXX float retract_acceleration; // Retract acceleration mm/s^2 filament pull-back and push-forward while standing still in the other axes M204 TXXXX float travel_acceleration; // Travel acceleration mm/s^2 DEFAULT ACCELERATION for all NON printing moves. M204 MXXXX float max_xy_jerk; // The largest speed change requiring no acceleration float max_z_jerk; float max_e_jerk; float mintravelfeedrate; unsigned long axis_steps_per_sqr_second[NUM_AXIS]; #if ENABLED(AUTO_BED_LEVELING_FEATURE) // Transform required to compensate for bed level matrix_3x3 plan_bed_level_matrix = { 1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 1.0 }; #endif // AUTO_BED_LEVELING_FEATURE #if ENABLED(AUTOTEMP) float autotemp_max = 250; float autotemp_min = 210; float autotemp_factor = 0.1; bool autotemp_enabled = false; #endif #if ENABLED(FAN_SOFT_PWM) extern unsigned char fanSpeedSoftPwm[FAN_COUNT]; #endif //=========================================================================== //============ semi-private variables, used in inline functions ============= //=========================================================================== block_t block_buffer[BLOCK_BUFFER_SIZE]; // A ring buffer for motion instfructions volatile unsigned char block_buffer_head; // Index of the next block to be pushed volatile unsigned char block_buffer_tail; // Index of the block to process now //=========================================================================== //============================ private variables ============================ //=========================================================================== // The current position of the tool in absolute steps long position[NUM_AXIS]; // Rescaled from extern when axis_steps_per_unit are changed by gcode static float previous_speed[NUM_AXIS]; // Speed of previous path line segment static float previous_nominal_speed; // Nominal speed of previous path line segment uint8_t g_uc_extruder_last_move[EXTRUDERS] = { 0 }; #ifdef XY_FREQUENCY_LIMIT // Used for the frequency limit #define MAX_FREQ_TIME (1000000.0/XY_FREQUENCY_LIMIT) // Old direction bits. Used for speed calculations static unsigned char old_direction_bits = 0; // Segment times (in µs). Used for speed calculations static long axis_segment_time[2][3] = { {MAX_FREQ_TIME + 1, 0, 0}, {MAX_FREQ_TIME + 1, 0, 0} }; #endif #if ENABLED(FILAMENT_SENSOR) static char meas_sample; //temporary variable to hold filament measurement sample #endif #if ENABLED(DUAL_X_CARRIAGE) extern bool extruder_duplication_enabled; #endif //=========================================================================== //================================ functions ================================ //=========================================================================== // Get the next / previous index of the next block in the ring buffer // NOTE: Using & here (not %) because BLOCK_BUFFER_SIZE is always a power of 2 FORCE_INLINE int8_t next_block_index(int8_t block_index) { return BLOCK_MOD(block_index + 1); } FORCE_INLINE int8_t prev_block_index(int8_t block_index) { return BLOCK_MOD(block_index - 1); } // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the // given acceleration: FORCE_INLINE float estimate_acceleration_distance(float initial_rate, float target_rate, float acceleration) { if (acceleration == 0) return 0; // acceleration was 0, set acceleration distance to 0 return (target_rate * target_rate - initial_rate * initial_rate) / (acceleration * 2); } // This function gives you the point at which you must start braking (at the rate of -acceleration) if // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after // a total travel of distance. This can be used to compute the intersection point between acceleration and // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed) FORCE_INLINE float intersection_distance(float initial_rate, float final_rate, float acceleration, float distance) { if (acceleration == 0) return 0; // acceleration was 0, set intersection distance to 0 return (acceleration * 2 * distance - initial_rate * initial_rate + final_rate * final_rate) / (acceleration * 4); } // Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors. void calculate_trapezoid_for_block(block_t* block, float entry_factor, float exit_factor) { unsigned long initial_rate = ceil(block->nominal_rate * entry_factor); // (step/min) unsigned long final_rate = ceil(block->nominal_rate * exit_factor); // (step/min) // Limit minimal step rate (Otherwise the timer will overflow.) NOLESS(initial_rate, 120); NOLESS(final_rate, 120); long acceleration = block->acceleration_st; int32_t accelerate_steps = ceil(estimate_acceleration_distance(initial_rate, block->nominal_rate, acceleration)); int32_t decelerate_steps = floor(estimate_acceleration_distance(block->nominal_rate, final_rate, -acceleration)); // Calculate the size of Plateau of Nominal Rate. int32_t plateau_steps = block->step_event_count - accelerate_steps - decelerate_steps; // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will // have to use intersection_distance() to calculate when to abort acceleration and start braking // in order to reach the final_rate exactly at the end of this block. if (plateau_steps < 0) { accelerate_steps = ceil(intersection_distance(initial_rate, final_rate, acceleration, block->step_event_count)); accelerate_steps = max(accelerate_steps, 0); // Check limits due to numerical round-off accelerate_steps = min((uint32_t)accelerate_steps, block->step_event_count);//(We can cast here to unsigned, because the above line ensures that we are above zero) plateau_steps = 0; } #if ENABLED(ADVANCE) volatile long initial_advance = block->advance * entry_factor * entry_factor; volatile long final_advance = block->advance * exit_factor * exit_factor; #endif // ADVANCE // block->accelerate_until = accelerate_steps; // block->decelerate_after = accelerate_steps+plateau_steps; CRITICAL_SECTION_START; // Fill variables used by the stepper in a critical section if (!block->busy) { // Don't update variables if block is busy. block->accelerate_until = accelerate_steps; block->decelerate_after = accelerate_steps + plateau_steps; block->initial_rate = initial_rate; block->final_rate = final_rate; #if ENABLED(ADVANCE) block->initial_advance = initial_advance; block->final_advance = final_advance; #endif } CRITICAL_SECTION_END; } // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the // acceleration within the allotted distance. FORCE_INLINE float max_allowable_speed(float acceleration, float target_velocity, float distance) { return sqrt(target_velocity * target_velocity - 2 * acceleration * distance); } // "Junction jerk" in this context is the immediate change in speed at the junction of two blocks. // This method will calculate the junction jerk as the euclidean distance between the nominal // velocities of the respective blocks. //inline float junction_jerk(block_t *before, block_t *after) { // return sqrt( // pow((before->speed_x-after->speed_x), 2)+pow((before->speed_y-after->speed_y), 2)); //} // The kernel called by planner_recalculate() when scanning the plan from last to first entry. void planner_reverse_pass_kernel(block_t* previous, block_t* current, block_t* next) { if (!current) return; UNUSED(previous); if (next) { // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising. // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and // check for maximum allowable speed reductions to ensure maximum possible planned speed. float max_entry_speed = current->max_entry_speed; if (current->entry_speed != max_entry_speed) { // If nominal length true, max junction speed is guaranteed to be reached. Only compute // for max allowable speed if block is decelerating and nominal length is false. if (!current->nominal_length_flag && max_entry_speed > next->entry_speed) { current->entry_speed = min(max_entry_speed, max_allowable_speed(-current->acceleration, next->entry_speed, current->millimeters)); } else { current->entry_speed = max_entry_speed; } current->recalculate_flag = true; } } // Skip last block. Already initialized and set for recalculation. } // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // implements the reverse pass. void planner_reverse_pass() { uint8_t block_index = block_buffer_head; //Make a local copy of block_buffer_tail, because the interrupt can alter it CRITICAL_SECTION_START; unsigned char tail = block_buffer_tail; CRITICAL_SECTION_END if (BLOCK_MOD(block_buffer_head - tail + BLOCK_BUFFER_SIZE) > 3) { // moves queued block_index = BLOCK_MOD(block_buffer_head - 3); block_t* block[3] = { NULL, NULL, NULL }; while (block_index != tail) { block_index = prev_block_index(block_index); block[2] = block[1]; block[1] = block[0]; block[0] = &block_buffer[block_index]; planner_reverse_pass_kernel(block[0], block[1], block[2]); } } } // The kernel called by planner_recalculate() when scanning the plan from first to last entry. void planner_forward_pass_kernel(block_t* previous, block_t* current, block_t* next) { if (!previous) return; UNUSED(next); // If the previous block is an acceleration block, but it is not long enough to complete the // full speed change within the block, we need to adjust the entry speed accordingly. Entry // speeds have already been reset, maximized, and reverse planned by reverse planner. // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck. if (!previous->nominal_length_flag) { if (previous->entry_speed < current->entry_speed) { double entry_speed = min(current->entry_speed, max_allowable_speed(-previous->acceleration, previous->entry_speed, previous->millimeters)); // Check for junction speed change if (current->entry_speed != entry_speed) { current->entry_speed = entry_speed; current->recalculate_flag = true; } } } } // planner_recalculate() needs to go over the current plan twice. Once in reverse and once forward. This // implements the forward pass. void planner_forward_pass() { uint8_t block_index = block_buffer_tail; block_t* block[3] = { NULL, NULL, NULL }; while (block_index != block_buffer_head) { block[0] = block[1]; block[1] = block[2]; block[2] = &block_buffer[block_index]; planner_forward_pass_kernel(block[0], block[1], block[2]); block_index = next_block_index(block_index); } planner_forward_pass_kernel(block[1], block[2], NULL); } // Recalculates the trapezoid speed profiles for all blocks in the plan according to the // entry_factor for each junction. Must be called by planner_recalculate() after // updating the blocks. void planner_recalculate_trapezoids() { int8_t block_index = block_buffer_tail; block_t* current; block_t* next = NULL; while (block_index != block_buffer_head) { current = next; next = &block_buffer[block_index]; if (current) { // Recalculate if current block entry or exit junction speed has changed. if (current->recalculate_flag || next->recalculate_flag) { // NOTE: Entry and exit factors always > 0 by all previous logic operations. float nom = current->nominal_speed; calculate_trapezoid_for_block(current, current->entry_speed / nom, next->entry_speed / nom); current->recalculate_flag = false; // Reset current only to ensure next trapezoid is computed } } block_index = next_block_index(block_index); } // Last/newest block in buffer. Exit speed is set with MINIMUM_PLANNER_SPEED. Always recalculated. if (next) { float nom = next->nominal_speed; calculate_trapezoid_for_block(next, next->entry_speed / nom, (MINIMUM_PLANNER_SPEED) / nom); next->recalculate_flag = false; } } // Recalculates the motion plan according to the following algorithm: // // 1. Go over every block in reverse order and calculate a junction speed reduction (i.e. block_t.entry_factor) // so that: // a. The junction jerk is within the set limit // b. No speed reduction within one block requires faster deceleration than the one, true constant // acceleration. // 2. Go over every block in chronological order and dial down junction speed reduction values if // a. The speed increase within one block would require faster acceleration than the one, true // constant acceleration. // // When these stages are complete all blocks have an entry_factor that will allow all speed changes to // be performed using only the one, true constant acceleration, and where no junction jerk is jerkier than // the set limit. Finally it will: // // 3. Recalculate trapezoids for all blocks. void planner_recalculate() { planner_reverse_pass(); planner_forward_pass(); planner_recalculate_trapezoids(); } void plan_init() { block_buffer_head = block_buffer_tail = 0; memset(position, 0, sizeof(position)); // clear position for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0; previous_nominal_speed = 0.0; } #if ENABLED(AUTOTEMP) void getHighESpeed() { static float oldt = 0; if (!autotemp_enabled) return; if (degTargetHotend0() + 2 < autotemp_min) return; // probably temperature set to zero. float high = 0.0; uint8_t block_index = block_buffer_tail; while (block_index != block_buffer_head) { block_t* block = &block_buffer[block_index]; if (block->steps[X_AXIS] || block->steps[Y_AXIS] || block->steps[Z_AXIS]) { float se = (float)block->steps[E_AXIS] / block->step_event_count * block->nominal_speed; // mm/sec; NOLESS(high, se); } block_index = next_block_index(block_index); } float t = autotemp_min + high * autotemp_factor; t = constrain(t, autotemp_min, autotemp_max); if (oldt > t) { t *= (1 - (AUTOTEMP_OLDWEIGHT)); t += (AUTOTEMP_OLDWEIGHT) * oldt; } oldt = t; setTargetHotend0(t); } #endif //AUTOTEMP void check_axes_activity() { unsigned char axis_active[NUM_AXIS] = { 0 }, tail_fan_speed[FAN_COUNT]; #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = fanSpeeds[i]; #endif #if ENABLED(BARICUDA) unsigned char tail_valve_pressure = ValvePressure, tail_e_to_p_pressure = EtoPPressure; #endif block_t* block; if (blocks_queued()) { uint8_t block_index = block_buffer_tail; #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) tail_fan_speed[i] = block_buffer[block_index].fan_speed[i]; #endif #if ENABLED(BARICUDA) block = &block_buffer[block_index]; tail_valve_pressure = block->valve_pressure; tail_e_to_p_pressure = block->e_to_p_pressure; #endif while (block_index != block_buffer_head) { block = &block_buffer[block_index]; for (int i = 0; i < NUM_AXIS; i++) if (block->steps[i]) axis_active[i]++; block_index = next_block_index(block_index); } } #if ENABLED(DISABLE_X) if (!axis_active[X_AXIS]) disable_x(); #endif #if ENABLED(DISABLE_Y) if (!axis_active[Y_AXIS]) disable_y(); #endif #if ENABLED(DISABLE_Z) if (!axis_active[Z_AXIS]) disable_z(); #endif #if ENABLED(DISABLE_E) if (!axis_active[E_AXIS]) { disable_e0(); disable_e1(); disable_e2(); disable_e3(); } #endif #if FAN_COUNT > 0 #if defined(FAN_MIN_PWM) #define CALC_FAN_SPEED(f) (tail_fan_speed[f] ? ( FAN_MIN_PWM + (tail_fan_speed[f] * (255 - FAN_MIN_PWM)) / 255 ) : 0) #else #define CALC_FAN_SPEED(f) tail_fan_speed[f] #endif #ifdef FAN_KICKSTART_TIME static millis_t fan_kick_end[FAN_COUNT] = { 0 }; #define KICKSTART_FAN(f) \ if (tail_fan_speed[f]) { \ millis_t ms = millis(); \ if (fan_kick_end[f] == 0) { \ fan_kick_end[f] = ms + FAN_KICKSTART_TIME; \ tail_fan_speed[f] = 255; \ } else { \ if (fan_kick_end[f] > ms) { \ tail_fan_speed[f] = 255; \ } \ } \ } else { \ fan_kick_end[f] = 0; \ } #if HAS_FAN0 KICKSTART_FAN(0); #endif #if HAS_FAN1 KICKSTART_FAN(1); #endif #if HAS_FAN2 KICKSTART_FAN(2); #endif #endif //FAN_KICKSTART_TIME #if ENABLED(FAN_SOFT_PWM) #if HAS_FAN0 fanSpeedSoftPwm[0] = CALC_FAN_SPEED(0); #endif #if HAS_FAN1 fanSpeedSoftPwm[1] = CALC_FAN_SPEED(1); #endif #if HAS_FAN2 fanSpeedSoftPwm[2] = CALC_FAN_SPEED(2); #endif #else #if HAS_FAN0 analogWrite(FAN_PIN, CALC_FAN_SPEED(0)); #endif #if HAS_FAN1 analogWrite(FAN1_PIN, CALC_FAN_SPEED(1)); #endif #if HAS_FAN2 analogWrite(FAN2_PIN, CALC_FAN_SPEED(2)); #endif #endif #endif // FAN_COUNT > 0 #if ENABLED(AUTOTEMP) getHighESpeed(); #endif #if ENABLED(BARICUDA) #if HAS_HEATER_1 analogWrite(HEATER_1_PIN, tail_valve_pressure); #endif #if HAS_HEATER_2 analogWrite(HEATER_2_PIN, tail_e_to_p_pressure); #endif #endif } float junction_deviation = 0.1; // Add a new linear movement to the buffer. steps[X_AXIS], _y and _z is the absolute position in // mm. Microseconds specify how many microseconds the move should take to perform. To aid acceleration // calculation the caller must also provide the physical length of the line in millimeters. #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING) void plan_buffer_line(float x, float y, float z, const float& e, float feed_rate, const uint8_t extruder) #else void plan_buffer_line(const float& x, const float& y, const float& z, const float& e, float feed_rate, const uint8_t extruder) #endif // AUTO_BED_LEVELING_FEATURE { // Calculate the buffer head after we push this byte int next_buffer_head = next_block_index(block_buffer_head); // If the buffer is full: good! That means we are well ahead of the robot. // Rest here until there is room in the buffer. while (block_buffer_tail == next_buffer_head) idle(); #if ENABLED(MESH_BED_LEVELING) if (mbl.active) z += mbl.get_z(x, y); #elif ENABLED(AUTO_BED_LEVELING_FEATURE) apply_rotation_xyz(plan_bed_level_matrix, x, y, z); #endif // The target position of the tool in absolute steps // Calculate target position in absolute steps //this should be done after the wait, because otherwise a M92 code within the gcode disrupts this calculation somehow long target[NUM_AXIS]; target[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]); target[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]); target[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]); target[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); long dx = target[X_AXIS] - position[X_AXIS], dy = target[Y_AXIS] - position[Y_AXIS], dz = target[Z_AXIS] - position[Z_AXIS]; // DRYRUN ignores all temperature constraints and assures that the extruder is instantly satisfied if (marlin_debug_flags & DEBUG_DRYRUN) position[E_AXIS] = target[E_AXIS]; long de = target[E_AXIS] - position[E_AXIS]; #if ENABLED(PREVENT_DANGEROUS_EXTRUDE) if (de) { if (degHotend(extruder) < extrude_min_temp) { position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part de = 0; // no difference SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_COLD_EXTRUDE_STOP); } #if ENABLED(PREVENT_LENGTHY_EXTRUDE) if (labs(de) > axis_steps_per_unit[E_AXIS] * (EXTRUDE_MAXLENGTH)) { position[E_AXIS] = target[E_AXIS]; // Behave as if the move really took place, but ignore E part de = 0; // no difference SERIAL_ECHO_START; SERIAL_ECHOLNPGM(MSG_ERR_LONG_EXTRUDE_STOP); } #endif } #endif // Prepare to set up new block block_t* block = &block_buffer[block_buffer_head]; // Mark block as not busy (Not executed by the stepper interrupt) block->busy = false; // Number of steps for each axis #if ENABLED(COREXY) // corexy planning // these equations follow the form of the dA and dB equations on http://www.corexy.com/theory.html block->steps[A_AXIS] = labs(dx + dy); block->steps[B_AXIS] = labs(dx - dy); block->steps[Z_AXIS] = labs(dz); #elif ENABLED(COREXZ) // corexz planning block->steps[A_AXIS] = labs(dx + dz); block->steps[Y_AXIS] = labs(dy); block->steps[C_AXIS] = labs(dx - dz); #else // default non-h-bot planning block->steps[X_AXIS] = labs(dx); block->steps[Y_AXIS] = labs(dy); block->steps[Z_AXIS] = labs(dz); #endif block->steps[E_AXIS] = labs(de); block->steps[E_AXIS] *= volumetric_multiplier[extruder]; block->steps[E_AXIS] *= extruder_multiplier[extruder]; block->steps[E_AXIS] /= 100; block->step_event_count = max(block->steps[X_AXIS], max(block->steps[Y_AXIS], max(block->steps[Z_AXIS], block->steps[E_AXIS]))); // Bail if this is a zero-length block if (block->step_event_count <= dropsegments) return; #if FAN_COUNT > 0 for (uint8_t i = 0; i < FAN_COUNT; i++) block->fan_speed[i] = fanSpeeds[i]; #endif #if ENABLED(BARICUDA) block->valve_pressure = ValvePressure; block->e_to_p_pressure = EtoPPressure; #endif // Compute direction bits for this block uint8_t db = 0; #if ENABLED(COREXY) if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis if (dy < 0) SBI(db, Y_HEAD); // ...and Y if (dz < 0) SBI(db, Z_AXIS); if (dx + dy < 0) SBI(db, A_AXIS); // Motor A direction if (dx - dy < 0) SBI(db, B_AXIS); // Motor B direction #elif ENABLED(COREXZ) if (dx < 0) SBI(db, X_HEAD); // Save the real Extruder (head) direction in X Axis if (dy < 0) SBI(db, Y_AXIS); if (dz < 0) SBI(db, Z_HEAD); // ...and Z if (dx + dz < 0) SBI(db, A_AXIS); // Motor A direction if (dx - dz < 0) SBI(db, C_AXIS); // Motor B direction #else if (dx < 0) SBI(db, X_AXIS); if (dy < 0) SBI(db, Y_AXIS); if (dz < 0) SBI(db, Z_AXIS); #endif if (de < 0) SBI(db, E_AXIS); block->direction_bits = db; block->active_extruder = extruder; //enable active axes #if ENABLED(COREXY) if (block->steps[A_AXIS] || block->steps[B_AXIS]) { enable_x(); enable_y(); } #if DISABLED(Z_LATE_ENABLE) if (block->steps[Z_AXIS]) enable_z(); #endif #elif ENABLED(COREXZ) if (block->steps[A_AXIS] || block->steps[C_AXIS]) { enable_x(); enable_z(); } if (block->steps[Y_AXIS]) enable_y(); #else if (block->steps[X_AXIS]) enable_x(); if (block->steps[Y_AXIS]) enable_y(); #if DISABLED(Z_LATE_ENABLE) if (block->steps[Z_AXIS]) enable_z(); #endif #endif // Enable extruder(s) if (block->steps[E_AXIS]) { if (DISABLE_INACTIVE_EXTRUDER) { //enable only selected extruder for (int i = 0; i < EXTRUDERS; i++) if (g_uc_extruder_last_move[i] > 0) g_uc_extruder_last_move[i]--; switch(extruder) { case 0: enable_e0(); #if ENABLED(DUAL_X_CARRIAGE) if (extruder_duplication_enabled) { enable_e1(); g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2; } #endif g_uc_extruder_last_move[0] = (BLOCK_BUFFER_SIZE) * 2; #if EXTRUDERS > 1 if (g_uc_extruder_last_move[1] == 0) disable_e1(); #if EXTRUDERS > 2 if (g_uc_extruder_last_move[2] == 0) disable_e2(); #if EXTRUDERS > 3 if (g_uc_extruder_last_move[3] == 0) disable_e3(); #endif #endif #endif break; #if EXTRUDERS > 1 case 1: enable_e1(); g_uc_extruder_last_move[1] = (BLOCK_BUFFER_SIZE) * 2; if (g_uc_extruder_last_move[0] == 0) disable_e0(); #if EXTRUDERS > 2 if (g_uc_extruder_last_move[2] == 0) disable_e2(); #if EXTRUDERS > 3 if (g_uc_extruder_last_move[3] == 0) disable_e3(); #endif #endif break; #if EXTRUDERS > 2 case 2: enable_e2(); g_uc_extruder_last_move[2] = (BLOCK_BUFFER_SIZE) * 2; if (g_uc_extruder_last_move[0] == 0) disable_e0(); if (g_uc_extruder_last_move[1] == 0) disable_e1(); #if EXTRUDERS > 3 if (g_uc_extruder_last_move[3] == 0) disable_e3(); #endif break; #if EXTRUDERS > 3 case 3: enable_e3(); g_uc_extruder_last_move[3] = (BLOCK_BUFFER_SIZE) * 2; if (g_uc_extruder_last_move[0] == 0) disable_e0(); if (g_uc_extruder_last_move[1] == 0) disable_e1(); if (g_uc_extruder_last_move[2] == 0) disable_e2(); break; #endif // EXTRUDERS > 3 #endif // EXTRUDERS > 2 #endif // EXTRUDERS > 1 } } else { // enable all enable_e0(); enable_e1(); enable_e2(); enable_e3(); } } if (block->steps[E_AXIS]) NOLESS(feed_rate, minimumfeedrate); else NOLESS(feed_rate, mintravelfeedrate); /** * This part of the code calculates the total length of the movement. * For cartesian bots, the X_AXIS is the real X movement and same for Y_AXIS. * But for corexy bots, that is not true. The "X_AXIS" and "Y_AXIS" motors (that should be named to A_AXIS * and B_AXIS) cannot be used for X and Y length, because A=X+Y and B=X-Y. * So we need to create other 2 "AXIS", named X_HEAD and Y_HEAD, meaning the real displacement of the Head. * Having the real displacement of the head, we can calculate the total movement length and apply the desired speed. */ #if ENABLED(COREXY) float delta_mm[6]; delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS]; delta_mm[Y_HEAD] = dy / axis_steps_per_unit[B_AXIS]; delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS]; delta_mm[A_AXIS] = (dx + dy) / axis_steps_per_unit[A_AXIS]; delta_mm[B_AXIS] = (dx - dy) / axis_steps_per_unit[B_AXIS]; #elif