diff --git a/Marlin/src/Marlin.cpp b/Marlin/src/Marlin.cpp index 36c5b880d..c9c550585 100644 --- a/Marlin/src/Marlin.cpp +++ b/Marlin/src/Marlin.cpp @@ -2392,81 +2392,6 @@ static bool pin_is_protected(const int8_t pin) { #include "gcode/stats/M78.h" #endif -#if HAS_TEMP_HOTEND || HAS_TEMP_BED - - void print_heater_state(const float &c, const float &t, - #if ENABLED(SHOW_TEMP_ADC_VALUES) - const float r, - #endif - const int8_t e=-2 - ) { - #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1 - UNUSED(e); - #endif - - SERIAL_PROTOCOLCHAR(' '); - SERIAL_PROTOCOLCHAR( - #if HAS_TEMP_BED && HAS_TEMP_HOTEND - e == -1 ? 'B' : 'T' - #elif HAS_TEMP_HOTEND - 'T' - #else - 'B' - #endif - ); - #if HOTENDS > 1 - if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e); - #endif - SERIAL_PROTOCOLCHAR(':'); - SERIAL_PROTOCOL(c); - SERIAL_PROTOCOLPAIR(" /" , t); - #if ENABLED(SHOW_TEMP_ADC_VALUES) - SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR); - SERIAL_PROTOCOLCHAR(')'); - #endif - } - - void print_heaterstates() { - #if HAS_TEMP_HOTEND - print_heater_state(thermalManager.degHotend(gcode.target_extruder), thermalManager.degTargetHotend(gcode.target_extruder) - #if ENABLED(SHOW_TEMP_ADC_VALUES) - , thermalManager.rawHotendTemp(gcode.target_extruder) - #endif - ); - #endif - #if HAS_TEMP_BED - print_heater_state(thermalManager.degBed(), thermalManager.degTargetBed(), - #if ENABLED(SHOW_TEMP_ADC_VALUES) - thermalManager.rawBedTemp(), - #endif - -1 // BED - ); - #endif - #if HOTENDS > 1 - HOTEND_LOOP() print_heater_state(thermalManager.degHotend(e), thermalManager.degTargetHotend(e), - #if ENABLED(SHOW_TEMP_ADC_VALUES) - thermalManager.rawHotendTemp(e), - #endif - e - ); - #endif - SERIAL_PROTOCOLPGM(" @:"); - SERIAL_PROTOCOL(thermalManager.getHeaterPower(gcode.target_extruder)); - #if HAS_TEMP_BED - SERIAL_PROTOCOLPGM(" B@:"); - SERIAL_PROTOCOL(thermalManager.getHeaterPower(-1)); - #endif - #if HOTENDS > 1 - HOTEND_LOOP() { - SERIAL_PROTOCOLPAIR(" @", e); - SERIAL_PROTOCOLCHAR(':'); - SERIAL_PROTOCOL(thermalManager.getHeaterPower(e)); - } - #endif - } - -#endif // HAS_TEMP_HOTEND || HAS_TEMP_BED - #include "gcode/temperature/M105.h" #if ENABLED(AUTO_REPORT_TEMPERATURES) && (HAS_TEMP_HOTEND || HAS_TEMP_BED) @@ -2477,7 +2402,7 @@ static bool pin_is_protected(const int8_t pin) { inline void auto_report_temperatures() { if (auto_report_temp_interval && ELAPSED(millis(), next_temp_report_ms)) { next_temp_report_ms = millis() + 1000UL * auto_report_temp_interval; - print_heaterstates(); + thermalManager.print_heaterstates(); SERIAL_EOL(); } } diff --git a/Marlin/src/Marlin.h b/Marlin/src/Marlin.h index 33ff9ab0b..55bd037fb 100644 --- a/Marlin/src/Marlin.h +++ b/Marlin/src/Marlin.h @@ -300,10 +300,6 @@ extern float soft_endstop_min[XYZ], soft_endstop_max[XYZ]; extern Stopwatch print_job_timer; #endif -#if HAS_TEMP_HOTEND || HAS_TEMP_BED - void print_heaterstates(); -#endif - #if ENABLED(MIXING_EXTRUDER) extern float mixing_factor[MIXING_STEPPERS]; #if MIXING_VIRTUAL_TOOLS > 1 diff --git a/Marlin/src/feature/bedlevel/ubl/G26_Mesh_Validation_Tool.cpp b/Marlin/src/feature/bedlevel/ubl/G26_Mesh_Validation_Tool.cpp new file mode 100644 index 000000000..bab31d8a6 --- /dev/null +++ b/Marlin/src/feature/bedlevel/ubl/G26_Mesh_Validation_Tool.cpp @@ -0,0 +1,895 @@ +/** + * Marlin 3D Printer Firmware + * Copyright (C) 2016 MarlinFirmware [https://github.com/MarlinFirmware/Marlin] + * + * Based on Sprinter and grbl. + * Copyright (C) 2011 Camiel Gubbels / Erik van der Zalm + * + * This program is free software: you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation, either version 3 of the License, or + * (at your option) any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this program. If not, see . + * + */ + +/** + * Marlin Firmware -- G26 - Mesh Validation Tool + */ + +#include "../../../inc/MarlinConfig.h" + +#if ENABLED(UBL_G26_MESH_VALIDATION) + +#include "ubl.h" + +#include "../../../Marlin.h" +#include "../../../module/planner.h" +#include "../../../module/stepper.h" +#include "../../../module/motion.h" +#include "../../../module/temperature.h" +#include "../../../lcd/ultralcd.h" +#include "../../../gcode/parser.h" +#include "../../bedlevel/bedlevel.h" + +#define EXTRUSION_MULTIPLIER 1.0 +#define RETRACTION_MULTIPLIER 1.0 +#define NOZZLE 0.4 +#define FILAMENT 1.75 +#define LAYER_HEIGHT 0.2 +#define PRIME_LENGTH 10.0 +#define BED_TEMP 60.0 +#define HOTEND_TEMP 205.0 +#define OOZE_AMOUNT 0.3 + +#define SIZE_OF_INTERSECTION_CIRCLES 5 +#define SIZE_OF_CROSSHAIRS 3 + +#if SIZE_OF_CROSSHAIRS >= SIZE_OF_INTERSECTION_CIRCLES + #error "SIZE_OF_CROSSHAIRS must be less than SIZE_OF_INTERSECTION_CIRCLES." +#endif + +/** + * G26 Mesh Validation Tool + * + * G26 is a Mesh Validation Tool intended to provide support for the Marlin Unified