/** * Marlin 3D Printer Firmware * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] * * Based on Sprinter and grbl. * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see <http://www.gnu.org/licenses/>. * */ #ifndef MARLIN_H #define MARLIN_H #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <inttypes.h> #include <util/delay.h> #include <avr/pgmspace.h> #include <avr/eeprom.h> #include <avr/interrupt.h> #include "MarlinConfig.h" #include "enum.h" #include "types.h" #include "fastio.h" #include "utility.h" #ifdef USBCON #include "HardwareSerial.h" #if ENABLED(BLUETOOTH) #define MYSERIAL bluetoothSerial #else #define MYSERIAL Serial #endif // BLUETOOTH #else #include "MarlinSerial.h" #define MYSERIAL customizedSerial #endif #include "WString.h" #if ENABLED(PRINTCOUNTER) #include "printcounter.h" #else #include "stopwatch.h" #endif #define SERIAL_CHAR(x) MYSERIAL.write(x) #define SERIAL_EOL SERIAL_CHAR('\n') #define SERIAL_PROTOCOLCHAR(x) SERIAL_CHAR(x) #define SERIAL_PROTOCOL(x) MYSERIAL.print(x) #define SERIAL_PROTOCOL_F(x,y) MYSERIAL.print(x,y) #define SERIAL_PROTOCOLPGM(x) serialprintPGM(PSTR(x)) #define SERIAL_PROTOCOLLN(x) do{ MYSERIAL.print(x); SERIAL_EOL; }while(0) #define SERIAL_PROTOCOLLNPGM(x) do{ serialprintPGM(PSTR(x "\n")); }while(0) #define SERIAL_PROTOCOLPAIR(name, value) SERIAL_ECHOPAIR(name, value) extern const char errormagic[] PROGMEM; extern const char echomagic[] PROGMEM; #define SERIAL_ERROR_START serialprintPGM(errormagic) #define SERIAL_ERROR(x) SERIAL_PROTOCOL(x) #define SERIAL_ERRORPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ERRORLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ERRORLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ECHO_START serialprintPGM(echomagic) #define SERIAL_ECHO(x) SERIAL_PROTOCOL(x) #define SERIAL_ECHOPGM(x) SERIAL_PROTOCOLPGM(x) #define SERIAL_ECHOLN(x) SERIAL_PROTOCOLLN(x) #define SERIAL_ECHOLNPGM(x) SERIAL_PROTOCOLLNPGM(x) #define SERIAL_ECHOPAIR(name,value) (serial_echopair_P(PSTR(name),(value))) void serial_echopair_P(const char* s_P, const char *v); void serial_echopair_P(const char* s_P, char v); void serial_echopair_P(const char* s_P, int v); void serial_echopair_P(const char* s_P, long v); void serial_echopair_P(const char* s_P, float v); void serial_echopair_P(const char* s_P, double v); void serial_echopair_P(const char* s_P, unsigned long v); FORCE_INLINE void serial_echopair_P(const char* s_P, uint8_t v) { serial_echopair_P(s_P, (int)v); } FORCE_INLINE void serial_echopair_P(const char* s_P, uint16_t v) { serial_echopair_P(s_P, (int)v); } FORCE_INLINE void serial_echopair_P(const char* s_P, bool v) { serial_echopair_P(s_P, (int)v); } FORCE_INLINE void serial_echopair_P(const char* s_P, void *v) { serial_echopair_P(s_P, (unsigned long)v); } // Things to write to serial from Program memory. Saves 400 to 2k of RAM. FORCE_INLINE void serialprintPGM(const char* str) { char ch; while ((ch = pgm_read_byte(str))) { MYSERIAL.write(ch); str++; } } void idle( #if ENABLED(FILAMENT_CHANGE_FEATURE) bool no_stepper_sleep = false // pass true to keep steppers from disabling on timeout #endif ); void manage_inactivity(bool ignore_stepper_queue = false); #if ENABLED(DUAL_X_CARRIAGE) || ENABLED(DUAL_NOZZLE_DUPLICATION_MODE) extern bool extruder_duplication_enabled; #endif #if HAS_X2_ENABLE #define enable_x() do{ X_ENABLE_WRITE( X_ENABLE_ON); X2_ENABLE_WRITE( X_ENABLE_ON); }while(0) #define disable_x() do{ X_ENABLE_WRITE(!X_ENABLE_ON); X2_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0) #elif HAS_X_ENABLE #define enable_x() X_ENABLE_WRITE( X_ENABLE_ON) #define disable_x() do{ X_ENABLE_WRITE(!X_ENABLE_ON); axis_known_position[X_AXIS] = false; }while(0) #else #define enable_x() NOOP #define disable_x() NOOP #endif #if HAS_Y2_ENABLE #define enable_y() do{ Y_ENABLE_WRITE( Y_ENABLE_ON); Y2_ENABLE_WRITE(Y_ENABLE_ON); }while(0) #define disable_y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); Y2_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0) #elif HAS_Y_ENABLE #define enable_y() Y_ENABLE_WRITE( Y_ENABLE_ON) #define disable_y() do{ Y_ENABLE_WRITE(!Y_ENABLE_ON); axis_known_position[Y_AXIS] = false; }while(0) #else #define enable_y() NOOP #define disable_y() NOOP #endif #if HAS_Z2_ENABLE #define enable_z() do{ Z_ENABLE_WRITE( Z_ENABLE_ON); Z2_ENABLE_WRITE(Z_ENABLE_ON); }while(0) #define disable_z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); Z2_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0) #elif HAS_Z_ENABLE #define enable_z() Z_ENABLE_WRITE( Z_ENABLE_ON) #define disable_z() do{ Z_ENABLE_WRITE(!Z_ENABLE_ON); axis_known_position[Z_AXIS] = false; }while(0) #else #define enable_z() NOOP #define disable_z() NOOP #endif #if ENABLED(MIXING_EXTRUDER) /** * Mixing steppers synchronize their enable (and direction) together */ #if MIXING_STEPPERS > 3 #define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); E3_ENABLE_WRITE( E_ENABLE_ON); } #define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); E3_ENABLE_WRITE(!E_ENABLE_ON); } #elif MIXING_STEPPERS > 2 #define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); E2_ENABLE_WRITE( E_ENABLE_ON); } #define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); E2_ENABLE_WRITE(!E_ENABLE_ON); } #else #define enable_e0() { E0_ENABLE_WRITE( E_ENABLE_ON); E1_ENABLE_WRITE( E_ENABLE_ON); } #define disable_e0() { E0_ENABLE_WRITE(!E_ENABLE_ON); E1_ENABLE_WRITE(!E_ENABLE_ON); } #endif #define enable_e1() NOOP #define disable_e1() NOOP #define enable_e2() NOOP #define disable_e2() NOOP #define enable_e3() NOOP #define disable_e3() NOOP #else // !MIXING_EXTRUDER #if HAS_E0_ENABLE #define enable_e0() E0_ENABLE_WRITE( E_ENABLE_ON) #define disable_e0() E0_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e0() NOOP #define disable_e0() NOOP #endif #if E_STEPPERS > 1 && HAS_E1_ENABLE #define enable_e1() E1_ENABLE_WRITE( E_ENABLE_ON) #define disable_e1() E1_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e1() NOOP #define disable_e1() NOOP #endif #if E_STEPPERS > 2 && HAS_E2_ENABLE #define enable_e2() E2_ENABLE_WRITE( E_ENABLE_ON) #define disable_e2() E2_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e2() NOOP #define disable_e2() NOOP #endif #if E_STEPPERS > 3 && HAS_E3_ENABLE #define enable_e3() E3_ENABLE_WRITE( E_ENABLE_ON) #define disable_e3() E3_ENABLE_WRITE(!E_ENABLE_ON) #else #define enable_e3() NOOP #define disable_e3() NOOP #endif #endif // !MIXING_EXTRUDER /** * The axis order in all axis related arrays is X, Y, Z, E */ #define _AXIS(AXIS) AXIS ##_AXIS void enable_all_steppers(); void disable_all_steppers(); void FlushSerialRequestResend(); void ok_to_send(); void reset_bed_level(); void kill(const char*); void quickstop_stepper(); #if ENABLED(FILAMENT_RUNOUT_SENSOR) void handle_filament_runout(); #endif extern uint8_t marlin_debug_flags; #define DEBUGGING(F) (marlin_debug_flags & (DEBUG_## F)) extern bool Running; inline bool IsRunning() { return Running; } inline bool IsStopped() { return !Running; } bool enqueue_and_echo_command(const char* cmd, bool say_ok=false); //put a single ASCII command at the end of the current buffer or return false when it is full void enqueue_and_echo_command_now(const char* cmd); // enqueue now, only return when the command has been enqueued void enqueue_and_echo_commands_P(const char* cmd); //put one or many ASCII commands at the end of the current buffer, read from flash void clear_command_queue(); void clamp_to_software_endstops(float target[3]); extern millis_t previous_cmd_ms; inline void refresh_cmd_timeout() { previous_cmd_ms = millis(); } #if ENABLED(FAST_PWM_FAN) void setPwmFrequency(uint8_t pin, int val); #endif /** * Feedrate scaling and conversion */ extern int feedrate_percentage; #define MMM_TO_MMS(MM_M) ((MM_M)/60.0) #define MMS_TO_MMM(MM_S) ((MM_S)*60.0) #define MMM_SCALED(MM_M) ((MM_M)*feedrate_percentage*0.01) #define MMS_SCALED(MM_S) MMM_SCALED(MM_S) #define MMM_TO_MMS_SCALED(MM_M) (MMS_SCALED(MMM_TO_MMS(MM_M))) extern bool axis_relative_modes[]; extern bool volumetric_enabled; extern int extruder_multiplier[EXTRUDERS]; // sets extrude multiply factor (in percent) for each extruder individually extern float filament_size[EXTRUDERS]; // cross-sectional area of filament (in millimeters), typically around 1.75 or 2.85, 0 disables the volumetric calculations for the extruder. extern float