ENABLED(COREXZ) float delta_mm[6]; delta_mm[X_HEAD] = dx / axis_steps_per_unit[A_AXIS]; delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS]; delta_mm[Z_HEAD] = dz / axis_steps_per_unit[C_AXIS]; delta_mm[A_AXIS] = (dx + dz) / axis_steps_per_unit[A_AXIS]; delta_mm[C_AXIS] = (dx - dz) / axis_steps_per_unit[C_AXIS]; #else float delta_mm[4]; delta_mm[X_AXIS] = dx / axis_steps_per_unit[X_AXIS]; delta_mm[Y_AXIS] = dy / axis_steps_per_unit[Y_AXIS]; delta_mm[Z_AXIS] = dz / axis_steps_per_unit[Z_AXIS]; #endif delta_mm[E_AXIS] = (de / axis_steps_per_unit[E_AXIS]) * volumetric_multiplier[extruder] * extruder_multiplier[extruder] / 100.0; if (block->steps[X_AXIS] <= dropsegments && block->steps[Y_AXIS] <= dropsegments && block->steps[Z_AXIS] <= dropsegments) { block->millimeters = fabs(delta_mm[E_AXIS]); } else { block->millimeters = sqrt( #if ENABLED(COREXY) square(delta_mm[X_HEAD]) + square(delta_mm[Y_HEAD]) + square(delta_mm[Z_AXIS]) #elif ENABLED(COREXZ) square(delta_mm[X_HEAD]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_HEAD]) #else square(delta_mm[X_AXIS]) + square(delta_mm[Y_AXIS]) + square(delta_mm[Z_AXIS]) #endif ); } float inverse_millimeters = 1.0 / block->millimeters; // Inverse millimeters to remove multiple divides // Calculate moves/second for this move. No divide by zero due to previous checks. float inverse_second = feed_rate * inverse_millimeters; int moves_queued = movesplanned(); // Slow down when the buffer starts to empty, rather than wait at the corner for a buffer refill #if ENABLED(OLD_SLOWDOWN) || ENABLED(SLOWDOWN) bool mq = moves_queued > 1 && moves_queued < (BLOCK_BUFFER_SIZE) / 2; #if ENABLED(OLD_SLOWDOWN) if (mq) feed_rate *= 2.0 * moves_queued / (BLOCK_BUFFER_SIZE); #endif #if ENABLED(SLOWDOWN) // segment time im micro seconds unsigned long segment_time = lround(1000000.0/inverse_second); if (mq) { if (segment_time < minsegmenttime) { // buffer is draining, add extra time. The amount of time added increases if the buffer is still emptied more. inverse_second = 1000000.0 / (segment_time + lround(2 * (minsegmenttime - segment_time) / moves_queued)); #ifdef XY_FREQUENCY_LIMIT segment_time = lround(1000000.0 / inverse_second); #endif } } #endif #endif block->nominal_speed = block->millimeters * inverse_second; // (mm/sec) Always > 0 block->nominal_rate = ceil(block->step_event_count * inverse_second); // (step/sec) Always > 0 #if ENABLED(FILAMENT_SENSOR) //FMM update ring buffer used for delay with filament measurements if (extruder == FILAMENT_SENSOR_EXTRUDER_NUM && delay_index2 > -1) { //only for extruder with filament sensor and if ring buffer is initialized const int MMD = MAX_MEASUREMENT_DELAY + 1, MMD10 = MMD * 10; delay_dist += delta_mm[E_AXIS]; // increment counter with next move in e axis while (delay_dist >= MMD10) delay_dist -= MMD10; // loop around the buffer while (delay_dist < 0) delay_dist += MMD10; delay_index1 = delay_dist / 10.0; // calculate index delay_index1 = constrain(delay_index1, 0, MAX_MEASUREMENT_DELAY); // (already constrained above) if (delay_index1 != delay_index2) { // moved index meas_sample = widthFil_to_size_ratio() - 100; // Subtract 100 to reduce magnitude - to store in a signed char while (delay_index1 != delay_index2) { // Increment and loop around buffer if (++delay_index2 >= MMD) delay_index2 -= MMD; delay_index2 = constrain(delay_index2, 0, MAX_MEASUREMENT_DELAY); measurement_delay[delay_index2] = meas_sample; } } } #endif // Calculate and limit speed in mm/sec for each axis float current_speed[NUM_AXIS]; float speed_factor = 1.0; //factor <=1 do decrease speed for (int i = 0; i < NUM_AXIS; i++) { current_speed[i] = delta_mm[i] * inverse_second; float cs = fabs(current_speed[i]), mf = max_feedrate[i]; if (cs > mf) speed_factor = min(speed_factor, mf / cs); } // Max segement time in us. #ifdef XY_FREQUENCY_LIMIT // Check and limit the xy direction change frequency unsigned char direction_change = block->direction_bits ^ old_direction_bits; old_direction_bits = block->direction_bits; segment_time = lround((float)segment_time / speed_factor); long xs0 = axis_segment_time[X_AXIS][0], xs1 = axis_segment_time[X_AXIS][1], xs2 = axis_segment_time[X_AXIS][2], ys0 = axis_segment_time[Y_AXIS][0], ys1 = axis_segment_time[Y_AXIS][1], ys2 = axis_segment_time[Y_AXIS][2]; if (TEST(direction_change, X_AXIS)) { xs2 = axis_segment_time[X_AXIS][2] = xs1; xs1 = axis_segment_time[X_AXIS][1] = xs0; xs0 = 0; } xs0 = axis_segment_time[X_AXIS][0] = xs0 + segment_time; if (TEST(direction_change, Y_AXIS)) { ys2 = axis_segment_time[Y_AXIS][2] = axis_segment_time[Y_AXIS][1]; ys1 = axis_segment_time[Y_AXIS][1] = axis_segment_time[Y_AXIS][0]; ys0 = 0; } ys0 = axis_segment_time[Y_AXIS][0] = ys0 + segment_time; long max_x_segment_time = max(xs0, max(xs1, xs2)), max_y_segment_time = max(ys0, max(ys1, ys2)), min_xy_segment_time = min(max_x_segment_time, max_y_segment_time); if (min_xy_segment_time < MAX_FREQ_TIME) { float low_sf = speed_factor * min_xy_segment_time / (MAX_FREQ_TIME); speed_factor = min(speed_factor, low_sf); } #endif // XY_FREQUENCY_LIMIT // Correct the speed if (speed_factor < 1.0) { for (unsigned char i = 0; i < NUM_AXIS; i++) current_speed[i] *= speed_factor; block->nominal_speed *= speed_factor; block->nominal_rate *= speed_factor; } // Compute and limit the acceleration rate for the trapezoid generator. float steps_per_mm = block->step_event_count / block->millimeters; unsigned long bsx = block->steps[X_AXIS], bsy = block->steps[Y_AXIS], bsz = block->steps[Z_AXIS], bse = block->steps[E_AXIS]; if (bsx == 0 && bsy == 0 && bsz == 0) { block->acceleration_st = ceil(retract_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 } else if (bse == 0) { block->acceleration_st = ceil(travel_acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 } else { block->acceleration_st = ceil(acceleration * steps_per_mm); // convert to: acceleration steps/sec^2 } // Limit acceleration per axis unsigned long acc_st = block->acceleration_st, xsteps = axis_steps_per_sqr_second[X_AXIS], ysteps = axis_steps_per_sqr_second[Y_AXIS], zsteps = axis_steps_per_sqr_second[Z_AXIS], esteps = axis_steps_per_sqr_second[E_AXIS], allsteps = block->step_event_count; if (xsteps < (acc_st * bsx) / allsteps) acc_st = (xsteps * allsteps) / bsx; if (ysteps < (acc_st * bsy) / allsteps) acc_st = (ysteps * allsteps) / bsy; if (zsteps < (acc_st * bsz) / allsteps) acc_st = (zsteps * allsteps) / bsz; if (esteps < (acc_st * bse) / allsteps) acc_st = (esteps * allsteps) / bse; block->acceleration_st = acc_st; block->acceleration = acc_st / steps_per_mm; block->acceleration_rate = (long)(acc_st * 16777216.0 / (F_CPU / 8.0)); #if 0 // Use old jerk for now // Compute path unit vector double unit_vec[3]; unit_vec[X_AXIS] = delta_mm[X_AXIS] * inverse_millimeters; unit_vec[Y_AXIS] = delta_mm[Y_AXIS] * inverse_millimeters; unit_vec[Z_AXIS] = delta_mm[Z_AXIS] * inverse_millimeters; // Compute maximum allowable entry speed at junction by centripetal acceleration approximation. // Let a circle be tangent to both previous and current path line segments, where the junction // deviation is defined as the distance from the junction to the closest edge of the circle, // collinear with the circle center. The circular segment joining the two paths represents the // path of centripetal acceleration. Solve for max velocity based on max acceleration about the // radius of the circle, defined indirectly by junction deviation. This may be also viewed as // path width or max_jerk in the previous grbl version. This approach does not actually deviate // from path, but used as a robust way to compute cornering speeds, as it takes into account the // nonlinearities of both the junction angle and junction velocity. double vmax_junction = MINIMUM_PLANNER_SPEED; // Set default max junction speed // Skip first block or when previous_nominal_speed is used as a flag for homing and offset cycles. if ((block_buffer_head != block_buffer_tail) && (previous_nominal_speed > 0.0)) { // Compute cosine of angle between previous and current path. (prev_unit_vec is negative) // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity. double cos_theta = - previous_unit_vec[X_AXIS] * unit_vec[X_AXIS] - previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS] - previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ; // Skip and use default max junction speed for 0 degree acute junction. if (cos_theta < 0.95) { vmax_junction = min(previous_nominal_speed, block->nominal_speed); // Skip and avoid divide by zero for straight junctions at 180 degrees. Limit to min() of nominal speeds. if (cos_theta > -0.95) { // Compute maximum junction velocity based on maximum acceleration and junction deviation double sin_theta_d2 = sqrt(0.5 * (1.0 - cos_theta)); // Trig half angle identity. Always positive. vmax_junction = min(vmax_junction, sqrt(block->acceleration * junction_deviation * sin_theta_d2 / (1.0 - sin_theta_d2))); } } } #endif // Start with a safe speed float vmax_junction = max_xy_jerk / 2; float vmax_junction_factor = 1.0; float mz2 = max_z_jerk / 2, me2 = max_e_jerk / 2; float csz = current_speed[Z_AXIS], cse = current_speed[E_AXIS]; if (fabs(csz) > mz2) vmax_junction = min(vmax_junction, mz2); if (fabs(cse) > me2) vmax_junction = min(vmax_junction, me2); vmax_junction = min(vmax_junction, block->nominal_speed); float safe_speed = vmax_junction; if ((moves_queued > 1) && (previous_nominal_speed > 0.0001)) { float dsx = current_speed[X_AXIS] - previous_speed[X_AXIS], dsy = current_speed[Y_AXIS] - previous_speed[Y_AXIS], dsz = fabs(csz - previous_speed[Z_AXIS]), dse = fabs(cse - previous_speed[E_AXIS]), jerk = sqrt(dsx * dsx + dsy * dsy); // if ((fabs(previous_speed[X_AXIS]) > 0.0001) || (fabs(previous_speed[Y_AXIS]) > 0.0001)) { vmax_junction = block->nominal_speed; // } if (jerk > max_xy_jerk) vmax_junction_factor = max_xy_jerk / jerk; if (dsz > max_z_jerk) vmax_junction_factor = min(vmax_junction_factor, max_z_jerk / dsz); if (dse > max_e_jerk) vmax_junction_factor = min(vmax_junction_factor, max_e_jerk / dse); vmax_junction = min(previous_nominal_speed, vmax_junction * vmax_junction_factor); // Limit speed to max previous speed } block->max_entry_speed = vmax_junction; // Initialize block entry speed. Compute based on deceleration to user-defined MINIMUM_PLANNER_SPEED. double v_allowable = max_allowable_speed(-block->acceleration, MINIMUM_PLANNER_SPEED, block->millimeters); block->entry_speed = min(vmax_junction, v_allowable); // Initialize planner efficiency flags // Set flag if block will always reach maximum junction speed regardless of entry/exit speeds. // If a block can de/ac-celerate from nominal speed to zero within the length of the block, then // the current block and next block junction speeds are guaranteed to always be at their maximum // junction speeds in deceleration and acceleration, respectively. This is due to how the current // block nominal speed limits both the current and next maximum junction speeds. Hence, in both // the reverse and forward planners, the corresponding block junction speed will always be at the // the maximum junction speed and may always be ignored for any speed reduction checks. block->nominal_length_flag = (block->nominal_speed <= v_allowable); block->recalculate_flag = true; // Always calculate trapezoid for new block // Update previous path unit_vector and nominal speed for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = current_speed[i]; previous_nominal_speed = block->nominal_speed; #if ENABLED(ADVANCE) // Calculate advance rate if (!bse || (!bsx && !bsy && !bsz)) { block->advance_rate = 0; block->advance = 0; } else { long acc_dist = estimate_acceleration_distance(0, block->nominal_rate, block->acceleration_st); float advance = ((STEPS_PER_CUBIC_MM_E) * (EXTRUDER_ADVANCE_K)) * (cse * cse * (EXTRUSION_AREA) * (EXTRUSION_AREA)) * 256; block->advance = advance; block->advance_rate = acc_dist ? advance / (float)acc_dist : 0; } /** SERIAL_ECHO_START; SERIAL_ECHOPGM("advance :"); SERIAL_ECHO(block->advance/256.0); SERIAL_ECHOPGM("advance rate :"); SERIAL_ECHOLN(block->advance_rate/256.0); */ #endif // ADVANCE calculate_trapezoid_for_block(block, block->entry_speed / block->nominal_speed, safe_speed / block->nominal_speed); // Move buffer head block_buffer_head = next_buffer_head; // Update position for (int i = 0; i < NUM_AXIS; i++) position[i] = target[i]; planner_recalculate(); st_wake_up(); } // plan_buffer_line() #if ENABLED(AUTO_BED_LEVELING_FEATURE) && DISABLED(DELTA) vector_3 plan_get_position() { vector_3 position = vector_3(st_get_axis_position_mm(X_AXIS), st_get_axis_position_mm(Y_AXIS), st_get_axis_position_mm(Z_AXIS)); //position.debug("in plan_get position"); //plan_bed_level_matrix.debug("in plan_get_position"); matrix_3x3 inverse = matrix_3x3::transpose(plan_bed_level_matrix); //inverse.debug("in plan_get inverse"); position.apply_rotation(inverse); //position.debug("after rotation"); return position; } #endif // AUTO_BED_LEVELING_FEATURE && !DELTA #if ENABLED(AUTO_BED_LEVELING_FEATURE) || ENABLED(MESH_BED_LEVELING) void plan_set_position(float x, float y, float z, const float& e) #else void plan_set_position(const float& x, const float& y, const float& z, const float& e) #endif // AUTO_BED_LEVELING_FEATURE || MESH_BED_LEVELING { #if ENABLED(MESH_BED_LEVELING) if (mbl.active) z += mbl.get_z(x, y); #elif ENABLED(AUTO_BED_LEVELING_FEATURE) apply_rotation_xyz(plan_bed_level_matrix, x, y, z); #endif long nx = position[X_AXIS] = lround(x * axis_steps_per_unit[X_AXIS]), ny = position[Y_AXIS] = lround(y * axis_steps_per_unit[Y_AXIS]), nz = position[Z_AXIS] = lround(z * axis_steps_per_unit[Z_AXIS]), ne = position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); st_set_position(nx, ny, nz, ne); previous_nominal_speed = 0.0; // Resets planner junction speeds. Assumes start from rest. for (int i = 0; i < NUM_AXIS; i++) previous_speed[i] = 0.0; } void plan_set_e_position(const float& e) { position[E_AXIS] = lround(e * axis_steps_per_unit[E_AXIS]); st_set_e_position(position[E_AXIS]); } // Calculate the steps/s^2 acceleration rates, based on the mm/s^s void reset_acceleration_rates() { for (int i = 0; i < NUM_AXIS; i++) axis_steps_per_sqr_second[i] = max_acceleration_units_per_sq_second[i] * axis_steps_per_unit[i]; }