Bed Leveling System. + * In order to fully utilize and benefit from the Marlin Unified Bed Leveling System an accurate Mesh must + * be defined. G29 is designed to allow the user to quickly validate the correctness of her Mesh. It will + * first heat the bed and nozzle. It will then print lines and circles along the Mesh Cell boundaries and + * the intersections of those lines (respectively). + * + * This action allows the user to immediately see where the Mesh is properly defined and where it needs to + * be edited. The command will generate the Mesh lines closest to the nozzle's starting position. Alternatively + * the user can specify the X and Y position of interest with command parameters. This allows the user to + * focus on a particular area of the Mesh where attention is needed. + * + * B # Bed Set the Bed Temperature. If not specified, a default of 60 C. will be assumed. + * + * C Current When searching for Mesh Intersection points to draw, use the current nozzle location + * as the base for any distance comparison. + * + * D Disable Disable the Unified Bed Leveling System. In the normal case the user is invoking this + * command to see how well a Mesh as been adjusted to match a print surface. In order to do + * this the Unified Bed Leveling System is turned on by the G26 command. The D parameter + * alters the command's normal behaviour and disables the Unified Bed Leveling System even if + * it is on. + * + * H # Hotend Set the Nozzle Temperature. If not specified, a default of 205 C. will be assumed. + * + * F # Filament Used to specify the diameter of the filament being used. If not specified + * 1.75mm filament is assumed. If you are not getting acceptable results by using the + * 'correct' numbers, you can scale this number up or down a little bit to change the amount + * of filament that is being extruded during the printing of the various lines on the bed. + * + * K Keep-On Keep the heaters turned on at the end of the command. + * + * L # Layer Layer height. (Height of nozzle above bed) If not specified .20mm will be used. + * + * O # Ooooze How much your nozzle will Ooooze filament while getting in position to print. This + * is over kill, but using this parameter will let you get the very first 'circle' perfect + * so you have a trophy to peel off of the bed and hang up to show how perfectly you have your + * Mesh calibrated. If not specified, a filament length of .3mm is assumed. + * + * P # Prime Prime the nozzle with specified length of filament. If this parameter is not + * given, no prime action will take place. If the parameter specifies an amount, that much + * will be purged before continuing. If no amount is specified the command will start + * purging filament until the user provides an LCD Click and then it will continue with + * printing the Mesh. You can carefully remove the spent filament with a needle nose + * pliers while holding the LCD Click wheel in a depressed state. If you do not have + * an LCD, you must specify a value if you use P. + * + * Q # Multiplier Retraction Multiplier. Normally not needed. Retraction defaults to 1.0mm and + * un-retraction is at 1.2mm These numbers will be scaled by the specified amount + * + * R # Repeat Prints the number of patterns given as a parameter, starting at the current location. + * If a parameter isn't given, every point will be printed unless G26 is interrupted. + * This works the same way that the UBL G29 P4 R parameter works. + * + * NOTE: If you do not have an LCD, you -must- specify R. This is to ensure that you are + * aware that there's some risk associated with printing without the ability to abort in + * cases where mesh point Z value may be inaccurate. As above, if you do not include a + * parameter, every point will be printed. + * + * S # Nozzle Used to control the size of nozzle diameter. If not specified, a .4mm nozzle is assumed. + * + * U # Random Randomize the order that the circles are drawn on the bed. The search for the closest + * undrawn cicle is still done. But the distance to the location for each circle has a + * random number of the size specified added to it. Specifying S50 will give an interesting + * deviation from the normal behaviour on a 10 x 10 Mesh. + * + * X # X Coord. Specify the starting location of the drawing activity. + * + * Y # Y Coord. Specify the starting location of the drawing activity. + */ + +// External references + +#if ENABLED(ULTRA_LCD) + extern char lcd_status_message[]; +#endif + +// Remove this if all is well with Teensy compile: +#if 0 +#if AVR_AT90USB1286_FAMILY // Teensyduino & Printrboard IDE extensions have compile errors without this + inline void sync_plan_position_e() { planner.set_e_position_mm(current_position[E_AXIS]); } + inline void set_current_to_destination() { COPY(current_position, destination); } +#else + extern void sync_plan_position_e(); + extern void set_current_to_destination(); +#endif +#endif + +#if ENABLED(NEWPANEL) + void lcd_setstatusPGM(const char* const message, const int8_t level); + void chirp_at_user(); +#endif + +// Private functions + +static uint16_t circle_flags[16], horizontal_mesh_line_flags[16], vertical_mesh_line_flags[16]; +float g26_e_axis_feedrate = 0.020, + random_deviation = 0.0; + +static bool g26_retracted = false; // Track the retracted state of the nozzle so mismatched + // retracts/recovers won't result in a bad state. + +float valid_trig_angle(float); + +float unified_bed_leveling::g26_extrusion_multiplier, + unified_bed_leveling::g26_retraction_multiplier, + unified_bed_leveling::g26_nozzle, + unified_bed_leveling::g26_filament_diameter, + unified_bed_leveling::g26_layer_height, + unified_bed_leveling::g26_prime_length, + unified_bed_leveling::g26_x_pos, + unified_bed_leveling::g26_y_pos, + unified_bed_leveling::g26_ooze_amount; + +int16_t unified_bed_leveling::g26_bed_temp, + unified_bed_leveling::g26_hotend_temp; + +int8_t unified_bed_leveling::g26_prime_flag; + +bool unified_bed_leveling::g26_continue_with_closest, + unified_bed_leveling::g26_keep_heaters_on; + +int16_t unified_bed_leveling::g26_repeats; + +void unified_bed_leveling::G26_line_to_destination(const float &feed_rate) { + const float save_feedrate = feedrate_mm_s; + feedrate_mm_s = feed_rate; // use specified feed rate + prepare_move_to_destination(); // will ultimately call ubl.line_to_destination_cartesian or ubl.prepare_linear_move_to for UBL_DELTA + feedrate_mm_s = save_feedrate; // restore global feed rate +} + +#if ENABLED(NEWPANEL) + /** + * Detect ubl_lcd_clicked, debounce it, and return true for cancel + */ + bool user_canceled() { + if (!ubl_lcd_clicked()) return false; + safe_delay(10); // Wait for click to settle + + #if ENABLED(ULTRA_LCD) + lcd_setstatusPGM(PSTR("Mesh Validation Stopped."), 99); + lcd_quick_feedback(); + #endif + + while (!ubl_lcd_clicked()) idle(); // Wait for button release + + // If the button is suddenly pressed again, + // ask the user to resolve the issue + lcd_setstatusPGM(PSTR("Release button"), 99); // will never appear... + while (ubl_lcd_clicked()) idle(); // unless this loop happens + lcd_reset_status(); + + return true; + } +#endif + +/** + * G26: Mesh Validation Pattern generation. + * + * Used to interactively edit UBL's Mesh by placing the + * nozzle in a problem area and doing a G29 P4 R command. + */ +void unified_bed_leveling::G26() { + SERIAL_ECHOLNPGM("G26 command started. Waiting for heater(s)."); + float tmp, start_angle, end_angle; + int i, xi, yi; + mesh_index_pair location; + + // Don't allow Mesh Validation without homing first, + // or if the parameter parsing did not go OK, abort + if (axis_unhomed_error() || parse_G26_parameters()) return; + + if (current_position[Z_AXIS] < Z_CLEARANCE_BETWEEN_PROBES) { + do_blocking_move_to_z(Z_CLEARANCE_BETWEEN_PROBES); + stepper.synchronize(); + set_current_to_destination(); + } + + if (turn_on_heaters()) goto LEAVE; + + current_position[E_AXIS] = 0.0; + sync_plan_position_e(); + + if (g26_prime_flag && prime_nozzle()) goto LEAVE; + + /** + * Bed is preheated + * + * Nozzle is at temperature + * + * Filament is primed! + * + * It's "Show Time" !!! + */ + + ZERO(circle_flags); + ZERO(horizontal_mesh_line_flags); + ZERO(vertical_mesh_line_flags); + + // Move nozzle to the specified height for the first layer + set_destination_to_current(); + destination[Z_AXIS] = g26_layer_height; + move_to(destination, 0.0); + move_to(destination, g26_ooze_amount); + + has_control_of_lcd_panel = true; + //debug_current_and_destination(PSTR("Starting G26 Mesh Validation Pattern.")); + + /** + * Declare and generate a sin() & cos() table to be used during the circle drawing. This will lighten + * the CPU load and make the arc drawing faster and more smooth + */ + float sin_table[360 / 30 + 1], cos_table[360 / 30 + 1]; + for (i = 0; i <= 360 / 30; i++) { + cos_table[i] = SIZE_OF_INTERSECTION_CIRCLES * cos(RADIANS(valid_trig_angle(i * 30.0))); + sin_table[i] = SIZE_OF_INTERSECTION_CIRCLES * sin(RADIANS(valid_trig_angle(i * 30.0))); + } + + do { + location = g26_continue_with_closest + ? find_closest_circle_to_print(current_position[X_AXIS], current_position[Y_AXIS]) + : find_closest_circle_to_print(g26_x_pos, g26_y_pos); // Find the closest Mesh Intersection to where we are now. + + if (location.x_index >= 0 && location.y_index >= 0) { + const float circle_x = mesh_index_to_xpos(location.x_index), + circle_y = mesh_index_to_ypos(location.y_index); + + // If this mesh location is outside the printable_radius, skip it. + + if (!position_is_reachable_raw_xy(circle_x, circle_y)) continue; + + xi = location.x_index; // Just to