volumetric_multiplier[EXTRUDERS]; // reciprocal of cross-sectional area of filament (in square millimeters), stored this way to reduce computational burden in planner extern bool axis_known_position[3]; // axis[n].is_known extern bool axis_homed[3]; // axis[n].is_homed extern volatile bool wait_for_heatup; extern float current_position[NUM_AXIS]; extern float position_shift[3]; extern float home_offset[3]; extern float sw_endstop_min[3]; extern float sw_endstop_max[3]; #define LOGICAL_POSITION(POS, AXIS) (POS + home_offset[AXIS] + position_shift[AXIS]) #define RAW_POSITION(POS, AXIS) (POS - home_offset[AXIS] - position_shift[AXIS]) #define LOGICAL_X_POSITION(POS) LOGICAL_POSITION(POS, X_AXIS) #define LOGICAL_Y_POSITION(POS) LOGICAL_POSITION(POS, Y_AXIS) #define LOGICAL_Z_POSITION(POS) LOGICAL_POSITION(POS, Z_AXIS) #define RAW_X_POSITION(POS) RAW_POSITION(POS, X_AXIS) #define RAW_Y_POSITION(POS) RAW_POSITION(POS, Y_AXIS) #define RAW_Z_POSITION(POS) RAW_POSITION(POS, Z_AXIS) #define RAW_CURRENT_POSITION(AXIS) RAW_POSITION(current_position[AXIS], AXIS) // GCode support for external objects bool code_seen(char); int code_value_int(); float code_value_temp_abs(); float code_value_temp_diff(); #if ENABLED(DELTA) extern float delta[3]; extern float endstop_adj[3]; // axis[n].endstop_adj extern float delta_radius; extern float delta_diagonal_rod; extern float delta_segments_per_second; extern float delta_diagonal_rod_trim_tower_1; extern float delta_diagonal_rod_trim_tower_2; extern float delta_diagonal_rod_trim_tower_3; void inverse_kinematics(const float cartesian[3]); void recalc_delta_settings(float radius, float diagonal_rod); #if ENABLED(AUTO_BED_LEVELING_FEATURE) extern int delta_grid_spacing[2]; void adjust_delta(float cartesian[3]); #endif #elif ENABLED(SCARA) extern float delta[3]; extern float axis_scaling[3]; // Build size scaling void inverse_kinematics(const float cartesian[3]); void forward_kinematics_SCARA(float f_scara[3]); #endif #if ENABLED(Z_DUAL_ENDSTOPS) extern float z_endstop_adj; #endif #if HAS_BED_PROBE extern float zprobe_zoffset; #endif #if ENABLED(HOST_KEEPALIVE_FEATURE) extern uint8_t host_keepalive_interval; #endif #if FAN_COUNT > 0 extern int fanSpeeds[FAN_COUNT]; #endif #if ENABLED(BARICUDA) extern int baricuda_valve_pressure; extern int baricuda_e_to_p_pressure; #endif #if ENABLED(FILAMENT_WIDTH_SENSOR) extern float filament_width_nominal; //holds the theoretical filament diameter i.e., 3.00 or 1.75 extern bool filament_sensor; //indicates that filament sensor readings should control extrusion extern float filament_width_meas; //holds the filament diameter as accurately measured extern int8_t measurement_delay[]; //ring buffer to delay measurement extern int filwidth_delay_index1, filwidth_delay_index2; //ring buffer index. used by planner, temperature, and main code extern int meas_delay_cm; //delay distance #endif #if ENABLED(FILAMENT_CHANGE_FEATURE) extern FilamentChangeMenuResponse filament_change_menu_response; #endif #if ENABLED(PID_EXTRUSION_SCALING) extern int lpq_len; #endif #if ENABLED(FWRETRACT) extern bool autoretract_enabled; extern bool retracted[EXTRUDERS]; // extruder[n].retracted extern float retract_length, retract_length_swap, retract_feedrate_mm_s, retract_zlift; extern float retract_recover_length, retract_recover_length_swap, retract_recover_feedrate_mm_s; #endif // Print job timer #if ENABLED(PRINTCOUNTER) extern PrintCounter print_job_timer; #else extern Stopwatch print_job_timer; #endif // Handling multiple extruders pins extern uint8_t active_extruder; #if HAS_TEMP_HOTEND || HAS_TEMP_BED void print_heaterstates(); #endif #if ENABLED(MIXING_EXTRUDER) extern float mixing_factor[MIXING_STEPPERS]; #endif void calculate_volumetric_multipliers(); // Buzzer #if HAS_BUZZER && PIN_EXISTS(BEEPER) #include "buzzer.h" #endif /** * Blocking movement and shorthand functions */ inline void do_blocking_move_to(float x, float y, float z, float fr_mm_m=0.0); inline void do_blocking_move_to_x(float x, float fr_mm_m=0.0); inline void do_blocking_move_to_z(float z, float fr_mm_m=0.0); inline void do_blocking_move_to_xy(float x, float y, float fr_mm_m=0.0); #endif //MARLIN_H