shrink the next few lines and make them easier to understand + yi = location.y_index; + + if (g26_debug_flag) { + SERIAL_ECHOPAIR(" Doing circle at: (xi=", xi); + SERIAL_ECHOPAIR(", yi=", yi); + SERIAL_CHAR(')'); + SERIAL_EOL(); + } + + start_angle = 0.0; // assume it is going to be a full circle + end_angle = 360.0; + if (xi == 0) { // Check for bottom edge + start_angle = -90.0; + end_angle = 90.0; + if (yi == 0) // it is an edge, check for the two left corners + start_angle = 0.0; + else if (yi == GRID_MAX_POINTS_Y - 1) + end_angle = 0.0; + } + else if (xi == GRID_MAX_POINTS_X - 1) { // Check for top edge + start_angle = 90.0; + end_angle = 270.0; + if (yi == 0) // it is an edge, check for the two right corners + end_angle = 180.0; + else if (yi == GRID_MAX_POINTS_Y - 1) + start_angle = 180.0; + } + else if (yi == 0) { + start_angle = 0.0; // only do the top side of the cirlce + end_angle = 180.0; + } + else if (yi == GRID_MAX_POINTS_Y - 1) { + start_angle = 180.0; // only do the bottom side of the cirlce + end_angle = 360.0; + } + + for (tmp = start_angle; tmp < end_angle - 0.1; tmp += 30.0) { + + #if ENABLED(NEWPANEL) + if (user_canceled()) goto LEAVE; // Check if the user wants to stop the Mesh Validation + #endif + + int tmp_div_30 = tmp / 30.0; + if (tmp_div_30 < 0) tmp_div_30 += 360 / 30; + if (tmp_div_30 > 11) tmp_div_30 -= 360 / 30; + + float x = circle_x + cos_table[tmp_div_30], // for speed, these are now a lookup table entry + y = circle_y + sin_table[tmp_div_30], + xe = circle_x + cos_table[tmp_div_30 + 1], + ye = circle_y + sin_table[tmp_div_30 + 1]; + #if IS_KINEMATIC + // Check to make sure this segment is entirely on the bed, skip if not. + if (!position_is_reachable_raw_xy(x, y) || !position_is_reachable_raw_xy(xe, ye)) continue; + #else // not, we need to skip + x = constrain(x, X_MIN_POS + 1, X_MAX_POS - 1); // This keeps us from bumping the endstops + y = constrain(y, Y_MIN_POS + 1, Y_MAX_POS - 1); + xe = constrain(xe, X_MIN_POS + 1, X_MAX_POS - 1); + ye = constrain(ye, Y_MIN_POS + 1, Y_MAX_POS - 1); + #endif + + //if (g26_debug_flag) { + // char ccc, *cptr, seg_msg[50], seg_num[10]; + // strcpy(seg_msg, " segment: "); + // strcpy(seg_num, " \n"); + // cptr = (char*) "01234567890ABCDEF????????"; + // ccc = cptr[tmp_div_30]; + // seg_num[1] = ccc; + // strcat(seg_msg, seg_num); + // debug_current_and_destination(seg_msg); + //} + + print_line_from_here_to_there(LOGICAL_X_POSITION(x), LOGICAL_Y_POSITION(y), g26_layer_height, LOGICAL_X_POSITION(xe), LOGICAL_Y_POSITION(ye), g26_layer_height); + + } + if (look_for_lines_to_connect()) + goto LEAVE; + } + } while (--g26_repeats && location.x_index >= 0 && location.y_index >= 0); + + LEAVE: + lcd_setstatusPGM(PSTR("Leaving G26"), -1); + + retract_filament(destination); + destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; + + //debug_current_and_destination(PSTR("ready to do Z-Raise.")); + move_to(destination, 0); // Raise the nozzle + //debug_current_and_destination(PSTR("done doing Z-Raise.")); + + destination[X_AXIS] = g26_x_pos; // Move back to the starting position + destination[Y_AXIS] = g26_y_pos; + //destination[Z_AXIS] = Z_CLEARANCE_BETWEEN_PROBES; // Keep the nozzle where it is + + move_to(destination, 0); // Move back to the starting position + //debug_current_and_destination(PSTR("done doing X/Y move.")); + + has_control_of_lcd_panel = false; // Give back control of the LCD Panel! + + if (!g26_keep_heaters_on) { + #if HAS_TEMP_BED + thermalManager.setTargetBed(0); + #endif + thermalManager.setTargetHotend(0, 0); + } +} + +float valid_trig_angle(float d) { + while (d > 360.0) d -= 360.0; + while (d < 0.0) d += 360.0; + return d; +} + +mesh_index_pair unified_bed_leveling::find_closest_circle_to_print(const float &X, const float &Y) { + float closest = 99999.99; + mesh_index_pair return_val; + + return_val.x_index = return_val.y_index = -1; + + for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { + for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { + if (!is_bit_set(circle_flags, i, j)) { + const float mx = mesh_index_to_xpos(i), // We found a circle that needs to be printed + my = mesh_index_to_ypos(j); + + // Get the distance to this intersection + float f = HYPOT(X - mx, Y - my); + + // It is possible that we are being called with the values + // to let us find the closest circle to the start position. + // But if this is not the case, add a small weighting to the + // distance calculation to help it choose a better place to continue. + f += HYPOT(g26_x_pos - mx, g26_y_pos - my) / 15.0; + + // Add in the specified amount of Random Noise to our search + if (random_deviation > 1.0) + f += random(0.0, random_deviation); + + if (f < closest) { + closest = f; // We found a closer location that is still + return_val.x_index = i; // un-printed --- save the data for it + return_val.y_index = j; + return_val.distance = closest; + } + } + } + } + bit_set(circle_flags, return_val.x_index, return_val.y_index); // Mark this location as done. + return return_val; +} + +bool unified_bed_leveling::look_for_lines_to_connect() { + float sx, sy, ex, ey; + + for (uint8_t i = 0; i < GRID_MAX_POINTS_X; i++) { + for (uint8_t j = 0; j < GRID_MAX_POINTS_Y; j++) { + + #if ENABLED(NEWPANEL) + if (user_canceled()) return true; // Check if the user wants to stop the Mesh Validation + #endif + + if (i < GRID_MAX_POINTS_X) { // We can't connect to anything to the right than GRID_MAX_POINTS_X. + // This is already a half circle because we are at the edge of the bed. + + if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i + 1, j)) { // check if we can do a line to the left + if (!is_bit_set(horizontal_mesh_line_flags, i, j)) { + + // + // We found two circles that need a horizontal line to connect them + // Print it! + // + sx = mesh_index_to_xpos( i ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // right edge + ex = mesh_index_to_xpos(i + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // left edge + + sx = constrain(sx, X_MIN_POS + 1, X_MAX_POS - 1); + sy = ey = constrain(mesh_index_to_ypos(j), Y_MIN_POS + 1, Y_MAX_POS - 1); + ex = constrain(ex, X_MIN_POS + 1, X_MAX_POS - 1); + + if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) { + + if (g26_debug_flag) { + SERIAL_ECHOPAIR(" Connecting with horizontal line (sx=", sx); + SERIAL_ECHOPAIR(", sy=", sy); + SERIAL_ECHOPAIR(") -> (ex=", ex); + SERIAL_ECHOPAIR(", ey=", ey); + SERIAL_CHAR(')'); + SERIAL_EOL(); + //debug_current_and_destination(PSTR("Connecting horizontal line.")); + } + + print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height); + } + bit_set(horizontal_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if we skipped it + } + } + + if (j < GRID_MAX_POINTS_Y) { // We can't connect to anything further back than GRID_MAX_POINTS_Y. + // This is already a half circle because we are at the edge of the bed. + + if (is_bit_set(circle_flags, i, j) && is_bit_set(circle_flags, i, j + 1)) { // check if we can do a line straight down + if (!is_bit_set( vertical_mesh_line_flags, i, j)) { + // + // We found two circles that need a vertical line to connect them + // Print it! + // + sy = mesh_index_to_ypos( j ) + (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // top edge + ey = mesh_index_to_ypos(j + 1) - (SIZE_OF_INTERSECTION_CIRCLES - (SIZE_OF_CROSSHAIRS)); // bottom edge + + sx = ex = constrain(mesh_index_to_xpos(i), X_MIN_POS + 1, X_MAX_POS - 1); + sy = constrain(sy, Y_MIN_POS + 1, Y_MAX_POS - 1); + ey = constrain(ey, Y_MIN_POS + 1, Y_MAX_POS - 1); + + if (position_is_reachable_raw_xy(sx, sy) && position_is_reachable_raw_xy(ex, ey)) { + + if (g26_debug_flag) { + SERIAL_ECHOPAIR(" Connecting with vertical line (sx=", sx); + SERIAL_ECHOPAIR(", sy=", sy); + SERIAL_ECHOPAIR(") -> (ex=", ex); + SERIAL_ECHOPAIR(", ey=", ey); + SERIAL_CHAR(')'); + SERIAL_EOL(); + debug_current_and_destination(PSTR("Connecting vertical line.")); + } + print_line_from_here_to_there(LOGICAL_X_POSITION(sx), LOGICAL_Y_POSITION(sy), g26_layer_height, LOGICAL_X_POSITION(ex), LOGICAL_Y_POSITION(ey), g26_layer_height); + } + bit_set(vertical_mesh_line_flags, i, j); // Mark it as done so we don't do it again, even if skipped + } + } + } + } + } + } + return false; +} + +void unified_bed_leveling::move_to(const float &x, const float &y, const float &z, const float &e_delta) { + float feed_value; + static float last_z = -999.99; + + bool has_xy_component = (x != current_position[X_AXIS] || y != current_position[Y_AXIS]); // Check if X or Y is involved in the movement. + + if (z != last_z) { + last_z = z; + feed_value = planner.max_feedrate_mm_s[Z_AXIS]/(3.0); // Base the feed rate off of the configured Z_AXIS feed rate + + destination[X_AXIS] = current_position[X_AXIS]; + destination[Y_AXIS] = current_position[Y_AXIS]; + destination[Z_AXIS] = z; // We know the last_z==z or we wouldn't be in this block of code. + destination[E_AXIS] = current_position[E_AXIS]; + + G26_line_to_destination(feed_value); + + stepper.synchronize(); + set_destination_to_current(); + } + + // Check if X or Y is involved in the movement. + // Yes: a 'normal' movement. No: a retract() or recover() + feed_value = has_xy_component ? PLANNER_XY_FEEDRATE() / 10.0 : planner.max_feedrate_mm_s[E_AXIS] / 1.5; + + if (g26_debug_flag) SERIAL_ECHOLNPAIR("in move_to() feed_value for XY:", feed_value); + + destination[X_AXIS] = x; + destination[Y_AXIS] = y; + destination[E_AXIS] += e_delta; + + G26_line_to_destination(feed_value); + + stepper.synchronize(); + set_destination_to_current(); + +} + +void unified_bed_leveling::retract_filament(const float where[XYZE]) { + if (!g26_retracted) { // Only retract if we are not already retracted! + g26_retracted = true; + move_to(where, -1.0 * g26_retraction_multiplier); + } +} + +void unified_bed_leveling::recover_filament(const float where[XYZE]) { + if (g26_retracted) { // Only un-retract if we are retracted. + move_to(where, 1.2 * g26_retraction_multiplier); + g26_retracted = false; + } +} + +/** + * print_line_from_here_to_there() takes two cartesian coordinates and draws a line from one + * to the other. But there are really three sets of coordinates involved. The first coordinate + * is the present location of the nozzle. We don't necessarily want to print from this location. + * We first need to move the nozzle to the start of line segment where we want to print. Once + * there, we can use the two coordinates supplied to draw the line. + * + * Note: Although we assume the first set of coordinates is the start of the line and the second + * set of coordinates is the end of the line, it does not always work out that way. This function + * optimizes the movement to minimize the travel distance before it can start printing. This saves + * a lot of time and eliminates a lot of nonsensical movement of the nozzle. However, it does + * cause a lot of very little short retracement of th nozzle when it draws the very first line + * segment of a 'circle'. The time this requires is very short and is easily saved by the other + * cases where the optimization comes into play. + */ +void unified_bed_leveling::print_line_from_here_to_there(const float &sx, const float &sy, const float &sz, const float &ex, const float &ey, const float &ez) { + const float dx_s = current_position[X_AXIS] - sx, // find our distance from the start of the actual line segment + dy_s = current_position[Y_AXIS] - sy, + dist_start = HYPOT2(dx_s, dy_s), // We don't need to do a sqrt(), we can compare the distance^2 + // to save computation time + dx_e = current_position[X_AXIS] - ex, // find our distance from the end of the actual line segment + dy_e = current_position[Y_AXIS] - ey, + dist_end = HYPOT2(dx_e, dy_e), + + line_length = HYPOT(ex - sx, ey - sy); + + // If the end point of the line is closer to the nozzle, flip the direction, + // moving from the end to the start. On very small lines the optimization isn't worth it. + if (dist_end < dist_start && (SIZE_OF_INTERSECTION_CIRCLES) < FABS(line_length)) { + return print_line_from_here_to_there(ex, ey, ez, sx, sy, sz); + } + + // Decide whether to retract & bump + + if (dist_start > 2.0) { + retract_filament(destination); + //todo: parameterize the bump height with a define + move_to(current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS] + 0.500, 0.0); // Z bump to minimize scraping + move_to(sx, sy, sz + 0.500, 0.0); // Get to the starting point with no extrusion while bumped + } + + move_to(sx, sy, sz, 0.0); // Get to the starting point with no extrusion / un-Z bump + + const float e_pos_delta = line_length * g26_e_axis_feedrate * g26_extrusion_multiplier; + + recover_filament(destination); + move_to(ex, ey, ez, e_pos_delta); // Get to the ending point with an appropriate amount of extrusion +} + +/** + * This function used to be inline code in G26. But there are so many + * parameters it made sense to turn them into static globals and get + * this code out of sight of the main routine. + */ +bool unified_bed_leveling::parse_G26_parameters() { + + g26_extrusion_multiplier = EXTRUSION_MULTIPLIER; + g26_retraction_multiplier = RETRACTION_MULTIPLIER; + g26_nozzle = NOZZLE; + g26_filament_diameter = FILAMENT; + g26_layer_height = LAYER_HEIGHT; + g26_prime_length = PRIME_LENGTH; + g26_bed_temp = BED_TEMP; + g26_hotend_temp = HOTEND_TEMP; + g26_prime_flag = 0; + + g26_ooze_amount = parser.linearval('O', OOZE_AMOUNT); + g26_keep_heaters_on = parser.boolval('K'); + g26_continue_with_closest = parser.boolval('C'); + + if (parser.seenval('B')) { + g26_bed_temp = parser.value_celsius(); + if (!WITHIN(g26_bed_temp, 15, 140)) { + SERIAL_PROTOCOLLNPGM("?Specified bed temperature not plausible."); + return UBL_ERR; + } + } + + if (parser.seenval('L')) { + g26_layer_height = parser.value_linear_units(); + if (!WITHIN(g26_layer_height, 0.0, 2.0)) { + SERIAL_PROTOCOLLNPGM("?Specified layer height not plausible."); + return UBL_ERR; + } + } + + if (parser.seen('Q')) { + if (parser.has_value()) { + g26_retraction_multiplier = parser.value_float(); + if (!WITHIN(g26_retraction_multiplier, 0.05, 15.0)) { + SERIAL_PROTOCOLLNPGM("?Specified Retraction Multiplier not plausible."); + return UBL_ERR; + } + } + else { + SERIAL_PROTOCOLLNPGM("?Retraction Multiplier must be specified."); + return UBL_ERR; + } + } + + if (parser.seenval('S')) { + g26_nozzle = parser.value_float(); + if (!WITHIN(g26_nozzle, 0.1, 1.0)) { + SERIAL_PROTOCOLLNPGM("?Specified nozzle size not plausible."); + return UBL_ERR; + } + } + + if (parser.seen('P')) { + if (!parser.has_value()) { + #if ENABLED(NEWPANEL) + g26_prime_flag = -1; + #else + SERIAL_PROTOCOLLNPGM("?Prime length must be specified when not using an LCD."); + return UBL_ERR; + #endif + } + else { + g26_prime_flag++; + g26_prime_length = parser.value_linear_units(); + if (!WITHIN(g26_prime_length, 0.0, 25.0)) { + SERIAL_PROTOCOLLNPGM("?Specified prime length not plausible."); + return UBL_ERR; + } + } + } + + if (parser.seenval('F')) { + g26_filament_diameter = parser.value_linear_units(); + if (!WITHIN(g26_filament_diameter, 1.0, 4.0)) { + SERIAL_PROTOCOLLNPGM("?Specified filament size not plausible."); + return UBL_ERR; + } + } + g26_extrusion_multiplier *= sq(1.75) / sq(g26_filament_diameter); // If we aren't using 1.75mm filament, we need to + // scale up or down the length needed to get the + // same volume of filament + + g26_extrusion_multiplier *= g26_filament_diameter * sq(g26_nozzle) / sq(0.3); // Scale up by nozzle size + + if (parser.seenval('H')) { + g26_hotend_temp = parser.value_celsius(); + if (!WITHIN(g26_hotend_temp, 165, 280)) { + SERIAL_PROTOCOLLNPGM("?Specified nozzle temperature not plausible."); + return UBL_ERR; + } + } + + if (parser.seen('U')) { + randomSeed(millis()); + // This setting will persist for the next G26 + random_deviation = parser.has_value() ? parser.value_float() : 50.0; + } + + #if ENABLED(NEWPANEL) + g26_repeats = parser.intval('R', GRID_MAX_POINTS + 1); + #else + if (!parser.seen('R')) { + SERIAL_PROTOCOLLNPGM("?(R)epeat must be specified when not using an LCD."); + return UBL_ERR; + } + else + g26_repeats = parser.has_value() ? parser.value_int() : GRID_MAX_POINTS + 1; + #endif + if (g26_repeats < 1) { + SERIAL_PROTOCOLLNPGM("?(R)epeat value not plausible; must be at least 1."); + return UBL_ERR; + } + + g26_x_pos = parser.linearval('X', current_position[X_AXIS]); + g26_y_pos = parser.linearval('Y', current_position[Y_AXIS]); + if (!position_is_reachable_xy(g26_x_pos, g26_y_pos)) { + SERIAL_PROTOCOLLNPGM("?Specified X,Y coordinate out of bounds."); + return UBL_ERR; + } + + /** + * Wait until all parameters are verified before altering the state! + */ + set_bed_leveling_enabled(!parser.seen('D')); + + return UBL_OK; +} + +#if ENABLED(NEWPANEL) + bool unified_bed_leveling::exit_from_g26() { + lcd_setstatusPGM(PSTR("Leaving G26"), -1); + while (ubl_lcd_clicked()) idle(); + return UBL_ERR; + } +#endif + +/** + * Turn on the bed and nozzle heat and + * wait for them to get up to temperature. + */ +bool unified_bed_leveling::turn_on_heaters() { + millis_t next = millis() + 5000UL; + #if HAS_TEMP_BED + #if ENABLED(ULTRA_LCD) + if (g26_bed_temp > 25) { + lcd_setstatusPGM(PSTR("G26 Heating Bed."), 99); + lcd_quick_feedback(); + #endif + has_control_of_lcd_panel = true; + thermalManager.setTargetBed(g26_bed_temp); + while (abs(thermalManager.degBed() - g26_bed_temp) > 3) { + + #if ENABLED(NEWPANEL) + if (ubl_lcd_clicked()) return exit_from_g26(); + #endif + + if (ELAPSED(millis(), next)) { + next = millis() + 5000UL; + thermalManager.print_heaterstates(); + SERIAL_EOL(); + } + idle(); + } + #if ENABLED(ULTRA_LCD) + } + lcd_setstatusPGM(PSTR("G26 Heating Nozzle."), 99); + lcd_quick_feedback(); + #endif + #endif + + // Start heating the nozzle and wait for it to reach temperature. + thermalManager.setTargetHotend(g26_hotend_temp, 0); + while (abs(thermalManager.degHotend(0) - g26_hotend_temp) > 3) { + + #if ENABLED(NEWPANEL) + if (ubl_lcd_clicked()) return exit_from_g26(); + #endif + + if (ELAPSED(millis(), next)) { + next = millis() + 5000UL; + thermalManager.print_heaterstates(); + SERIAL_EOL(); + } + idle(); + } + + #if ENABLED(ULTRA_LCD) + lcd_reset_status(); + lcd_quick_feedback(); + #endif + + return UBL_OK; +} + +/** + * Prime the nozzle if needed. Return true on error. + */ +bool unified_bed_leveling::prime_nozzle() { + + #if ENABLED(NEWPANEL) + float Total_Prime = 0.0; + + if (g26_prime_flag == -1) { // The user wants to control how much filament gets purged + + has_control_of_lcd_panel = true; + lcd_setstatusPGM(PSTR("User-Controlled Prime"), 99); + chirp_at_user(); + + set_destination_to_current(); + + recover_filament(destination); // Make sure G26 doesn't think the filament is retracted(). + + while (!ubl_lcd_clicked()) { + chirp_at_user(); + destination[E_AXIS] += 0.25; + #ifdef PREVENT_LENGTHY_EXTRUDE + Total_Prime += 0.25; + if (Total_Prime >= EXTRUDE_MAXLENGTH) return UBL_ERR; + #endif + G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0); + + stepper.synchronize(); // Without this synchronize, the purge is more consistent, + // but because the planner has a buffer, we won't be able + // to stop as quickly. So we put up with the less smooth + // action to give the user a more responsive 'Stop'. + set_destination_to_current(); + idle(); + } + + while (ubl_lcd_clicked()) idle(); // Debounce Encoder Wheel + + #if ENABLED(ULTRA_LCD) + strcpy_P(lcd_status_message, PSTR("Done Priming")); // We can't do lcd_setstatusPGM() without having it continue; + // So... We cheat to get a message up. + lcd_setstatusPGM(PSTR("Done Priming"), 99); + lcd_quick_feedback(); + #endif + + has_control_of_lcd_panel = false; + + } + else { + #else + { + #endif + #if ENABLED(ULTRA_LCD) + lcd_setstatusPGM(PSTR("Fixed Length Prime."), 99); + lcd_quick_feedback(); + #endif + set_destination_to_current(); + destination[E_AXIS] += g26_prime_length; + G26_line_to_destination(planner.max_feedrate_mm_s[E_AXIS] / 15.0); + stepper.synchronize(); + set_destination_to_current(); + retract_filament(destination); + } + + return UBL_OK; +} + +#endif // UBL_G26_MESH_VALIDATION diff --git a/Marlin/src/gcode/temperature/M105.h b/Marlin/src/gcode/temperature/M105.h index b5c7dc99a..627e991d6 100644 --- a/Marlin/src/gcode/temperature/M105.h +++ b/Marlin/src/gcode/temperature/M105.h @@ -28,7 +28,7 @@ void gcode_M105() { #if HAS_TEMP_HOTEND || HAS_TEMP_BED SERIAL_PROTOCOLPGM(MSG_OK); - print_heaterstates(); + thermalManager.print_heaterstates(); #else // !HAS_TEMP_HOTEND && !HAS_TEMP_BED SERIAL_ERROR_START(); SERIAL_ERRORLNPGM(MSG_ERR_NO_THERMISTORS); diff --git a/Marlin/src/gcode/temperature/M109.cpp b/Marlin/src/gcode/temperature/M109.cpp index 1254ff4b1..58fe364e5 100644 --- a/Marlin/src/gcode/temperature/M109.cpp +++ b/Marlin/src/gcode/temperature/M109.cpp @@ -127,7 +127,7 @@ void GcodeSuite::M109() { now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print temp & remaining time every 1s while waiting next_temp_ms = now + 1000UL; - print_heaterstates(); + thermalManager.print_heaterstates(); #if TEMP_RESIDENCY_TIME > 0 SERIAL_PROTOCOLPGM(" W:"); if (residency_start_ms) diff --git a/Marlin/src/gcode/temperature/M190.h b/Marlin/src/gcode/temperature/M190.h index f4aebb91f..c80ccc3f0 100644 --- a/Marlin/src/gcode/temperature/M190.h +++ b/Marlin/src/gcode/temperature/M190.h @@ -85,7 +85,7 @@ void gcode_M190() { now = millis(); if (ELAPSED(now, next_temp_ms)) { //Print Temp Reading every 1 second while heating up. next_temp_ms = now + 1000UL; - print_heaterstates(); + thermalManager.print_heaterstates(); #if TEMP_BED_RESIDENCY_TIME > 0 SERIAL_PROTOCOLPGM(" W:"); if (residency_start_ms) diff --git a/Marlin/src/module/temperature.cpp b/Marlin/src/module/temperature.cpp index 65efc2647..8944e581b 100644 --- a/Marlin/src/module/temperature.cpp +++ b/Marlin/src/module/temperature.cpp @@ -2179,3 +2179,80 @@ void Temperature::isr() { in_temp_isr = false; ENABLE_TEMPERATURE_INTERRUPT(); //re-enable Temperature ISR } + +#if HAS_TEMP_HOTEND || HAS_TEMP_BED + + #include "../gcode/gcode.h" + + void print_heater_state(const float &c, const float &t, + #if ENABLED(SHOW_TEMP_ADC_VALUES) + const float r, + #endif + const int8_t e=-2 + ) { + #if !(HAS_TEMP_BED && HAS_TEMP_HOTEND) && HOTENDS <= 1 + UNUSED(e); + #endif + + SERIAL_PROTOCOLCHAR(' '); + SERIAL_PROTOCOLCHAR( + #if HAS_TEMP_BED && HAS_TEMP_HOTEND + e == -1 ? 'B' : 'T' + #elif HAS_TEMP_HOTEND + 'T' + #else + 'B' + #endif + ); + #if HOTENDS > 1 + if (e >= 0) SERIAL_PROTOCOLCHAR('0' + e); + #endif + SERIAL_PROTOCOLCHAR(':'); + SERIAL_PROTOCOL(c); + SERIAL_PROTOCOLPAIR(" /" , t); + #if ENABLED(SHOW_TEMP_ADC_VALUES) + SERIAL_PROTOCOLPAIR(" (", r / OVERSAMPLENR); + SERIAL_PROTOCOLCHAR(')'); + #endif + } + + void Temperature::print_heaterstates() { + #if HAS_TEMP_HOTEND + print_heater_state(degHotend(gcode.target_extruder), degTargetHotend(gcode.target_extruder) + #if ENABLED(SHOW_TEMP_ADC_VALUES) + , rawHotendTemp(gcode.target_extruder) + #endif + ); + #endif + #if HAS_TEMP_BED + print_heater_state(degBed(), degTargetBed(), + #if ENABLED(SHOW_TEMP_ADC_VALUES) + rawBedTemp(), + #endif + -1 // BED + ); + #endif + #if HOTENDS > 1 + HOTEND_LOOP() print_heater_state(degHotend(e), degTargetHotend(e), + #if ENABLED(SHOW_TEMP_ADC_VALUES) + rawHotendTemp(e), + #endif + e + ); + #endif + SERIAL_PROTOCOLPGM(" @:"); + SERIAL_PROTOCOL(getHeaterPower(gcode.target_extruder)); + #if HAS_TEMP_BED + SERIAL_PROTOCOLPGM(" B@:"); + SERIAL_PROTOCOL(getHeaterPower(-1)); + #endif + #if HOTENDS > 1 + HOTEND_LOOP() { + SERIAL_PROTOCOLPAIR(" @", e); + SERIAL_PROTOCOLCHAR(':'); + SERIAL_PROTOCOL(getHeaterPower(e)); + } + #endif + } + +#endif // HAS_TEMP_HOTEND || HAS_TEMP_BED diff --git a/Marlin/src/module/temperature.h b/Marlin/src/module/temperature.h index 2aa7e67fe..9959d1824 100644 --- a/Marlin/src/module/temperature.h +++ b/Marlin/src/module/temperature.h @@ -525,6 +525,10 @@ class Temperature { #endif #endif + #if HAS_TEMP_HOTEND || HAS_TEMP_BED + static void print_heaterstates(); + #endif + private: #if ENABLED(FAST_PWM_FAN)